УДК 628.3
А. И. Хабибрахманова, Н. А. Югина, Е. О. Михайлова, М. В. Шулаев
ВЛИЯНИЕ БИОЛОГИЧЕСКИ АКТИВНЫХ ВЕЩЕСТВ НА ПРОЦЕСС ОЧИСТКИ СТОЧНЫХ ВОД,
СОДЕРЖАЩИХ АММОНИЕВЫЕ СОЕДИНЕНИЯ
Ключевые слова: анаэробный ил, биологически активные вещества, гуминовый препарат, мелафен, аммониевые соединения.
Проведено исследование процессов интенсификации анаэробной биологической очистки модельной сточной воды, содержащей аммониевые соединения, с помощью биостимуляторов нового поколения. Показано, что наиболее эффективно для очистки модельной сточной воды от аммониевых соединений применение гуминового препарата в концентрации 10-1 г/дм3 в сочетании с мелафеном в концентрации 10-6мг/дм3.
Keywords: anaerobic sludge, biologically active substances, humicpreparation, Melaphen, ammonium compounds.
The intensification process of the anaerobic biological treatment of model wastewater containing ammonium compounds was investigated with the help of a new generation of stimulants. The most effect of the wastewater treatment contaminated ammonium compounds was shown for the combination of humic preparation 10'1 g/dm3 and Melaphen 10'6 mg/dm3.
Введение
Аммонийный азот в водах находится, главным образом, в растворенном состоянии в виде ионов аммония и недиссоциированных молекул МН4ОН, количественное соотношение которых имеет важное экологическое значение и определяется величиной рН и температурой воды.
Повышенное содержание ионов аммония указывает на ухудшение санитарного состояния водного объекта, причем, поскольку аммиак более токсичен, чем ионы аммония, опасность аммонийного азота для гидробионтов возрастает с повышением рН воды.
Присутствие в незагрязненных поверхностных водах ионов аммония связано, главным образом, с процессами биохимической деградации белковых веществ, дезаминирования аминокислот, разложения мочевины. Естественными источниками аммиака служат прижизненные выделения гидробионтов. Кроме того, ионы аммония могут образовываться в результате анаэробных процессов восстановления нитратов и нитритов.
Целью данной работы было исследование влияния гуминового препарата и мелафена на процесс очистки модельной сточной воды, содержащей соли аммония и аммиак.
Экспериментальная часть
Для изучения процесса нитрификации и денитрификации исследуется изменение
концентрации ионов аммония и нитратов. ПДКв аммонийных ионов составляет 2,0 мг/дм3, аммиака -1,0 мг/дм3 по азоту, ПДКвр ионов аммония - 0,4 мг/дм3, аммиака - 0,04 мг/дм3 по азоту. Для эксперимента использовалась концентрация ионов аммония 9,8 мг/дм3.
В щелочном растворе аммиак реагирует с тетраиодомеркуратом (II) калия, образуя различные желто-коричневые соединения, выпадающие в осадок или (при малых концентрациях) переходящие в коллоидные растворы. В условиях фотометрического определения реакция в основном проходит по
уравнению
2HgI2-4 + NH3 + OH- ^ NH2HgI3 + 51- + H2O (1) Содержание азота, ртути и иодида в осадке выражается отношением 1:2:3, однако возможно присутствие в осадке и других соединений (OHg2NH2I и др.). Некоторая неопределенность состава образующегося соединения требует точного соблюдения условий проведения определения как при анализе пробы, так и при построении калибровочного графика.
Выполнение анализа. Отбирали такую аликвотную часть, чтобы в ней содержалось 5 - 60 мкг NH+4, если предполагается измерение оптической плотности в кювете с толщиной слоя жидкости 5 см, или 25 - 300 мкг NH+4, если предполагается пользоваться кюветой с толщиной слоя 1 см. Разбавляли отобранную порцию безаммиачной водой до 50 мл, приливали 1 мл реактива Несслера и давали постоять не меньше 10 мин [1].
Оптическую плотность полученного
окрашенного раствора измеряли при X = 425 нм, поместив во вторую кювету фотометра холостой раствор (раствор реактивов).
Содержание NH+4 находили по калибровочному графику, для построения которого пользуются растворами хлорида аммония в безаммиачной воде в концентрациях 0,1; 0,2; 0,3; 0,4; 0,5; 0,6; 0,8, 1,0 и 1,2 мг/дм3 [1].
В качестве объектов исследований были выбрана смешанная популяция микроорганизмов, входящих в состав анаэробного ила, полученного на основе активного ила городских очистных сооружений, сброженного в течение 4-х недель при температуре 38°С.
Активный ил для экспериментов отбирался из первого коридора второго аэротенка биологической очистки сточных вод ОАО «Альметьевск -Водоканал».
По внешнему виду активный ил представлял собой мелкие плотные хлопья светло-коричневого цвета, запах илистый, надыловая жидкость прозрачная. Иловый индекс составлял 58,8 см3/г,
доза ила - 4,02 г/ дм .
После сбраживания ил приобретал черную окраску, характерный запах разложившихся органических веществ. Кроме того, было отмечено бурное газовыделение; в состав газа входил сероводород, определенный органолептически.
При приготовлении модельной сточной воды в качестве источника углерода использовали глюкозу (C6Hi2O6), азота - натрий азотнокислый (NaNO3), фосфора - калий фосфорнокислый однозамещенный (KH2PO4) в соотношении C:N:P = 100:5:1.
Для изучения кинетики анаэробного процесса в микробиологические пробирки емкостью 50 дм3 заливали по 25 дм3 модельной сточной воды и 25 дм3 анаэробного ила, а также добавляли биологически активные препараты в соответствующих концентрациях.
После продувки азотом пробирки плотно закрывали пробками и встряхивали на установке «Orbital Shaker» в течение заданных промежутков времени со скоростью 70 об/мин. Затем пробы отфильтровывали и определяли концентрацию ионов аммония и аммиака фотометрическим методом с реактивом Несслера [1].
В данном эксперименте (рисунок 1) в опытных образцах проводился процесс очистки стоков, загрязненных соединениями аммония, в присутствии гуминового препарата в концентрации 10-1 г/дм3, мелафена в концентрации 10-6 мг/дм3, их сочетании в тех же концентрациях, а в контрольной пробе -традиционная биологическая очистка.
Выбор данных концентраций обусловлен серией экспериментов, проведенных ранее [2-4].
Время эксперимента составляло 24 часа. Общая концентрация аммонийных ионов и аммиака в исходной сточной воды в ходе эксперимента составляло 9,89 мг/дм3, рН - 6,9, температура -28°С.
Данные эксперимента представлены на рисунке 1 и в таблицах 1, 2.
Рис. 1 - Кинетика изменения концентрации
аммонииных препарата
ионов при
внесении 1-1
гуминового
концентрацией 10"1 г/дм3(ГП), мелафена в концентрации 10-6 (М) мг/дм3, смеси
гуминового
Г»-6
препарата -1
мелафена и
концентрациях 10 мг/дм и 10-1 г/дм соответственно и в отсутствии препарата (К)
Таблица 1 - Биологическая очистка сточных вод с использованием гуминового препарата, мелафена и смеси мелафена и гуминового препарата
Эксперимент Снач, мг/дм3 Скон, мг/дм3 Степень очистки, %
Биологическая очистка 9,89 1,85 8,3
Биологическая очистка в присутствии гуминового препарата в концентрации 10-1 г/ дм3 9,89 2,71 72,6
Биологическая очистка в присутствии мелафена в концентрации 10-6 мг/ дм3 9,89 1,76 82,2
Биологическая очистка в присутствии мелафена и гуминового препарата в концентрациях 10-6 мг/дм3 и 10-1 г/дм3 соответственно 9,89 1,93 80,4
Таблица 2 - Степень очистки при внесении гуминового препарата концентрацией 10-1 г/дм3, мелафена концентрацией 10-6 мг/дм3, мелафена и гуминового препарата концентрацией 10-6 мг/дм3 и 10-1 г/дм3 соответственно и в отсутствии препарата (контроль)
Данные эксперимента (рисунок 1, таблицы 1, 2)
показали, что применение препарата мелафен повышает степень очистки по сравнению с контрольной пробой в течение эксперимента в среднем на 6 %. В конце эксперимента опытный образец обеспечивал очистку сточной воды более чем на 82,2 %.
Было установлено, что использование гуминового препарата в концентрации 10-1 г/дм3 не оказывало значительного влияния на степень очистки по сравнению с контрольной пробой, однако за 1 час эксперимента значение концентрации аммонийных ионов с 9,89 мг/дм3 снизилось до 2,75 мг/дм3, в то время как при традиционной биологической очистке значение сульфатов к этому времени составило 5,51 мг/дм3, т. е. к 1 часу эксперимента опытный образец обеспечивал на 25 % более глубокую очистку, чем контрольный.
t, ч Степень очистки, %
Контроль М 10-6 ГП 10-1 10-6 М 10-1 ГП
1 44,2 59,3 72,2 51,7
2 53,9 61,9 40,0 57,0
3 70,9 71,4 60,9 73,5
5 71,7 80,4 64,5 87,4
8 63,9 67,3 75,7 81,3
24 81,3 82,2 72,6 80,4
Применение гуминового препарата в концентрации 10-1 г/дм3 в сочетании с мелафеном в концентрации 10-6 мг/дм3 увеличивает степень очистки по сравнению с традиционной биологической очисткой на 13 %: за 5 часов эксперимента значение ионов аммония с 9,89 мг/дм3 снизилось до 1,24 мг/дм3, в то время как при традиционной биологической очистке значение к этому времени составило 2,78 мг/дм3. К 8 часу эксперимента опытный образец обеспечивал степень очистки 81,3 %, а контрольный - 63,9 %. В конце эксперимента контрольная и опытная системы обеспечивали очистку сточной воды более чем на 80 %.
Полученные данные свидетельствуют, что применение гуминового препарата в концентрации 10-1 г/дм3 в сочетании с мелафеном в концентрации
10-6 мг/дм3 наиболее эффективно для очистки сточной воды от ионов аммония.
Литература
1. Ю.Ю. Лурье, Аналитическая химия промышленных сточных вод. Химия, Москва, 1984, С. 111 - 112.
2. А.И. Хисамова, Н.А. Югина, Е.О. Михайлова, М.В. Шулаев, Вестник Казанского технологического университета, 15, 20, 183 - 185 (2012).
3. А.И. Хисамова, Н.А. Югина, Е.О. Михайлова, М.В. Шулаев, Вестник Казанского технологического университета, 16, 10, 201 - 203 (2013).
4.Н.А. Югина, А.И. Хабибрахманова, Л.Ф. Аскарова, Е.О. Михайлова, М.В. Шулаев, Вестник Казанского технологического университета, 17, 22, 238 - 240 (2014).
© А. И. Хабибрахманова, аспирант кафедры химической кибернетики КНИТУ, [email protected]; Н. А. Югина, аспирант той же кафедры, [email protected]; Е. О. Михайлова, к.б.н., доцент кафедры бизнес-статистики и математических методов в экономике КНИТУ, [email protected]; М. В. Шулаев, д-р. техн. наук, профессор кафедры химической кибернетики КНИТУ, [email protected].
© A. 1 Khabibrakhmanova, postgraduate student of the Department of Chemical Cybernetics, KNRTU, [email protected]; N. A. Yugina, postgraduate student of the Department of Chemical Cybernetics, KNRTU, [email protected]; E. O. Mikhailova, PhD, associate professor of business statistics and mathematical methods in Economics, [email protected]; M. V. Shulaev, Ph.D., Professor of the Department of Chemical Cybernetics, [email protected].