USE OF THE FUZZY AHP - MABAC HYBRID MODEL IN RANKING POTENTIAL LOCATIONS FOR PREPARING LAYING-UP POSITIONS
Darko I. Bozanic3, Dragan S. Pamucarb, Samed M. Karovicc
University of Defence in Belgrade, Military Academy, Belgrade, Republic of Serbia a e-mail: [email protected],
ORCID iD: ©http://orcid.org/0000-0002-9657-0889, b e-mail: [email protected],
ORCID iD: ©http://orcid.org/0000-0001-8522-1942 c e-mail: [email protected], ORCID iD: ©http://orcid.org/0000-0001-5470-4650
DOI: 10.5937/vojtehg64-9261
FIELD: Mathematics, Operations Research ARTICLE TYPE: Original Scientific Paper ARTICLE LANGUAGE: English
Summary:
The paper proposes a hybrid model, FAHP-MABAC. The fuzzyficated Saaty's scale with the AHP method (FAHP) is used for defining the weight coefficients of criteria. The MABAC method is applied in evaluating and ranking the alternatives. This hybrid model is developed in order to support decision making while selecting locations for the preparation of laying-up positions (facilities intended for concealment, protection and maneuvering of military ships).
Key words: location selecton, fuzzy AHP, MABAC.
Introduction
The decision making process is usually followed by a large number of uncertainties. This is particularly characteristic of combat operations involving different units and different types of modern military equipment. Therefore, the development of a decision making model has an important role in the operational planning process.
This paper presents a hybrid model using the fuzzyficated Saaty's scale, the analytic hierarchy process method (FAHP) and the MABAC (Multi-Attributive Border Approximation area Comparison) method - the FAHP-MABAC model. Herein are briefly explained the methods used, with a more detailed elaboration of the fuzzyfication of Saaty's scale and the MABAC method. The hybrid FAHP-MABAC model is made in order to support decision making while choosing the location for the development of laying-up positions.
Problem description
During the preparation of combat operations, various kinds of masking are carried out in order to protect forces and resources from enemy's surveillance and effects. This term is defined in the literature in different ways, but essentially it refers to the same or similar activities. The most general definition is provided in the Military Lexicon (Vojni leksikon, 1981, p.275), where the term masking refers to "a set of measures and procedures used to conceal the intentions of one's own forces, movements and placements of combat and other means and the facilities from the enemy's surveillance from land, sea, air and cosmic space, achieving a surprise effect and deceiving the enemy." In other words, by means of masking, the enemy is misled into erroneous conclusions, decisions and actions (Milosavljevic, 1985, p.129). This is accomplished in several ways-by hiding, concealment or deception (Rkman, 1984, pp.21-26).
A large number of war experiences speaks in favor of the importance of including masking in combat operations. In this regard, the Vietnam War (1954-1975) is extremely impressive. Also, the experience from the wars in the former Yugoslavia, and especially the NATO bombing of Yugoslavia in 1999, demonstrated how even small-scale masking protection techniques in the era of electronic means for surveillance can result in the reduction or even avoidance of losses.
One of the elements of masking is the development of laying-up positions. These are "arranged parts of the coast that provide concealment, a partial degree of protection and quick maneuver of river flotilla forces" (Vojni leksikon, 1981, p.276), i.e. military ships. In accordance with the general purpose of masking, the main objective of construction of laying-up positions is leading the enemy to erroneous conclusions, decisions and actions related to the deployment of our military ships (Bozanic et al., 2015a).
The literature generally describes a part of criteria that a location of laying-up positions should meet. However, their precise definition, weight values and relationships are missing. Therefore, the decisions made on this problem rely on the knowledge and experience of decision makers (DM) and their associates. Such a situation represents a field for the application of multiple criteria methods.
Description of the methods used in the hybrid FAHP-MABAC model
The described model is based on the knowledge of several decision-making methods (areas), fuzzy logic, the AHP method (Saaty's scale) and the MABAC method. Fuzzy logic covers successfully vagueness and
uncertainty that are often present in decision-supporting models. The Saaty's scale, which is an indispensable part of the AHP method, shows good results in the criteria weight coefficients defining, and it is increasingly applied with other methods (Ertugrul, Karakaçoglu, 2009), (Das, et al., 2012), (Beikkhakhian, et al. , 2015), (Zhu, et al., 2015), (Sara, et al., 2015), (Kazan, et al. 2015), (Knezevic, et al., 2015). The MABAC method provides stable (consistent) solutions and it represents a reliable tool for rational decision-making (Pamucar, Cirovic, 2015).
Fuzzy logic and fuzzy sets
In fuzzy logic, unlike in conventional sets, belonging of one element to the given set is not precisely defined; the element can be more or less a part of the set (Pamucar, et al., 2011a, p.594). Therefore, fuzzy logic is closer to human perception than conventional logic (Pamucar, et al., 2011a, p.594). This feature allows fuzzy logic to quantify the information which, in classic logic, is considered imprecise. The existence of apparently imprecise information, which in fuzzy logic is very well handled, frequently occurs in social sciences, including decision-making processes.
The creator of fuzzy logic is Lotfi Zadeh. In a series of papers, he presented the basics of fuzzy logic (Zadeh, 1965), (Zadeh, 1972), (Zadeh, 1973) and others. These basics were enough to empower fuzzy logic and now cause it to constantly evolve and increasingly be applied in practice. For the purposes of this paper, several segments of fuzzy logic are significant: definition of fuzzy set, selection of a membership function form and confidence intervals.
The fuzzy set A is defined as a set of arranged pairs
A = {(x,u (x))|xe X,0 <uA (x)< l} (1)
where:
- X - is a universal set or a set of considerations based on which a fuzzy set A is defined;
- uA (x) is a membership function of the element x (xeX) to the set A; A membership function can have any value between 1 and 0; so, as the value of the function is closer to 1, the membership of the element x to the set A is greater, and vice versa.
Each fuzzy set is completely and uniquely defined by its membership function (Zadeh, 1965). Membership functions may have different forms, but the most commonly used are triangular, trapezoidal and Gaussian. The selection of the membership function is carried out so
that it best describes the phenomenon it represents, for which there are no certain rules. In this paper, triangular fuzzy numbers T = (t1, t2, t3), will be used (Figure 1), where t1 represents left and t3 right distribution of the confidence interval of the fuzzy number T and t2 represents the point where the membership function of the fuzzy number has its maximum value, or value 1.
Figure 1 - Triangular fuzzy number T (Pamucar et al., 2016, p.77) Фигура 1 - Треугольное нечеткое число T (Pamucar i dr., 2016, p.77) Slika 1 - Trouglasti fuzzy broj T (Pamucar i dr., 2016, p.77 )
The elements of fuzzy sets are taken from the confidence interval. The confidence interval contains all the elements that can be considered. Therefore, a fuzzy variable can have only the values from the confidence interval. Determination of the confidence interval of each fuzzy variable is the task of the designer and the most natural solution is to adopt the confidence interval so that it matches the physical limits of the variable (Pamucar, et al., 2016). If the variable is not of physical origin, one of the standard ones is adopted or an abstract confidence interval is defined (Bozanic, Pamucar, 2010), (Pamucar, et al., 2011a).
For the purpose of end use, the fuzzy number T = (t1, t2, t3) is converted into a real number. For this operation, a number of methods are used (Herrera Martinez, 2000). Some of the well-known expressions for the defuzzyfication are the following ones (Seiford, 1996)
A = ((t3 -tj) + (t2 -tJ))/3 + tj A = [A +12 +(1 -A) ]/2
(2) (3)
where X is the optimism index, which can be described as the belief/attitude of DM considering the risk in decision making (Milicevic, 2014, p.186). The most common optimism index is 0, 0.5 or 1, corresponding to the pessimistic, average and optimistic view of the decision-maker (Milicevic, 2014, p.186).
Analytical Hierarchy Process and the Saaty's scale
The AHP method was developed by Thomas L. Saaty. It is based on the decomposition of a complex problem through the hierarchy approach, with the goal at the top, criteria, sub-criteria and alternatives at the levels and sub-levels of the hierarchy (Saaty, 1980), Figure 2.
GOAL
K] к 2 K„.| K„ Level
KDl Kd2
Level 2
Level p-1 Level p
ai a2 ... a„
Figure 2 - General hierarchical model in AHP Фигура 2 - Иерархическая модель AHP Slika 2 - Hijerarhijski model AHP
The key element of the AHP method is the development of a comparison matrix in pairs. It is made at each level of the hierarchy.
K, K
K„
"1 2 n
Kx «и «12 • • a1n
A = K 2 а12 «22 • ■ a2n (4)
Kn _an1 an2 • ■ ann _
Pairwise comparison is performed according to the data collected and their measurement, as well as based on own beliefs, estimates or experiences of those who carry out the assessment (Cupic, Suknovic, 2010). A so-called Saaty's scale, Table 1 (Saaty, 1980) is used for pairwise
comparison. Since it is true that aJi = 1/ aJ and an = 1 for every
i,J = 1, 2,...,n, the matrix A is positive, symmetrical and reciprocal. The
essential information on element preferences e1,e2,...,en is located only in
the upper triangle of the matrix, but all procedures for its further analysis use also the reciprocal values from the lower triangle (Bozanic, et al., 2013).
Table 1 - Saaty's scale for a comparison in pairs Таблица 1 - Шкала Саати для парного сравнения Tabela 1 - Saaty-jeva skala za poredenje u parovima
Definition Standard values Inverse values
The same importance 1 1
Weak dominance 3 1/3
Strong dominance 5 1/5
Very strong dominance 7 1/7
Absolute dominance 9 1/9
Intervalues 2,4, 6,8 1/2, 1/4, 1/6, 1/8
The AHP method is outlined in detail in a number of papers. More details can be seen in (Saaty, 1980), (Lootsma, 1988), (Nikolic, Borovic, 1996), (Srdevic, Srdevic, 2004) (Cupic, Suknovic, 2010), (Karovic, Pusara, 2010), (Devetak, Terzic, 2011), (Indie, et al., 2014), (Gajovic, et al., 2014) and others.
Fuzzyfication of the Saaty's scale
The Saaty's scale, although it is a standard of the AHP, has its drawbacks. It often happens that DM/experts are not entirely sure of the accuracy of comparisons by pairs. Therefore, in the literature, there are an increasing number of papers which in various ways elaborate fuzzyfication of the Saaty's scale (Zhu, et al., 1999), (Srdevic, et al., 2008), (Gardasevic-Filipovic, Saletic, 2010), (Pamucar , et al., 2011b), (Bozanic, et al., 2013), (Janackovic, et al., 2013), (Rezaei, et al. 2014), (Janjic, et al., 2014), (Pamucar, et al., 2015), (Bozanic, et al., 2015c) and others. A part of presented fuzzyfications, or scales, is fuzzyficated so that the confidence interval of the membership function is determined prior to research. The second part of papers leaves the possibility that the confidence interval depends on the specific parameters determined in the course of research.
In order to define the weight of criteria, in this paper the fuzzyficated Saaty's scale shown in (Bozanic, Pamucar), (Bozanic, et al. 2015b) is
applied. With this scale, it is defined that DM/experts have a different degree of certainty in the accuracy of comparisons in pairs they perform. This degree of certainty differs from one to another pair of comparison. The value of the degree of certainty belongs to the interval Y(je[0,1]. In cases where yj=0, it is considered that DM/experts have no data on this relationship, so they should not use it in the decision-making process, because it points to the absolute ignorance of the decisionmaking matter. The value of the degree of certainty where 1 describes the absolute DM/expert certainty in the defined comparison, so, in such cases, a fuzzy number is not used but the standard values of the Saaty's scale. As the certainty in the comparisons lowers, so does
Table 2 - Fuzzified Saaty's scale for a comparison in pairs (Bozanic, Pamucar),
(Bozanic, et al. 2015b) Таблица 2 - Фаззифицированная шкала Саати для парного сравнения (Bozanic, Pamucar), (Bozanic, et al. 2015b) Tabela 2 - Fazifikovana Saaty-jeva skala za poredenje u parovima (Bozanic, Pamucar),
(Bozanic, et al. 2015b)
Definition Standard values Fuzzy number Inverse values of fuzzy number
The same importance 1 (1, 1, 1) (1, 1, 1)
Weak dominance 3 ((,3, (2-Y )3 ) (( (2 -yj )3,1/3,1/3yj )
Strong dominace 5 (5Y,5, (2-Yj )5) (((2 - Yj )5,1/5,1lY )
Very strong dominance 7 (7Y,7, (2-Yj )7 ) (( (2-y, )1,1/1,1/1y,] )
Absolute dominance 9 (9Yj,9, (2-Yj )9) (1/(2- Yj )9,1/9,1/9Y] )
Intervalues 2, 4, 6, 8 (xyj,x, (2-yj )x ), x = 2, 4, 6, 8 (( (2 -y, )x ,1/ x,1/ xyj ) x = 2, 4, 6, 8
By defining different values of the parameter jj, , the left and right distribution of fuzzy numbers change from a comparison to a comparison, according to the expression:
T = ( t2, t3 ) =
tl = yt2, t3 = (2 -y)
t, < и
и < и
tj, t2 e [1/9,9] t2 e [1/9,9] t2,t3 e [1/9,9]
(5)
t2 value represents the value of the linguistic expression from the classic Saaty's scale, in which a fuzzy number has its maximum membership t2 = 1.
A fuzzy number t = (,t2,t3) = (,x,(2-yv)x), is defined with experessions:
f xYj, V 1< xYj < x
1 /lJ [1, V x7ij < 1 t2 = x, V xe [1,9] h =(2-Yv)x,Vxe [1,9] The inverse fuzzy number
T-1 =(1/13,1/t2,1/11 ) = (1/ (2-Yj )x ,1/x,1/Yj-x ), x e [1/9,1),
is defined as:
fy (2-Yjj )x, V x < 1/ (2 - Yj )x < 1 [1, V y(2-Yj)x> 1
1/12 = 1/x, V 1/xe [1/9,1]
1/11 = 1 Y-x,V1/xe [1/9,1]
(6)
(7)
(8)
1//3 = 1 (2-Yj )x =■
(9)
(10) (11)
On the basis of the previously defined scale, DM/experts fill a new, modified matrix:
K1 A = K2
K„
K1 K2
°11'Y11 a12'Y12
a21; Y21 a22; Y22
an1;Yn1 an 2;Yn 2
K
n
a1n; Y1n
a2n ; Y2n
a ■ Y
nn^ t nn
(12)
A new scale can be applied in group decision-making, which has significantly improved the quality of decision-making. In specific cases, the data collected by the Delphi technique are analyzed separately for each expert. The data analysis is performed by the AIJ synthesis (Aggregating Individual Judgments), where numerical ratings of element preferences are aggregated at the local level (for each matrix separately), in order to obtain a synthetic set of matrices for a fictitious ("group") decision-maker representing the group, and then the standard AHP synthesis could be executed (Zoranovic, Srdjevic, 2003). After all members of the group have performed the necessary comparisons in pairs of elements of the hierarchy, the filled matrices of type A(e)={aij(e)} (e = 1, 2, ..., E, where e represents the number of group members), are
aggregated into the correspondent unique matrices for the group Ag = {aG} by applying, at each position (i,j), a micro aggregation by
geometric averaging (Zoranovic, Srdjevic, 2003) using the formula:
«1 =
n
. e=1
«j )
1/E
(13)
The MABAC method
The MABAC method was developed by Pamucar and Cirovic (2015). The basic setting of the MABAC method is reflected in the definition of the distance of the criterion function of each of the observed alternatives from the approximate border area. The text that follows shows the procedure of implementation of the MABAC method in six steps, i.e. its mathematical formulation:
Stepl. Creating the initial decision matrix (X). In the first step, the evaluation of the m alternatives by the n criteria is carried out. The alternatives
are presented with vectors A = (xi,X2,...,xin), where xtj is the value of the i alternative according to the j criteria (i = 1,2,..., m; j = 1,2,..., n).
X =
K2 • • K
2 n
A: X11 X12 •• X1n
A2 X11 X22 X2n
A X1m x2m
(14)
where m indicates the number of alternatives, and n indicates the total number of criteria.
Step 2. Normalization of the elements of the initial matrix (X).
N =
A a2
A
K1 K2 ¡11 112
K„ t,.
¡1m ¡2m ••• tm
(15)
The elements of the normalized matrix (N) are obtained using the following expressions:
a) For the "benefit" type criteria
L
(16)
CzH>
b) For the "cost" type criteria
x i - X
(17)
where x^, x+ and x- are the components of the initial decision matrix (X), where x+ and x- are defined as:
x+= max(,x2,...,xm)and represents the maximum value of the observed criteria by alternatives.
x-= min(,x2,...,xm)and represents the minimum value of the
observed criteria by alternatives.
Step 3. Calculation of the weighted matrix elements (V).
v =
(18)
The elements of the weighted matrix (V) are calculated on the basis of expression (19):
(19)
v j = W ^ + w
where t tj are the elements of the normalized matrix (N), and w t
represents the weight coefficient of criteria. By applying the expression (19), we get the weighted matrix V that otherwise can be written as:
V =
Wj Qtjj + Wj w2 Ul2 + w2 wj [t2j + wj w2 022 + w2
WJ Vmj + WJ W2 2 + W2
Wn + w„
w HL + w
n 2n n
w„ 0. + w„
(20)
where n is the total number of criteria, and m is the total number of alternatives.
Step 4. Determination of the approximate border area (G) matrix. The border approximate area (BAA) for each criterion is determined by expression (21)
/ \ 1/m
m \
gi
n
(21)
V i=j
t
x
where vij are the weighted matrix elements (V) and m represents the total number of alternatives.
After determining the value gi according to the criteria, we form the matrix of approximate border areas G (22) size nx1 (n is the total number of criteria by which the election of the offered alternatives is made).
K1 K2
K„
G = [ g 2 ... gn ]
(22)
Step 5. Calculation of the matrix elements distance from the border approximate area (Q)
2 =
9ii 9i2 ... qm
q21 q22 q2n
(23)
q»i q m 2 lm
The distance of the alternatives from the border approximate area ( qij ) is defined as the difference between the weighted matrix elements
(V) and the values of the border approximate areas (G).
Q = V - G
which otherwise can be written as:
(24)
Q =
(25)
where gi represents the border approximate area for the criterion Ki , vij is the weighted matrix elements (V), n represents the number of criteria, and m represents the number of alternatives.
The alternative Ai may belong to the border approximate area (G),
the upper approximate area (G+) or the lower approximate area (G-), respectively Ai g{g v G+ v G"]. The upper approximate area (G+) is an
area in which the ideal alternative is found ( A+ ), while the lower approximate area (G-) is an area in which the anti-ideal alternative (A") is found (Figure 3).
Figure 3 - Presentation of the upper (G ), lower (G ) and border (G ) approximation
areas (Pamucar, Cirovic, 2015) _ Фигура 3 - Изображение верхней (G +), нижней (G ) и предельной (G) аппроксимативной области (Pamucar, Cirovic, 2015) Slika 3 - Prikaz gornje (G +), donje (G_) i granicne (G ) aproksimativne oblasti
(Pamucar, Cirovic, 2015)
Belonging of the alternative to the approximate area (G , G + or G_) is determined on the basis of expression (26)
A e
G
> 0
if qv G if tfjj = 0
(26)
G - if q j < 0
In order for the alternative At to be chosen as the best from the set, it is necessary that, according to as many criteria as possible, it belongs to the upper approximate area (G +). If, for example, the alternative At according to 5 criteria (out of 6) belongs to the upper approximate area, and according to one criterion belongs to the lower approximate area (G-), this means that by 5 criteria the alternative is close or equal to the ideal alternative, while by one criterion it is close or equal to the anti-ideal alternative. The higher the value gr e G + , the closer the alternative At is to the ideal alternative, while the lower the value gr e G- , the closer the alternative At is to the anti-ideal alternative.
Step 6. Ranking alternatives. Calculation of criteria function values by alternatives is obtained as the sum of the distances of alternatives from the border approximate areas (ql). Summing the elements of the matrix Q by rows gives the final values of the criteria function alternatives
= Sqj, j = 1,2,...,n, i = 1,2,...,m (27)
j=1
where n represents the number of criteria, and m represents the number of alternatives
Ranking alternatives - location for the development of laying-up positions by applying the hybrid FAHP-MABAC model
Creating a hierarchical network model represents an important creative stage in the problem solving process, because the consideration of all factors and their interactions is a necessary condition for making a proper solution. Due to the complexity of the problem, the FAHP-MABAC model is proposed as a relevant option of the system analysis and rational decision making when choosing a location for the development of laying-up positions. From a methodological point of view, the proposed FAHP-MABAC model includes two phases, shown in Figure 4.
Identification of limit and evaluation criteria
Definition of evaluation criteria comparison matrices and the degree of certainty of experts
Calculation of fuzzyficated comparison matrices of evaluation criteria
Calcuation of aggregated comparison matrix of the evaluation criteria for fictitious DM
3E
Calcuation of weight fuzzy coefficients of the evaluation criteria
Determination of border approximatior area matrix (C]
Calculation of the distance of alternatives from border approximation area
ÜE
Ranking and selection of optimal alternative
Figure 4 - FAHP-MABAC model Фигура 4 - Модель FAHP-MABAC Slika 4 - FAHP-MABAC model
Phase 1 - criteria identification and the calculation
of criteria weight coefficients
For the full implementation of the model, it is necessary to define two types of criteria - the limit criteria and the evaluation criteria. In the set of the limit criteria, the criteria are classified on the basis of which the acceptance of specific locations as an alternative is made, or its rejection. After passing through the limit criteria assesment, the alternatives are further ranked using the evaluation criteria. The limit criteria are difficult to define as universal, because they depend on a number of circumstances based on which the decision is made, such as: type of operation, balance of powers, time it takes to create laying-up positions, etc.
CO
o
CD
O >
CO
O <N
a:
yy
0£ ZD
o o
-J <
o
X
o
LU
I— >-
CC <
I—
< -J
CD >o
X LU I—
o
o >
In the most general sense, a certain location will not be considered as an alternative in the following situations: when it cannot provide even the minimum conditions for the protection and masking, when it cannot provide even the minimum conditions for the stay of military ships in all meteorological and hydrological conditions, when it is located next to visible objects, when it is not at a sufficient distance from the existing laying-up positions or other protection and masking facilities on the coast and along the coast, when the volume of work is so large that the production can be considered unrewarding, etc.
The evaluation criteria in the selection of the most suitable location for the development of laying-up positions are defined based on the analysis of the available literature. The most detailed description of the conditions which a location for making laying up positions should meet is given in (Milovanovic, 1971, pp.169-170). Through a detailed analysis of all conditions, five key evaluation criteria stand out (Milovanovic, 1971, pp.169-170), (Bozanic et al., 2015a, pp. 695-696):
• C1 - masking conditions - the place where the laying up position is going to be placed should provide a good concealment of military ships, and during masking, as simple mask base as possible should be used (one that can be quickly set and removed);
• C2 - scope of work - a place where production of laying up positions is carried out must ensure the most favorable conditions for its development, ie. as small as possible volume of work, especially when performing underwater works;
• C3 - degree of protection - laying up position should provide the best possible protection from enemy effects from the air, by land or by river;
• C4 - benefits for sailing in and out- approaches to laying-up positions should be safe for quick sailing in and out;
• C5 - terrain conditions for the immediate security organization - the surrounding terrain should provide favorable conditions for possible defense against an imminent attack of a military ship, primarily from sabotage and terrorist groups.
The set of criteria C (i = 1, .. 5) consists of two subsets:
• C + - a subset of the "benefit" type criteria, which means that the higher value of the criteria is preferable or better (criteria: C1, C3, C4, C5), and
• C - a subset of the "cost" type criteria, which means that the lower value is preferable or better (criterion C2).
The following step is to define a matrix of comparison of the evaluation criteria in pairs and the degree of certainty for each comparison. The matrix is filled by every expert for themselves. In the specific case, the matrix of comparison is provided only for the first expert, Table 3.
Table 3 - Comparison matrix in the pairs of the first expert Таблица 3 - Матрица парного сравнения первого эксперта Tabela 3 - Matrica poredenja u parovima prvog eksperta
Ci C2 Cs C4 C5
C1 1; 1 2; 0.7 2; 0.6 4; 0.9 7; 0.4
c2 1/2; 0.7 1; 1 2; 0.6 4; 0.8 5; 1
C3 1/2; 0.6 1/2; 0.6 1; 1 3; 0.7 3; 0.7
c4 1/4; 0.9 1/4; 0.8 1/3; 0.7 1; 1 2; 0.9
c5 1/7; 0.4 1/5; 1 1/3; 0.7 1/2; 0.9 1; 1
Inconsistency degree 0.02
Further follows the calculation of the fuzzyficated matrices of the evaluation criteria based on the expressions set out in Table 2. In the specific case, the fuzzyficated matrix is shown only for the first expert, Table 4.
Table 4 - Comparison matrix in the pairs for the first expert after fuzzyfication Таблица 4 - Матрица парного сравнения для первого эксперта после фаззификации Tabela 4 - Matrica poredenja u parovima za prvog eksperta nakon fazifikacije
Ci C2 Cs C4 C5
Ci 1 ;1 ;1 1.4;2;2.6 1.2;2;2.8 3.6;4;4.4 2.8;7;11.2
C2 0.38;0.5;0.71 1;1;1 1.2;2;2.8 3.2;4;4.8 5;5;5
C3 0.36;0.5;0.83 0.36;0.5;0.83 1;1;1 2.1 ;3;3.9 2.1 ;3;3.9
c4 0.23;0.25;0.28 0.21 ;0.25;0.31 0.26;0.33;0.48 1;1;1 1.8;2;2.2
c5 0.09;0.14;0.36 0.2;0.2;0.2 0.26;0.33;0.48 0.45;0.5;0.56 1;1;1
In the following step, the calculation of the aggregated comparison matrix of the evaluation criteria is performed for a fictitious decision maker. The values of all the experts who evaluated the evaluation criteria are aggregated, Table 5.
Table 5 - Comparison matrix in the pairs after the aggregation of experts' matrices Таблица 5 - Матрица парного сравнения после агрегации матриц экспертов Tabela 5 - Matrica poredenja u parovima nakon agregacije matrica eksperata
Ci C2 Cs C4 C5
Ci 1;1;1 2.02;2.21 ;2.36 1.17; 1.5; 1.86 2.97;3.72;4.46 3.2;5.86;8.28
C2 0.42;0.45;0.49 1;1;1 0.67;0.93;1.2 2.75;4.23;5.56 3;3.87;4.46
C3 0.54;0.67;0.86 0.84;1.07;1.49 1;1;1 2.3;3.46;4.57 3.87;4.58;5.26
c4 0.22;0.27;0.34 0.18;0.24;0.36 0.22;0.29;0.43 1;1;1 2.6;3.56;4.41
c5 0.12;0.17;0.31 0.22;0.26;0.33 0.19;0.22;0.26 0.23;0.28;0.39 1;1;1
Based on the data from Table 5, with the standard steps of the AHP method, the calculation of the weight coefficients of the evaluation criteria is carried out. The resulting weight coefficients of the criteria are presented in Table 6. The label "l" represents the left distribution of the fuzzy number; "d" represents the right distribution of the fuzzy number and "s" - a place where the level of the membership of the fuzzy number has a value one.
Table 6 - Fuzzy weight coefficients of the evaluation criteria Таблица 6 - Нечеткие весовые коэффициенты критериев оценки Tabela 6 - Fuzzy tezinski koeficijenti kriterijuma evaluacije
(l) (s) (d)
Cl 0.364 0.387 0.357
C2 0.228 0.216 0.227
Сз 0.254 0.239 0.255
c4 0.101 0.102 0.104
C5 0.052 0.057 0.057
In the end, by the application of expression (2), the defuzzyfication of the weight coefficients of the evaluation criteria is performed. The final values of the weight coeficients of the criteria are given in Table 7.
Table 7 - Final values of the weight coefficients Таблица 7 - Конечные значения весовых коэффициентов Tabela 7 - Konacne vrednosti tezinskih koeficijenata
Weight coeficients of the criteria
Ci 0.370
C2 0.224
Сз 0.249
c4 0.102
Cs 0.055
Phase 2 - evaluation and selection of the optimal alternative
Through the second phase, the evaluation and ranking of alternatives is performed by the application of the MABAC method. The first step in the implementation of the method is to define the initial decision matrix. Since the evaluation criteria have a qualitative character, for the evaluation of alternatives by all criteria, the fuzzyficated Likert scale was used (Campari, 2013), Table 8.
Table 8 - Fuzzyfied Likert scale for the evaluation of alternatives Таблица 8 - Фаззифицированная шкала Лайкерта для оценки альтернатив Tabela 8 - Fazifikovana Likertova skala za evaluaciju alternativa
Linguistic description Triangular fuzzy Linguistic description
for „benefit" type 1 riangular Tuzzy for „cost" type number
criteria
criteria
very good
good medium
bad very bad
(4.5;5;5) (3.5;4;4.5) (2.5;3;3.5) (1.5;2;2.5) (1;1;1)
Very small small medium
big Very big
In the specific case, the fuzzyficated Likert scale is applied to provide the assessment of ten illustrative alternatives, whose values are defuzzyficated by using expression (2) and shown in Table 9.
Table 9 - Initial decision matrix (X) Таблица 9 - Исходная матрица принятия решений (X) Tabela 9 - Pocetna matrica odlucivanja (X)
Ci C2 Сз C4 C5
Ai 4.83 1 4 2 1
a2 4 2 4.83 1 3
a3 2 4 1 4.83 2
a 4 3 3 4.83 2 4
a5 1 2 2 3 4.83
a6 3 4.83 1 4 3
a7 4 3 3 4 4.83
a8 4.83 1 2 3 1
a9 1 4.83 4 1 4
аю 3 4 3 4.83 2
о
£± cp s n
io iti
si
o cp
cp u
I
CT
in la
CT
n ir a cp e
s
n
io ti
tca
o
n te ot
cp
CT
in
n a
e d o m
.Q .c
О <
CD <
P
X
<
>
N
N £
o e s
3
al et
ni a
CD
The next step is the normalization of the initial matrix elements by the application of expressions (16) and (17). The normalized matrix (N) is presented in Table 10.
Table 10 - Normalized matrix (N) Таблица 10 - Нормированная матрица (N) Tabela 10 - Normalizovana matrica (N)
Ci C2 C3 C4 C5
Ai 1.00 1.00 0.78 0.26 0.00
a2 0.78 0.74 1.00 0.00 0.52
a3 0.26 0.22 0.00 1.00 0.26
a4 0.52 0.48 1.00 0.26 0.78
a5 0.00 0.74 0.26 0.52 1.00
a6 0.52 0.00 0.00 0.78 0.52
a7 0.78 0.48 0.52 0.78 1.00
a8 1.00 1.00 0.26 0.52 0.00
a9 0.00 0.00 0.78 0.00 0.78
аю 0.52 0.22 0.52 1.00 0.26
The weighted matrix (V) is calculated using expression (19), Table 11.
Table 11 - Weighted matrix (V) Таблица 11 - Нечеткая матрица (V) Tabela 11 - Otezana matrica (V)
Ci C2 C3 C4 C5
Ai 0.74 0.45 0.44 0.13 0.06
a2 0.66 0.39 0.50 0.10 0.08
a3 0.47 0.27 0.25 0.20 0.07
a 4 0.56 0.33 0.50 0.13 0.10
a5 0.37 0.39 0.31 0.16 0.11
a6 0.56 0.22 0.25 0.18 0.08
a7 0.66 0.33 0.38 0.18 0.11
a8 0.74 0.45 0.31 0.16 0.06
a9 0.37 0.22 0.44 0.10 0.10
аю 0.56 0.27 0.38 0.20 0.07
Then the approximate border areas are calculated using expression (21), Table 12.
Table 12 - Border approximation area matrix (G) Таблица 12 - Матрица предельных аппроксимативных областей (G) Tabela 12 - Matrica granicnih aproksimativnih oblasti (G)
Ci C2 Сз C4 C5
gao 0.55 0.32 0.37 0.15 0.08
The penultimate step is the calculation of the distance of alternatives from the border approximate area by the application of expression (24), Table 13.
Table 13 - Distance of the alternative from the border approximation area Таблица 13 - Расстояние альтернатив от предельных аппроксимативных областей Tabela 13 - Udaljenost alternativa od granicnih aproksimativnih oblasti
Ci C2 C3 C4 C5
ai 0.19 0.12 0.08 -0.02 -0.03
a2 0.11 0.07 0.13 -0.05 0.00
a3 -0.09 -0.05 -0.12 0.05 -0.01
a 4 0.01 0.01 0.13 -0.02 0.02
a5 -0.18 0.07 -0.05 0.01 0.03
a6 0.01 -0.10 -0.12 0.03 0.00
a 7 0.11 0.01 0.01 0.03 0.03
a8 0.19 0.12 -0.05 0.01 -0.03
a9 -0.18 -0.10 0.08 -0.05 0.02
аю 0.01 -0.05 0.01 0.05 -0.01
In the end, expression (27) Table 14.
is applied for ranking the alternatives,
Table 14 - Rank of the alternatives Таблица 14 - Рейтинг альтернатив Tabela 14 - Rang alternativa
Si Rank
ai 0.342 1.
a2 0.259 2.
a3 -0.212 9.
a4 0.145 5.
a5 -0.135 7.
a6 -0.172 8.
a 7 0.188 4.
a8 0.239 3.
a9 -0.236 10.
аю 0.014 6.
Based on the obtained values Si, the alternatives are ranked from the most suitable alternative (A1) to the most unfavorable one (A9).
Sensitivity analysis of the output results
A logical sequence in most multi criteria decision-making processes is to analyze sensitivity. It is recommended as a means of checking the stability of the results against the subjectivity of decision-makers (Meszaros, Rapcsak, 1996). The sensitivity analysis of the results is carried out by changing the initial weight coefficients of the evaluation criteria. The situations of changing weight coefficients, from A to F, are provided in Table 15.
Table 15 - Scenarios with different weights of the criteria Таблица 15 - Сценарий изменения веса критерия Tabela 15 - Scenariji promene tezina kriterijuma
A B C D E F
ki 0.2 0.6 0.1 0.1 0.1 0.1
k2 0.2 0.1 0.6 0.1 0.1 0.1
k3 0.2 0.1 0.1 0.6 0.1 0.1
k4 0.2 0.1 0.1 0.1 0.6 0.1
k5 0.2 0.1 0.1 0.1 0.1 0.6
Ranks of alternatives using different situations are given in Table 16.
Table 16 - Ranks of alternatives by the application of different situations Таблица 16 - Рейтинги альтернатив при применении различных сценариев Tabela 16 - Rangovi alternativa primenom razlicitih scenarija
Rank from Table 14 a В С D E F
ai 1 2 1 1 3 7 8
a2 2 2 4 3 1 9 4
a3 9 9 8 8 10 3 10
a4 5 2 5 6 1 7 3
a5 7 7 8 5 8 6 2
a6 8 8 7 9 9 5 6
a7 4 1 2 4 4 1 1
a8 3 5 3 2 7 4 9
a9 10 10 10 10 6 10 5
аю 6 6 6 7 5 2 7
Table 16 shows a significant result stability compared to situations A, B, C and slightly less D (especially when it comes to the first five alternatives). The stability of the results compared to situations E and F is much smaller, which could be expected if we bear in mind that the importance of the favored criteria in the developed model is several times smaller.
CO
o
CD
O >
CO
O <N
a:
yy
0£ ZD
o o
-J <
o
X
o
LU
I— >-
CC <
I—
< -J
CD >o
X LU I—
o
o >
Conclusion
The review of a practical application of the FAHP-MABAC model and its sensitivity analysis indicate the potential of the application of the created models in real situations. Based on the already-made hybrid model, the proposed alternatives are successfully ranked.
The hybrid model uses the advantages of several methods. The first one is the fuzzyficated Saaty's scale, which has been used for obtaining the weight of criteria functions, which successfully covered the uncertainty of experts in claims based on paired comparison.
Also, the new MABAC method is shown as well as its successful implementation in practice. The analysis of the output results sensitivity has shown that the hybrid FAHP-MABAC model provides stable solutions to the problem of choice of laying-up positions. The model is applicable in the process of operational planning for different situations and provides reliable solutions.
Literature
Beikkhakhian, Y., Javanmardi, M., Karbasian, M., & Khayambashi, B. 2015. The application of ISM model in evaluating agile suppliers selection criteria and ranking suppliers using fuzzy TOPSIS-AHP methods. Expert Systems with Application, 42, str.6224-6236.
Bozanic, D., Milojevic, D., & Milicevic, J. 2015a. Izbor lokacija za izradu maskirnih vezova primenom metode VIKOR. U: DQM medunarodna konferencija Upravljanje kvalitetom i pouzdanoscu, Prijevor. , str.694-699.
Bozanic, D., & Pamucar, D. 2010. Vrednovanje lokacija za uspostavljanje mosnog mesta prelaska preko vodenih prepreka primenom fuzzy logike. Vojnotehnicki glasnik/Military Technical Courier, 58(1), str.129-145.
Bozanic, D., Karovic, S., & Pamucar, D. 2015b. Fazifikacija Saaty-jeve skale primenom trouglastog fuzzy broja sa promenljivim intervalom poverenja. U: 42. Simpozijum o operacionim istrazivanjima (SYM-OP-IS), Srebrno jezero, str.420-424.
Bozanic, D., & Pamucar, D. Modifikacija Saaty-jeve skale primenom fuzzy broja sa promenljivim intervalom poverenja: Primer procene opasnosti od poplava, Analiticki hijerarhijski proces - Teorijske osnove i primena u energetici, zastiti radne i zivotne sredine i obrazovanju. U Tematski zbornik (rad prihvacen za objavljivanje).
Bozanic, D., Pamucar, D., & Bojanic, D. 2015c. Modification of the analytic hierarchy process (AHP) method using Fuzzy logic: Fuzzy AHP approach as a support to the decision making process concerning engagement of the Group for additional hindering. Serbian Journal of Management, 10(2), str. 151-171.
Bozanic, D., Pamucar, D., & Borovic, B. 2013. Modifikacija metode analitickog hijerarhijskog procesa i njena primena u donosenju odluka u sistemu odbrane. Tehnika, 68(2), str.327-334.
Camparo, J. 2013. A geometrical approach to the ordinal data of Likert scaling and attitude measurements: The density matrix in psychology. Journal of Mathematical Psychology, 57, str.29-42.
Cupic, M., & Suknovic, M. 2010. Odlucivanje.Beograd: Fakultet organizacionih nauka.
Das, M.C., Sarkar, B., & Ray, S. 2012. A framework to measure relative performance of Indian technical institutions using integrated fuzzy AHP and COPRAS methodology. Socio-Economic Planning Sciences, 46, str.230-241.
Devetak, S., & Terzic, M. 2011. Primena metode analitickih hijerarhijskih procesa u izboru optimalnog taktickog radio sistema. Vojnotehnicki glasnik/Military Technical Courier, 59(1), str.161-176.
Ertugrul, I., & Karaka§oglu, N. 2009. Performance evaluation of Turkish cement firms with fuzzy analytic hierarchy process and TOPSIS methods. Expert Systems with Application, 36, str.702-716.
Gajovic, V., & Radivojevic, G. 2014. Menadzment rizicima u osiguranju primenom AHP metode. Tehnika, 69(4), str.687-693.
Gardasevic-Filipovic, M., & Saletic, D. 2010. Multicriteria optimization in a fuzzy environment: The fuzzy Analytic hierarchy process. Yugoslav Journal of Operations Research, 20(1), str.71-85.
Herrera, F., & Martinez, L. 2000. An Approach for Combining Numerical and Linguistic Information based on the 2-tuple fuzzy linguistic representation model in Decision Making. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 8, str.539-562.
Indic, D., Lukovic, Z., & Mucibabic, S. 2014. Model angazovanja jedinica ABH sluzbe prilikom hemijskog udesa. Vojnotehnicki glasnik/Military Technical Courier, 62(1), str.23-41.
Janackovic, G.L., Savic, S.M., & Stankovic, M.S. 2013. Selection and ranking of occupational safety indicators based on fuzzy AHP: A case study in road construction companies. South African Journal of Industrial Engineering, 24(3), str.175-189.
Janjic, A., Stankovic, M., & Velimirovic, L. 2014. Smart Grid Strategy Assessment Using the Fuzzy AHP.. U: 6th ICT Conference, Nis. , str.13-18
Karovic, S., & Pusara, M. 2010. Kriterijumi za angazovanje snaga u oeracijama. Novi glasnik, 3-4, str.37-58.
Kazan, H., Ozgelik, S., & Hobikoglu, E.H. 2015. Election of Deputy Candidates for Nomination with AHP-Promethee Methods. Procedia - Social and Behavioral Sciences, 195, str.603-613.
Knezevic, N., Macura, D., & Bojovic, N. 2015. Primena A'WOT metode za izbor scenarija razvoja postanskih usluga u Republici Srbiji. Tehnika, 70(1), str.158-163.
Lootsma, F.A. 1988. Numerical scaling of human judgment in pairwise-comparison methods for fuzzy multi-criteria decision analysis, Mathematical Models for Decision Support. U NATO ASI Series F, Computer and System Sciences.Berlin, Germany: Springer-Verlag., str.57-88.
Meszaros, C., & Rapcsak, T. 1996. On sensitivity analysis for a class of decision systems. Decision Support Systems, 16, str.231-240.
Milosavljevic, M. 1985. Maskiranje i zamracivanje kao uslov za zastitu i spasavanje. U Civilna zastita.Zagreb: Privredni vjesnik., str.129-131.
Milicevic, M. 2014. Ekspertsko ocenjivanje.Beograd: Medija centar "Odbrana".
Milovanovic, D. 1971. Privremena pristanista, maskirni vezovi i navozi.Split: Vojna stamparija.
Nikolic, I., & Borovic, S. 1996. Visekriterijumska optimizacija.Beograd: Centar vojnih skola VJ.
Pamucar, D., Bozanic, D., & Milic, A.. 2016. Selection of a course of action by Obstacle Employment Group based on a fuzzy logic system. Yugoslav journal of operations research, 26(1), str. 75-90.
3 o
4
6
lo V
.6
10
2 R,
IR U O C L A C
H C
LU
T
Y R
A T
K
S A L
CD
KI C
H
LU
T O
O V
Pamucar, D., & Cirovic, G. 2015. The selection of transport and handling resources in logistics centers using Multi-Attributive Border Approximation area Comparison. Expert Systems with Applications, 42(6), str. 3016-3028.
Pamucar, D., Bozanic, D., Borovic, B., & Milic, A. 2011a. Modelling of the fuzzy logical system for offering support in making decisions within the engineering units of the Serbian army. International journal of the physical sciences, 6(3), str.592-609.
Pamucar, D., Cirovic, G., & Sekulovic, D. 2015. Development of an integrated transport system in distribution centres: A FA'WOT analysis. Tehnicki vjesnik, 22(3), str.649-658.
Pamucar, D., Cirovic, G., Sekulovic, D., & Ilic, A. 2011b. A new fuzzy mathematical model for multi criteria decision making: An application of fuzzy mathematical model in a SWOT analysis. Scientific Research and Essays, 6(25), str.5374-5386.
Rezaei, J., Fahim, P.B.M., & Tavasszy, L. 2014. Supplier selection in the airline retail industry using a funnel methodology: Conjunctive screening method and fuzzy AHP.Expert System with Applications, 41(18), str.8165-8179.
Rkman, I. 1984. Maskiranje.Beograd: Vojnoizdavacki zavod.
Saaty, T.L. 1980. The analytic hierarchy process.New York: McGraw-Hill..
Sara, J., Stikkelman, R.M., & Harder, P.M. 2015. Assessing relative importance and mutual influence of barriers for CCSdeployment of the ROAD project using AHP and DEMATEL methods. International Journal of Greenhouse Gas Control, 41, str.336-357.
Seiford, L.M. 1996. Data envelopment analysis: The evolution of the state of the art (1978?1995). Journal of Productivity Analysis, 7(2-3), str.99-137. 7(2-3): 99-137. doi:10.1007/BF00157037
Srdjevic, B., & Medeiros, Y.D.P.2008. Fuzzy AHP Assessment of Water Management Plans. Water Resources Management, 22(7), str.877-894. 22(7): 877-894. doi:10.1007/s11269-007-9197-5
Srdevic, B., & Srdevic, Z. 2004. Vrednovanje kriterijuma i strategija koriscenja regionalnog hidrosistema "nadela" pomocu analitickog hijerarhijskog procesa. Studija radena za J.V.P "Vode Vojvodine", Novi Sad.
Vojni leksikon 1981. Beograd: Vojnoizdavacki zavod.
Zadeh, L.A. 1972. A Rationale for Fuzzy Control. Journal of Dynamic Systems, Measurement and Control, (G), 94, str.3-4.
Zadeh, L.A. 1973. Outline of a new approach to the analysis of complex systems and decision processes. IEEE Transactions on systems, Man and Cybernetics, SMC, 3(1), str.28-44.
Zadeh, L. 1965. Fuzzy sets. Information and control, 8, str.338-353.
Zhu, G., Hu, J., Qi, J., Gu, C., & Peng, Y. 2015. An integrated AHP and VIKOR for design concept evaluation based on rough number. Advanced Engineering Informatics, 29, str.408-418.
Zhu, K.J., Jing, Y., & Chang, D.Y. 1999. A discussion on extent analysis method and applications on fuzzy AHP.European Journal of Operational Research, 116(18), str.450-456.
Zoranovic, T., & Srdevic, B. 2003. Primer primene AHP u grupnom odlucivanju u poljoprivredi. . U: 30. Simpozijum o operacionim istrazivanjima (SYM-OP-IS), Herceg Novi. , str. 723-726
ГИБРИДНАЯ МОДЕЛЬ FUZZY AHP (FUZZY ANALYTICAL HIERARCHY PROCESS) МЕТОДА АНАЛИТИЧЕСКОЙ ИЕРАРХИИ В НЕЧЕТКИХ УСЛОВИЯХ - MABAC (MULTI-ATTRIBUTIVE BORDER APPROXIMATION AREA COMPARISON) ДЛЯ РАНЖИРОВАНИЯ ПОТЕНЦИАЛЬНЫХ ПОЗИЦИЙ УСТРОЙСТВА ЗАМАСКИРОВАННЫХ ПРИЧАЛОВ
Дарко И. Божанич, Драган С. Памучар, Самед М. Карович Университет обороны в г. Белград, Военная академия, Белград, Республика Сербия
ОБЛАСТЬ: математика, операционные исследования ВИД СТАТЬИ: оригинальная научная статья ЯЗЫК СТАТЬИ: английский
Резюме:
В работе представлена гибридная модель FAHP-MABAC. Фаззифицированная шкала Саати с методом AHP (FAHP) применяется для определения весовых коэффициентов критериев. Метод MABAC применяется в процессе оценки и ранжирования альтернатив. Гибридная модель разработана для поддержки принятия решений при выборе позиций для устройства замаскированных причалов (объекты, предназначенные для скрытия, защиты и маневров боевых кораблей).
Ключевые слова: выбор позици, fuzzy AHP, MABAC.
HIBRIDNI MODEL FUZZY AHP-MABAC ZA RANGIRANJE POTENCIJALNIH LOKACIJA ZA IZRADU MASKIRNIH VEZOVA
Darko I. Bozanic, Dragan S. Pamucar, Samed M. Karovic
Univerzitet odbrane u Beogradu, Vojna akademija, Beograd, Republika Srbija
OBLAST: matematika, operaciona istrazivanja VRSTA CLANKA: originalni naucni clanak JEZIK CLANKA: engleski
Sazetak:
U radu je predlozen hibridni model FAHP-MABAC. Fazifikovana Saaty-jeva skala sa metodom AHP (FAHP) primenjuje se za definisanje tezinskih koeficijenata kriterijuma. Metoda MABAC primenjena je u procesu evaluacije i rangiranja alternativa. Hibridni model razvijen je za podrsku odlucivanju pri izboru lokacija za izradu maskirnih vezova (objekti namenjeni za prikrivanje, zastitu i manevar vojnih brodova).
Uvod
U ovom radu prikazan je hibridni model koriscenjem fazifikovane & Saaty-jeve skale i metode analitickog hijerarhijskog procesa (FAHP) i
> metode MABAC (Multi-Attributive Border Approximation area
Comparison) - model FAHP-MABAC. U radu su ukratko opisane metode koje se primenjuju, sa detaljnijom razradom fazifikacije Saaty-jeve skale i metode MABAC. Hibridni model FAHP-MABAC izraden je za gi podrsku odlucivanju prilikom izbora lokacija za izradu maskirnih vezova.
IER U delu pod nazivom Opis metoda koje se primenjuju u hibridnom
OU modelu FAHP-MABAC opisane su primenjene metode kroz nekoliko
0 podnaslova:
< U tekstu pod naslovom Fuzzy logika i fuzzy skupovi ukratko je ^ izvrseno definisanje fuzzy skupa, izbor oblika funkcije pripadnosti i
intervala poverenja.
¡^ U tekstu pod naslovom Analiticki hijerarhijski proces i Saaty-jeva
skala ukratko su predstavljene osnove analitickog hijerarhijskog procesa & i prikazana klasicna Saaty-jeva skala.
A
Fazifikacija Saaty-jeve skale
U literaturi se moze pronaci veliki broj fazifikacija Saaty-jeve skale. Fazifikacija se najcesce vrsi tako sto se umesto stepena poredenja definisu fuzzy brojevi sa unapred definisanim intervalima poverenja.
< Osnovna ideja fazifikacije Saaty-jeve skale u ovom radu jeste da GL intervali poverenja budu definisani nakon zavrsenog poredenja u
2 parovima od strane donosilaca odluke -eksperata. Stoga je definisano
CNI da je interval poverenja svakog fuzzy broja, koji definise stepen
1 poredenja, povezan sa stepenom uverenosti donosilaca odluka -eksperata u datu tvrdnju. Drugim recima, interval poverenja proracunava se na osnovu stepena uverenosti donosilaca odluka y, a prema tabeli 2.
CO
° Metoda MABAC
U ovoj celini prikazani su standardni koraci metode MABAC: 1) formiranje pocetne matrice odlucivanja (X), 2) normalizacija elemenata pocetne matrice, 3) proracun elemenata otezane matrice (V), 4) odredivanje matrice granicnih aproksimativnih oblasti (G), 5) proracun elemenata matrice udaljenosti alternativa od granicne aproksimativne oblasti (Q) i 6) rangiranje alternativa.
Rangiranje alternativa - lokacija za izradu maskirnih vezova primenom hibridnog modela FAHP-MABAC
U ovoj celini prikazana je prakticna primena hibridnog modela FAHP-MABAC. Prikaz primene izvrsen je kroz dve faze.U prvoj fazi identifikovani su kriterijumi i proracunati tezinski koeficijenti kriterijuma. Po identifikovanim kriterijumima vrsi se ocena alternativa. Identifikovano je pet kriterijuma (uslovi maskiranja, obim radova, stepen zastite, povoljnost za uplovljavanje i isplovljavanje i uslovi terena za organizaciju neposrednog obezbedenja) i definisani njihovi tezinski koeficijenti (
tabela 7).U drugoj fazi izvrsena je evaluacija i izbor optimalne alternative. Rangirane su ocene i deset alternativa.
Analiza osetljivosti rezultata sprovedena je promenom pocetnih tezinskih koeficijenata kriterijuma evaluacije. Takode, pokazala je stabilnost rezultata u odnosu na veci broj scenarija.
Hibridnim modelom FAHP-MABAC uspesno je izvrsena evaluacija i rangiranje predlozenih alternativa.
Kljucne reci: izbor lokacije, fuzzy AHP, MABAC.
Paper received on / Дата получения работы / Datum prijema clanka: 12. 10. 2015. Manuscript corrections submitted on / Дата получения исправленной версии работы / Datum dostavljanja ispravki rukopisa: 21. 04. 2016.
Paper accepted for publishing on / Дата окончательного согласования работы / Datum konacnog prihvatanja clanka za objavljivanje: 23. 04. 2016.
© 2016 The Authors. Published by Vojnotehnicki glasnik / Military Technical Courier (www.vtg.mod.gov.rs, втг.мо.упр.срб). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/rs/).
© 2016 Авторы. Опубликовано в "Военно-технический вестник / Vojnotehnicki glasnik / Military Technical Courier" (www.vtg.mod.gov.rs, втг.мо.упр.срб). Данная статья в открытом доступе и распространяется в соответствии с лицензией "Creative Commons" (http://creativecommons.org/licenses/by/3.0/rs/).
© 2016 Autori. Objavio Vojnotehnicki glasnik / Military Technical Courier (www.vtg.mod.gov.rs, втг.мо.упр.срб). Ovo je clanak otvorenog pristupa i distribuira se u skladu sa Creative Commons licencom (http://creativecommons.org/licenses/by/3.0/rs/).