Уточнение методики определения ветровой нагрузки для объектов
параметрической архитектуры
Аннотация: В статье рассмотрено моделирование ветрового воздействия на объекты параметрической архитектуры. Для определения оптимальной формы поверхности исследована эволюция формообразования аналитической поверхности, образующаяся конгруэнтными кривыми в параллельных плоскостях, полученная вращением треугольника Рело с плоскостью, перпендикулярной оси вращения. По результатам численного эксперимента с использованием метода конечных элементов определена рациональная аналитическая поверхность объекта параметрической архитектуры, устойчивая к ветровому воздействию. Получены динамические характеристики объекта параметрической архитектуры. Даны рекомендации по уточнению методики определения ветровой нагрузки для зданий и сооружений сложной геометрической формы. Ключевые слова: параметрическая архитектура; ветровая нагрузка; модальный анализ; пульсационная составляющая; каркас здания; метод конечных элементов.
Введение. Влияние ветровой нагрузки на динамические характеристики зданий зависит не только от размеров объектов строительства и скорости ветра, но и от формы поверхности, оцениваемой аэродинамическими коэффициентами.
Для определения скорости ветра в непосредственной близости от здания и создаваемого им давления на поверхность со сложной геометрией возникает необходимость моделирования ветрового потока. С целью определения оптимальной формы поверхности исследована эволюция формообразования аналитической поверхности, образующаяся конгруэнтными кривыми в параллельных плоскостях, полученная вращением треугольника Рело, перпендикулярной оси вращения [1-2].
Параметрическая форма закрученной поверхности (рис. 1а):
Г.М. Кравченко, Е.В. Труфанова, М.В. Полетаев Донской государственный технический университет
,
(1)
,
(2)
,
(3)
где X, У - формулы задания формообразующей; V - параметры поворота поверхности; а - параметр, зависящий от траектории движения; г - параметр, зависящий от высоты поверхности. Параметрическая форма треугольника Рело:
X = л(0 = - *CPSt — 2 (4)
Y = у (О = - * Stilt -2 (5)
где параметры Д в - представлены на рис. 16.
Рис. 1. - Параметрические формы: а) закрученная поверхность; б) треугольник Рело Варьируя параметры уравнений (1-5), выбираем оптимальную форму объекта параметрической архитектуры в соответствии с функциональным назначением: « = 0; D = 3&,5; е- = 2,5; f = 75; е = 2,5; О £ v £ 2я;
О ^ ¡; 1 3- т. Принятая форма здания офисного центра соответствует
внешнему диаметру 41 м, внутреннему диаметру 36 м при высоте 75 м (рис.2 а).
Наиболее эффективным программным комплексом для выполнения поставленной задачи является ПК ANSYS с подмодулем Fluent,
предназначенный для моделирования ветровых воздействий на конструкции в аэродинамической трубе [3].
Создается расчетная область с размерами 400*1000*200 м с разбивкой в подмодуле mesh расчетного пространства на конечные элементы с последующим вычитанием трехмерной модели здания (рис.2 б). Выполнено сгущение сетки конечно-элементной схемы вблизи исследуемого объекта. Скорость ветра принимается в соответствии с СП 20.13330.2016. «Нагрузки и воздействия» и для данного района на высоте 10 м составляет 17 м/с.
Рис. 2. - Моделирование расчетной области:
а) трехмерная модель здания; б) расчетная область в ПК АКБУБ Проведен численный эксперимент по исследованию зависимостей давления на поверхность объекта, скорости ветра и зон комфортности от параметрической формы. Разработанные модели здания приняты с углом закручивания 180°, 225°, 270°, 315°, 360°. Результаты моделирования ветровых воздействий на объект параметрической архитектуры приведены на рис. 3.
Рис. 3. - Графики зависимостей: а) давления (Па); б) скорости ветра (м/с) от угла закручивания поверхности При вариации угла закручивания давление ветрового потока возрастает до 1250 Па. Поворот плит перекрытий разработанных, в форме треугольника Рело, образуют реберные очертания аналитической поверхности, которые разбивают ветровые потоки. Скорость ветра уменьшается до 35 м/с.
Оптимальная форма соответствует модели с углом поворота 225°, для которой давление ветрового потока 1041 Па (рис. 4), скорость ветра 43 м/с. (рис. 5).
Рис. 4. - Изолинии давления ветрового потока в плоскостях: а) ХУ; б) Х7
Рис. 5. - Изолинии скоростей ветрового потока в плоскостях: а) ХУ; б) Х7 Итак, по результатам численного эксперимента с использованием метода конечных элементов определена рациональная аналитическая поверхность объекта параметрической архитектуры, устойчивая к ветровому воздействию.
Для исследования напряженно-деформируемого состояния каркаса здания выбраны конструктивные решения: фундаментная плита толщиной 1500 мм, плиты перекрытий толщиной 220 мм, балки сечением 300*400 мм, сечение пилонов в подвале и на 1-3 этажах - 1200*500 мм; на 4-7 этажах -1200*400 мм; выше - 1200*300 мм, сечение диафрагм жесткости - 250 мм, сечение стен ядра жесткости в подвале и на 1-7 этажах - 300 мм; выше - 250 мм, толщина стен подвала - 400 мм. Для элементов каркаса принят бетон класса В25.
Разработана конечно-элементная модель в ПК САПФИР по пространственной плитно-стержневой схеме на основе результатов моделирования оптимальной формы аналитической поверхности и экспортирована в ПК ЛИРА САПР. Использованы конечные элементы: пластинчатые с 6 степенями свободы в узле КЭ 42; КЭ 44; стержневые с 6 степенями свободы в узле КЭ 10 (рис. 6) [4-5]. Совместная работа каркаса с основанием соответствует модели Пастернака с коэффициентами постели С1=1000 т/м3, С2=3000 т/м3 [6-8].
N Инженерный вестник Дона, №3 (2019) ivdon.ru/ru/magazine/arcliive/n3y2019/5799
Рис. 6. - Распределение материалов в расчетной схеме: а) таблица материалов; б) проекция здания на плоскость ХЪ; в) 3Б-модель
На первом этапе каркас здания рассчитан на 5 статических загружений: собственный вес несущих конструкций, постоянные нагрузки, временные (снеговая, полезная) нагрузки, статический ветер в продольном и поперечном направлении.
Максимальные статические перемещения в верхней точке каркаса вдоль оси X 11,8 мм; вдоль оси У 12,8 мм; вдоль оси Ъ 63,9 мм; вертикальные перемещения демонстрируют податливость основания.
На втором этапе проектирования для оценки эффективности элементов каркаса здания выполнен модальный анализ (таблица №1) [9].
Таблица № 1
Собственные частоты, периоды колебаний
№ п/п Частоты Периоды
Рад/с Гц С
1 3,50 0,56 1,7942
2 4,00 0,64 1,5687
3 4,34 0,69 1,4466
4 13,91 2,21 0,4516
На рис. 7 представлены главные формы колебаний, позволяющие сделать следующие выводы: 1-я форма собственных колебаний -
¡Инженерный вестник Дона, №3 (2019) ivdon.ru/ru/magazine/arcliive/n3y2019/5799
поступательная; 2-я форма - поступательная; 3-я форма - крутильная; 4-я форма - изгибно-крутильная.
Рис. 7. - Главные формы собственных колебаний: а) 1-я форма; б) 2-я форма; в) 3-я форма; г) 4-я форма Рекомендуемая для учета частота собственных колебаний определяется формулой:
где *'0 нормативное значение давления ветра; if(itK)- коэффициент учитывающий изменение давления ветра для высоты z=,t,; уу- - коэффициент надежности по нагрузке; [(к - параметр, определяемый по таблице 11.5
СП 20.13330.2016. «Нагрузки и воздействия».
Анализ результатов динамического расчета позволил выявить, что необходимо учесть только первые 3 формы колебаний, значения частот которых меньше предельных f;im = 1Л44 Гц.
На третьем этапе выполнен расчет на действие ветровой нагрузки с учетом статической и динамической составляющих по двум вариантам расчетной схемы: на основе нормативных значений и по результатам анализа ветрового потока в ПК ANSYS Fluent [10].
(6)
Анализ результатов расчета с учетом пульсационной составляющей ветровой нагрузки первого варианта расчетной схемы показал, что максимальные горизонтальные перемещения вдоль оси X составляют 18,9 мм; вдоль оси У 19,7 мм, что меньше предельно допустимых значений, определяемых отношением Ы500.
На рис. 8 изолинии демонстрируют неравномерность распределения давлений ветрового потока на поверхность с наветренной и подветренной сторон в связи со сложной аналитической формой здания по второму варианту расчетной схемы. Максимальные действительные перемещения составляют вдоль оси X 30,7 мм; вдоль оси У 33,1 мм, что меньше нормативных значений.
б)
х С
1 1 1
Рис. 8. - Распределение давлений ветрового потока на здание а) наветренная сторона; б) подветренная сторона Выводы. Для определения оптимальной формы поверхности исследована эволюция формообразования аналитической поверхности, образующаяся конгруэнтными кривыми в параллельных плоскостях, полученная вращением треугольника Рело с плоскостью, перпендикулярной оси вращения. Проведено исследование давления ветрового потока, скорости ветра, зон комфортности объекта параметрической архитектуры с углом закручивания 180°, 225°, 270°, 315°, 360°. Выявлена оптимальная форма с углом поворота 225° для третьего ветрового района с максимальным давлением 1041 Па и скоростью ветра 43 м/с. По результатам численного
эксперимента с использованием метода конечных элементов определена рациональная аналитическая поверхность объекта параметрической архитектуры, устойчивая к ветровому воздействию. Получены динамические характеристики объекта параметрической архитектуры.
Сравнение результатов расчета каркаса здания по двум вариантам показало уточнение горизонтальных перемещений в осях X, Y соответственно на 38,4 % и 40,5 % с учетом моделирования ветровых потоков в ПК ANSYS Fluent.
Моделирование ветрового воздействия на объект параметрической архитектуры методом конечных элементов позволяет выбрать оптимальную форму здания сложной геометрии и определить зоны комфортности. Анализ моделирования ветрового воздействия по двум вариантам расчетных схем показал, что существующие нормы проектирования требуют уточнение методики определения ветровой нагрузки для зданий и сооружений сложной геометрической формы, к которым относятся объекты параметрической архитектуры.
Литература
1. Кравченко Г.М., Труфанова Е.В., Долженко А.В. Динамический расчет зданий на ветровые нагрузки с учетом пульсационной составляющей: Электронный научный журнал APRIORI. Серия: Естественные и технические науки. Краснодар, 2013. с. 2.
2. Кривошапко С.Н., Иванов В.Н., Халаби С.М., Аналитические поверхности: материалы по геометрии 500 поверхностей. Научное изд. М.: «Наука», 2006. 539 с.
3. Агаханов Э.К., Кравченко Г.М., Осадчий А.С., Труфанова Е.В. Расчет зданий сложной геометрической формы на ветровые воздействия // Вестник Дагестанского государственного технического университета. Технические науки. 2017. 44(2). с. 8-17.
4. Bathe K.-J. Finite Element Procedures. K.-J. Bathe // New Jersey: Prentice Hall, 1996. pp. 10-12.
5. Зотова Е.В., Панасюк Л.Н. Численное моделирование динамических систем с большим числом степеней свободы на импульсные воздействия // Инженерный вестник Дона, 2012. № 3. URL: ivdon.ru/magazine/archive/n3y2012/933.
6. Савостьянов В.Н., Агаханов Э.К. Об эквивалентности воздействий в статической задаче механики деформируемого твердого тела. Изв. Вузов. Строительство. - 1995. - № 10. - с. 26-30.
7. Агаханов Э.К. О развитии комплексных методов решения задач механики деформируемого твердого тела. Вестник Дагестанского государственного технического университета. Технические науки. - 2013. -№2. - c. 39-45.
8. Савостьянов В.Н., Агаханов Э.К. Об эквивалентности воздействий в статической задаче механики деформируемого твердого тела. Изв. Вузов. Строительство. - 1995. - № 10. - с. 26-30.
9. Clough R.W., Penzien J. Dynamics of Structures. Computer & Structure, Inc. Berkeley. USA. 2003. 752 p.
10. Зырянов В.В. Методы оценки адекватности результатов моделирования // Инженерный вестник Дона, 2013. № 2. URL: ivdon.ru/magazine/archive/n2y2013/1707.
References
1. Kravchenko G.M., Trufanova Е.У., Dolzhenko A.V. Elektronnyj nauchnyj zhurnal APRIORI. Seriya: Еstestvennye i tekhnicheskie nauki. Krasnodar, 2013. p. 2.
2. Krivoshapko S.N., Ivanov V.N., Halabi S.M. Analiticheskie poverhnosti: materialy po geometrii 500 poverhnostej [Analytic surfaces: materials on 500 geometry surfaces]. M.: «Nauka», 2006. 539 p.
Iii Инженерный вестник Дона, №3 (2019) НИ ivdon.ru/ru/magazine/arcliive/n3y2019/5799
3. Agahanov E.K., Kravchenko G.M., Osadchij A.S., Trufanova Е.У. Vestnik Dagestanskogo gosudarstvennogo tekhnicheskogo universiteta. Tekhnicheskie nauki. 2017. 44(2). p. 8-17.
4. Bathe K.-J. Finite Element Procedures. K.-J. Bathe. New Jersey: Prentice Hall, 1996. pp. 10-12.
5. Zotova Е.У., Panasyuk L.N. Inzhenernyj vestnik Dona, 2012. № 3. URL: ivdon.ru/magazine/archive/n3y2012/933.
6. Savost'yanov V.N., Agahanov E.K. Izv. Vuzov. Stroitel'stvo. 1995. № 10. p. 26-30.
7. Agahanov E.K. Vestnik Dagestanskogo gosudarstvennogo tekhnicheskogo universiteta. Tekhnicheskie nauki. 2013. №2. p. 39-45.
8. Savost'yanov V.N., Agahanov E.K. Izv. Vuzov. Stroitel'stvo. 1995. № 10. p. 26-30.
9. Clough R.W., Penzien J. Dynamics of Structures. Computer & Structure, Inc. Berkeley. USA. 2003. 752 p.
10. Zyryanov V.V. Inzhenernyj vestnik Dona, 2013. №2. URL: ivdon.ru/magazine/archive/n2y2013/1707.