влияние дибазола и его новых производных на ионные каналы нейронов моллюска
УДК 615.216.2:577.3:612.822.3 © А. И. Вислобоков, Л. В. Мызников, А. А. Тарасенко, П. Д. Шабанов
ФГБУ «Научно-исследовательский институт экспериментальной медицины» СЗО РАМН, Санкт-Петербург
Ключевые слова:_
дибазол; натриевый, кальциевый и калиевый ионный ток; нейроны моллюска; Lymnaea stagnalis.
Резюме_
Изучали изменения трансмембранных кальциевых, натриевых и калиевых ионных токов под влиянием дибазола (2-(фенилметил)-1Н-бензимидазол гидрохлорида) и двух его новых производных при внеклеточном приложении в концентрациях 1, 10,100 и 1000 мМ. Использовали метод внутриклеточного диализа и фиксации мембранного потенциала на изолированных нейронах прудовика Lymnaea stagnalis. Установлено, что в концентрациях 1 и 10 мкМ эффекты были незначительными, а в концентрациях 100 и 1000 мкМ дибазол оказывал дозозависимое и обратимое подавляющее действие на все токи, но преимущественно - на амплитуду калиевых токов. ЕС-50:1Ш = 7,4 мМ; 1Са = 4,0мМ; для одной группы нейронов 1Кз1 = 83,9 мкМ; для другой группы нейронов 1&2 = 2,9 мМ. Сдвига вольт-амперных характеристик мембраны не происходило, но наблюдали изменения кинетики развития токов. Дибазол оказывал более выраженное подавление токов, чем его новые производные.
ВВЕДЕНИЕ
Функционирование ионных каналов лежит в основе многих физиологических (биоэлектрических) процессов, а ряд заболеваний нервной, сердечнососудистой, кардио-респираторной систем связан с нарушением работы ионных каналов и ионного баланса клеток. Многие фармакологические средства могут оказывать прямое влияние на потенциало-управляемые ионные каналы и рецепторы плазматических мембран [1-4, 9, 10] и тем самым они корректируют нарушенные функции в организме.
Например, действие местных анестетиков и про-тивоаритмических средств, имеющих большое практическое значение среди лекарственных препаратов, объясняют их влиянием на возбудимые мембраны, способностью блокировать ионные каналы и их обоснованно называют каналоблокато-рами [9, 10]. Другие фармакологические вещества не имеют явно выраженного каналоблокирующе-го действия, а скорее активируют ионные каналы, увеличивая амплитуду их ионных токов, или незначительно подавляют их, эти вещества называют
модуляторами ионных каналов. Нами показано, что подобным действием обладают антигипоксанты, полисахариды, фитоэкдистероиды и многие другие соединения в концентрациях 1-10 мкМ [2-4].
Дибазол (МНН: бендазол) относится к группе миотропных вазодилатирующих средств. Оказывает непосредственное спазмолитическое действие на гладкие мышцы кровеносных сосудов и внутренних органов. Обладая гипотензивным и сосудорасширяющим действием, он стимулирует функцию спинного мозга, облегчает синаптическую передачу и обладает умеренной иммуностимулирующей активностью.
Поскольку в литературе нет сведений о мембра-нотропной активности дибазола и его производных, то целью данного исследования было сравнительное изучение влияния дибазола и двух новых его производных на ионные каналы изолированных нейронов, что может способствовать пониманию механизмов их цитофармакологического действия.
МЕТОДИКА
Объектом исследования были неидентифициро-ванные нейроны брюхоногого моллюска прудовика большого (Lymnaea stagnalis). Из тела моллюска вырезали окологлоточное кольцо нервных ганглиев, которое затем обрабатывали 0,25%-м раствором трипсина в течение 40 мин [3, 8]. Ферментативная обработка позволяет освободить поверхность мембраны нейронов от соединительнотканных оболочек, глиальных клеток и других диффузионных барьеров. После обработки ганглии помещали в раствор без фермента и через 15 мин подвергали механическому разделению под бинокулярным микроскопом при помощи вольфрамовых игл и полиэтиленовой пипетки. Изолированные нейроны сохраняли свои электрические характеристики в течение 1-3 суток.
Для измерения трансмембранных ионных токов применяли метод внутриклеточного диализа изолированных нейронов и фиксации мембранного потенциала [3, 8]. Для изготовления микропипетки с порой использовали тонкую полиэтиленовую трубку длиной 3 см, сгибали ее V-образно в струе горячего воздуха, и на сгибе тонкой стальной проволокой формировали выступ. Затем на вершине выступа под бинокулярной лупой иглой делали отверстие. Изготовленную микропипетку соединяли с систе-
мой трубочек для подачи диализирующего раствора (табл. 1). По величине сопротивления (200-300 кОм) оценивали диаметр отверстия (3-5 мкм) и пригодность микропипетки для дальнейшей работы.
Изолированную живую клетку помещали на полиэтиленовую пипетку, в которой создавали толчки отрицательного гидростатического давления, вследствие чего в области поры мембрана нейрона разрушалась и создавался электрический контакт неполя-ризующегося электрода, соединенного с усилителем фиксации потенциала, с внутриклеточным содержимым. При гиперполяризующем сдвиге мембранного потенциала на экране осциллографа были видны емкостные токи мембраны и неспецифический ток утечки, который «вычитали» из общего тока. При переключении тестирующего импульса на деполяризацию регистрировали входящий (натрий-кальциевый) и выходящий медленный калиевый токи. Перфузиру-ющий раствор (табл. 1), в который добавляли исследуемые вещества, подавался в камеру, где находился нейрон на полиэтиленовой микропипетке, а диализи-рующий — внутрь этой пипетки.
Дибазол, его производные БИА — 2-(4-гептил-бензимидазол) и ДБИ — дифенилбензимидазол-2 (субстанции) изучали в концентрациях 1, 10, 100 и 1000 мкМ при внеклеточном действии на нейроны.
Дибазол — 2-(фенилметил)-1Н-бензимидазола гидрохлорид
БИА — бензимидазолвальпроат, или 2-(4-гептил-бензимидазол)
ДБИ — дифенилбензимидазол-2 Поскольку производные дибазола труднорастворимы в воде, то для их растворения использовали димексид, которого затем в растворе оказывалось не более 1 %. Кривые ионных токов визуально оценивали на экране осциллографа, вводили в компьютер и распечатывали на принтере. Полученные результаты обрабатывали с использованием статистической программы SPSS-17, при этом для проверки гипотезы о различиях между группами проводили непараметрический дисперсионный анализ Фридмана,
■ Таблица 1. Ионный состав растворов (в ммоль/л)
для нейронов прудовика
Регистрируемые токи NaCl CsCl CaCl2 MgCl2 KCl трис-ОН рН
Внеклеточные (перфузирующие) растворы
Суммарный входящий 100 - 2 1,5 5 10 7,5
Кальциевый входящий - 100 10 1,5 - 10 7,5
Натриевый входящий 110 - - 1,5 - 10 7,5
Калиевые выходящие 100 - 2 1,5 5 10 7,5
Внутриклеточные (диализирующие) растворы
Входящие - 120 - - - 10 7,4
Калиевые выходящие - - - - 120 10 7,4
а для доказательства различий между контролем и эффектами фармакологических средств в различных концентрациях — апостериорное попарное сравнение с использованием критериев Вилкоксона. При обработке результатов учитывали изменения электрофизиологических характеристик только тех нейронов, на которых они были получены при действии всех изучаемых концентраций дибазола. На рисунках представлены значения средних арифметических и 95% доверительные интервалы. Для построения графиков использовали пакет программ «Excel».
РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЙ
Под влиянием дибазола наблюдались зависимые от концентрации и обратимые изменения амплитуды натриевого тока (рис. 1 А).
При действии в концентрациях 1 и 10 мкМ его слабое активирующее и подавляющее действие было недостоверным. В концентрациях 100 мкМ и 1000 мкМ амплитуда тока снизилась до 91,0 ± 4,2 и 86,9 ± 4,4 % соответственно. Эффекты наступали быстро, устранялись при отмывании также довольно быстро (за 2-3 мин), что указывает на высокую доступность структур ионных каналов для дибазола и невысокую прочность связывания его молекул со структурами мембраны (или ионных каналов). Кинетика активации тока не изменялась, а инактивации — замедлялась (рис. 1 Б, 4, 100 мкМ дибазола), что указывает на возможное взаимодействие молекул дибазола с инактивационными воротными структурами каналов. Положение же максимума вольт-амперной характеристики мембраны суммарных натрий-кальциевых токов не изменялось (рис. 1 В, Г; натриевые токи — левая часть кривой: видно только уменьшение тока — кривая 3), что указывает на неизменность потенциала фиксированных зарядов мембраны вблизи натриевых каналов. Неизменность положения максимума вольт-амперной
<
т
га
3
V. мВ
\Ч 3
1, 2
■ Рисунок 1. Изменения натриевых ионных токов нейронов прудовика под влиянием дибазола в различных концентрациях. А — зависимости «концентрация-эффект» (п = 14); Б — 1,2 — контроль и отмывание, 3 — 10мкМ, 4 — 100 мкМ; В — вольт-амперные характеристики натрий-кальциевых каналов: 1,2 — контроль и отмывание,
3 — 1000 мкМ; Г — суммарные вольт-амперные характеристики: 1 — контроль, 2 — отмывание, 3 — 100 мкМ,
4 — 1000 мкМ. По оси абсцисс — концентрация (А), время (Б) и В и Г — потенциал (пилообразное смещение от -40 до 10 мВ за 20 мс); по оси ординат — ионный ток (для А: I — при действии, 10 — контроль, % при р = 95 %). Поддерживаемый потенциал--90 тУ
110 105 100 95 90 85 80 75 70
10 100 С. мкМ
1000
V. мВ
\ 4
1, 2 3
<
га" -Ю и
-15 -20 -25
■ Рисунок 2. Изменения кальциевых ионных токов нейронов прудовика под влиянием дибазола в различных концентрациях. А — зависимости «концентрация-эффект» (п = 17); Б — кривые снизу вверх: контроль, отмывание, дибазол 100 мкМ (в правой части верхняя кривая — ускорение инактивации); В — 1,2 — контроль и отмывание, 3 — дибазол 100 мкМ, 4 — дибазол 1000 мкМ; Г — 3 нижних кривых — контроль, дибазол 1 и 10 мкМ, 2 средних — дибазол 100 и 1000 мкМ, верхняя — афобазол 1000 мкМ, в правой части 3 верхние кривые — ускорение активации тока при действии дибазола (100 и 1000 мкМ) и афобазола 1000 мкМ. По оси абсцисс — концентрация (А), время (Б) и В и Г — потенциал (пилообразное смещение от -40 до 10 мВ за 20 мс); по оси ординат — ионный ток (для А: I — при действии, 10 — контроль, % при р = 95 %). Поддерживаемый потенциал--90 тУ
А □ 1 о2
■ Рисунок 3. Изменения калиевых ионных токов нейронов прудовика под влиянием дибазола в различных концентрациях. А — зависимости «концентрация-эффект»: 1 — первая группа нейронов (п = 14), 2 — вторая группа (п = 6); Б — увеличение токов: нижняя кривая — контроль, верхние — дибазол 1 и 10 мкМ; В — подавление токов: 1 — контроль, 2 — дибазол 1 мкМ, 3 — 10, 4 — 100 и 5 — 1000 мкМ; Г — вольт-амперные характеристики калиевых медленных каналов: 1 — контроль, 2 — отмывание, 3 — дибазол, 100 мкМ и 4 — дибазол, 1000 мкМ; по оси абсцисс: А — концентрация, Б и В — время, Г — потенциал (пилообразное смещение от -40 до 30 мВ за 50 мс; по оси ординат — ионные токи (А: 1 — при действии, 10 — контроль, % при р = 95 %). Поддерживаемый потенциал--90 тУ, тестирующий — 30 тУ (Б и В)
характеристики натрий-кальциевых каналов видна также и при регистрации суммарных входящих и выходящих токов (рис. 1 Г, кривые входящего тока в левой их части).
Обращает на себя внимание существенное обратимое подавление дибазолом в концентрациях 100 и 1000 мкМ быстрого калиевого тока (кривые 3 и 4 в средней их части), о чем будет более подробно сказано далее.
Влияние дибазола во всем диапазоне концентраций от 1 до 1000 мкМ на кальциевые токи (рис. 2, А) было примерно одинаковым с таковым для натриевых токов (рис. 1 А). Опять же наблюдались недостоверные слабые изменения при концентрациях 1 и 10 мкМ и подавление тока при действии дибазола в концентрациях 100 и 1000 мкМ, снижение амплитуд токов до 87,3 ± 5,2 и 81,3 ± 8,2 % соответственно. Эффекты наступали и отмывались также быстро. Кинетика развития тока (рис. 2 Б, кривая 4) и положение максимума вольт-амперной характеристики мембраны (рис. 2 Г, кривые 3 и 4 и Д) не изменялись. Но необходимо сказать, что под влиянием дибазола
в концентрациях 100 и 1000 мкМ существенно ускорялась кинетика закрывания кальциевыхтоков после снятия деполяризующих сдвигов мембранного потенциала («хвост» тока на рис. 2 Б и 2, Г верхние кривые в самой их правой части). Это может указывать на влияние дибазола на ворота ионных каналов.
Нужно отметить, что в ряде опытов влияние дибазола сравнивалось с влиянием структурного аналога дибазола афобазола в концентрациях 1000 мкМ. Так, кальциевые токи существенно сильнее были подавлены афобазолом, чем дибазолом, при этом афобазол, как и дибазол, ускорял закрывание ворот ионных каналов входящего тока (рис. 2 Г, правая часть верхних кривых).
Дибазол на двух нейронах не оказывал влияния на амплитуду кальциевых токов, как это показано на рис. 1 В, в правой части кривых. Натриевые токи снижались (левая часть кривых), а кальциевые оставались неизменными.
Влияние дибазола на калиевые токи различных нейронов не было однозначным, в особенности это касалось его эффектов в концентрациях
100 и 1000 мкМ (рис. 3 А). На 14 нейронах 1-й группы наблюдалось более выраженное подавление тока до 52,9 ± 18,9 % и 26,8 ± 8,3 % соответственно (рис. 3 А, 1), а на 6 нейронах 2-й группы — до 82,9 ± 10,0 0% и 74,9 ± 13,8 0% (рис. 3 А, 2). Слабое влияние дибазола в концентрациях 1 и 10 мкМ на всех нейронах было примерно одинаковым (рис. 3 А, слева колонки 1 и 2), а характер такой активации, например, показан на рис. 3 Б, верхние кривые. Дозозависимое подавление тока дибазолом, сопровождающееся замедлением процесса его активации, представлено на рис. 3 В, а изменения вольт-амперных характеристик калиевых каналов — на рис. 3 Г — подавление тока (кривые 2 и 4) и частичное восстановление тока после действия дибазола (кривая 3).
Влияние дибазола на быстрые калиевые токи напоминало его влияние на медленные калиевые. Для
сравнения общий характер подавления выходящих быстрых и медленных калиевых ионных токов показан на рис. 4 А — пик начальной части тока исчезал при действии дибазола в концентрации 1000 мкМ. При этом заметно ускорялся процесс инактивации медленного тока (нижняя кривая).
Производные дибазола БИА и в особенности ДБИ оказывали менее выраженное влияние на ионные токи. Например, амплитуда калиевого медленного тока при действии ДБИ в концентрации 100 мкМ снижалась только до 83 о%, БИА — до 32,6 %%, а дибазола — до 23,7 о%, что демонстрируют вольт-амперные характеристике калиевых каналов (рис. 4 Б, кривые 2, 4 и 5). Под влиянием БИА в концентрации 100 мкМ снижались и входящие токи примерно на ту величину, что и под влиянием дибазола (рис. 4 В, в левой части кривые 2 — дибазол и 3 — БИА, а в правой части — калиевые токи).
■ Рисунок 4. Изменения ионных токов под влиянием дибазола и его производных. А — подавление быстрого калиевого тока (начальная часть кривых) и ускорение инактивации медленного калиевого тока под влиянием дибазола: верхние кривые — контроль, 1 и 10 мкМ, нижняя — 100 мкМ; Б — вольт-амперные характеристики — калиевый медленный ток (1 — контроль) под влиянием дибазола (6), ДБИ (2), БИА (5) в концентрациях 100 мкМ и отмывание (4); В — вольт-амперные характеристики — входящий и выходящие токи (1 — контроль) под влиянием дибазола (2) и БИА (3) в концентрациях 100 мкМ; Г — калиевые токи (2 — контроль), димек-сид — 1 % раствор — 130 мМ (3), 10 % — 1300 мМ (4) и отмывание (1). По оси ординат — ионные токи: по оси абсцисс - время (А и Г) и потенциал (пилообразное смещение от -40 до 30 мВ за 50 мс (Б и В). Поддерживаемый потенциал--90тУ, тестирующий — 30 тУ (для А и Г)
Неспецифические токи утечки мембраны при действии дибазола в концентрациях 1 и 10 мкМ не изменялись, а в концентрациях 100 и 1000 мкМ обратимо снижались примерно на 1 нА, т. е. проявлялось стабилизирующее действие.
В небольшой части опытов было показано, что димексид, используемый для растворения производных дибазола не индифферентен для нейронов. Так, при его действии в виде 1 %-го раствора (130 мМ) калиевый медленный ток снижался до 92,7 % по сравнению с контролем, а 10 %-го (1300 мМ) — до 65,3 %.
Для оценки характера подавления ионных токов дибазолом были определены величины ЕС-50: 1Ма = 7,4 мМ; 1Са = 4,0 мМ; для первой группы нейронов I Кз1 = 83,9 мкМ; для второй группы нейронов ^ , = 2,9 мМ.
Кв,2 '
ОБСУЖДЕНИЕ ПОЛУчЕННых РЕЗУЛЬТАТОВ
Полученные результаты свидетельствуют, что дибазол является активным мембранотропным соединением, способным менять проводимость натриевых, кальциевых и преимущественно калиевых ионных каналов нервных клеток [1-4]. Доказательством этому служит обратимое дозозависимое подавление им ионных токов в концентрациях выше 10 мкМ и особенно выраженно — при 100 и 1000 мкМ. В литературе показано, что дибазол и другие его производные в концентрациях 100 и более мкМ на нейронах моллюсков оказывают деполяризующее действие, изменяют импульсную активность нейронов и предполагается их влияние на ионные каналы [5, 6]. Нами показано, что дибазол несколько слабее по мембранной активности, но напоминает другое производное имидазола — афобазол, квалифицируемый как анксиолитик с кардиотропными свойствами [2]. Но мембранотропные эффекты афо-базола выражены сильнее, он в большей степени повышает амплитуду ионных токов при действии в концентрациях 1-10 мкМ и в большей степени подавляет их в концентрации 1000 мкМ. Кроме того, после действия афобазола наблюдается активация токов, а после дибазола лишь постепенное восстановление токов к исходным величинам.
Механизм подавления ионных токов дибазолом, вероятно, напоминает подобный и известный для анестетиков и противоаритмических средств — обратимое блокирование ионных каналов [8, 9]. Небольшое замедление инактивации натриевых токов, ускорение активации и инактивации калиевых токов, а также ускорение инактивации входящих «хвостовых» токов после снятия деполяризующих сдвигов потенциала можно объяснить взаимодействием молекулы дибазола с соответствующими воротными механизмами ионных каналов. Заслуживает внимания тот факт, что калиевые медленные токи под влиянием дибазола на разных нейронах по-
давлялись в разной степени. Наиболее вероятно это происходило потому, что в нейронах были разные типы каналов с разной чувствительностью к дибазолу, а разнообразие калиевых каналов весьма велико [2, 3]. Кроме того, кальциевые токи под влиянием дибазола иногда не снижались, что было показано и в литературе на гладких мышцах теплокровных, когда под влиянием дибазола снижался только инак-тивирующийся кальциевый ток и оставался неизменным неинактивирующийся [7].
Производное дибазола, БИА, напоминало эффекты дибазола, а ДБИ оказался мало эффективным. Вероятно, что эти производные вследствие модификации структур молекулы проявляли меньшее сродство к местам связывания дибазола в мембране нейронов.
Таким образом, дибазол, умеренно изменяя токи в концентрациях 1-10 мкМ, оказывает модулирующее действие на электровозбудимые клетки, что может лежать в основе его терапевтических эффектов. В более высоких концентрациях дибазол заметно снижает входящие натрий-кальциевые и выходящие калиевые ионные токи, оказывает каналоблокирую-щее действие, которое может существенно снижать возбудимость клеток, генерацию потенциала покоя, действия, подавлять синаптические потенциалы и ионные градиенты клеток, напоминая своим действием местные анестетики и противоаритмические средства.
ЛИТЕРАТУРА
1. Вислобоков А. И., Игнатов Ю. Д. Цитофармакологиче-ское исследование механизмов действия мембрано-тропных средств // Обзоры по клин. фармакол. и лек. терапии. — 2003. — Т. 2, № 1. — С. 14-22.
2. Вислобоков А. И., Игнатов Ю. Д., Галенко-Ярошев-ский П. А., Шабанов П. Д. Мембранотропное действие фармакологических средств. — СПб.-Краснодар: Просвещение-Юг, 2010. — 528 с.
3. Вислобоков А. И., Игнатов Ю. Д., Мельников К. Н. Фармакологическая модуляция ионных каналов мембраны нейронов. — СПб.: Изд-во СПбГМУ, 2006. — 288 с.
4. Вислобоков А. И., Марышева В. В., Шабанов П. Д. Мембранные механизмы действия антигипоксантов бемитила и алмида на нейроны моллюсков // Экспер. и клин. фарм. — 2003. — Т. 66, № 6. — С. 9-11.
5. Гамма Т. В., КоренюкИ. И. Постсинаптические потенциалы нейронов Helix albescens Rossm., индуцируемые бензимидазолом и некоторыми его производными // Архiв клУчноУ та експериментальноУ медицини. — 2008. — Т. 17, № 2. — С. 142-146.
6. Гамма Т. В., Коренюк И. И., Баевский М. Ю. Функциональное состояние нейронов ППа1 под влиянием дибазола и бемитила // Уч. записки Таврич. нац. ун-та им. В. И. Вернадского, серия «Биология». — 2003. — Т. 16 (55), № 4. — С. 50-54.
7. Гурковская А. Н., Гокина Н. И., Шуба М. Ф., Казак Л. И., Чекман И. С. Механизм действия дибазола на сократительную и электрическую активность гладкой мышцы портальной вены // Физиол. журн. СССР им. И. М. Сеченова. — 1989. — Т. 35, № 6. — С. 50-53.
8. КостюкП. Г., Крышталь О. А. Механизмы электрической возбудимости нервной клетки. — М.: Наука, 1981. — 207 с.
9. Narahashi T. Neuroreceptors and ion channels as the basis for drug action: past, present, and future // J. Pharmacol. Exp. Ther. - 2000. - Vol. 294, N 1. - P. 1-26.
10. Ragsdale D. S., McPhee J. C., Scheuer T., Catterall W. A. Common molecular determinants of local anesthetic, antiarrhythmic and anticonvulsant block of voltage-gated Na channels // Proc. Natl. Acad. Sci. USA. — 1996. — Vol. 93. — P. 9270-9275.
EFFECT OF DiBAZOL AND iTS NEW DERiVATiVES ON THE MOLLUSK iONiC CHANNELS
VislobokovA. I., MyznikovL. V., Tarasenko A. A., Shabanov P. D.
♦ Summary: The changes in transmembrane calcium, sodium and potassium ionic currents after extracellular administration of dibazol (2-(phenylmethyl)-1H-benzimidazol hy-
drochloride) and its two new derivatives in concentrations of 1, 10, 100 and 1000 |M were studied by the method of intracellular dialysis and fixation of membrane potential in isolated neurons of the Lymnaea stagnalis mollusk. Dibazol in concentrations of 1 and 10 |M effected slightly on the ionic currents. High concentrations of dibazol (100 and 1000 |M) inhibited all currents in dose dependent manner with maximal effect on potassium currents amplitude. EC50 were 7.4 mM for INa, 4.0 mM for ICa, 83.9 |M for IKs1 (one; group of neurons) and 2.9 mM for IKs2 (the anothergroup of neurons). The voltage-amper membrane characteristics shift was not registered, but the kinetics of currents development was changed. Dibazol was more effective in inhibition of ionic currents compared to its structural analogs.
♦ Key words: dibazol; calcium; sodium and potassium ionic currents; mollusk neurons; Lymnaea stagnalis.
♦ Информация об авторах
Вислобоков Анатолий Иванович — д. б. н., старший научный сотрудник отдела нейрофармакологии им. С. В. Аничкова. ФГБУ «Научно-исследовательский институт экспериментальной медицины» СЗО РАМН. 197376, Санкт-Петербург, ул. Акад. Павлова, д. 12. E-mail: [email protected].
Vislobokov Anatoliy Ivanovich — Dr. Med. Sci. (Physiology), Senior Researcher, Anichkov Dept. of Neuropharmacology. Institute of Experimental Medicine, NWB RAMS. 197376, St. Petersburg, Acad. Pavlov St., 12, Russia. E-mail: [email protected].
Мызников Леонид Витальевич — к. х. н., научный сотрудник отдела нейрофармакологии им. С. В. Аничкова. ФГБУ «Научно-исследовательский институт экспериментальной медицины» СЗО РАМН. 197376, Санкт-Петербург, ул. Акад. Павлова, д. 12.
Myznikov Leonid Vitalyevich — PhD (Chemistry), Researcher, Anichkov Dept. of Neuropharmacology. Institute of Experimental Medicine, NWB RAMS. 197376, St. Petersburg, Acad. Pavlov St., 12, Russia.
Тарасенко Александр Александрович — научный сотрудник отдела нейрофармакологии им. С. В. Аничкова. ФГБУ «Научно-исследовательский институт экспериментальной медицины» СЗО РАМН. 197376, Санкт-Петербург, ул. Акад. Павлова, д. 12.
Tarasenko Aleksandr Aleksandrovich — Chemist, Researcher, Anichkov Dept. of Neuropharmacology. Institute of Experimental Medicine, NWB RAMS. 197376, St. Petersburg, Acad. Pavlov St., 12, Russia.
Шабанов Петр Дмитриевич — д. м. н., профессор, заведующий отделом нейрофармакологии им. С. В. Аничкова. ФГБУ «Научно-исследовательский институт экспериментальной медицины» СЗО РАМН. 197376, Санкт-Петербург, ул. Акад. Павлова, д. 12. E-mail: [email protected].
Shabanov Petr Dmitriyevich — Dr. Med. Sci. (Pharmacology), Professor and Head, Anichkov Dept. of Neuropharmacology. Institute of Experimental Medicine, NWB RAMS. 197376, St. Petersburg, Acad. Pavlov St., 12, Russia. E-mail: [email protected].