Научная статья на тему 'Учет влияния дестабилизирующих факторов для повышения точности измерений дальномера на основе стереоизображений'

Учет влияния дестабилизирующих факторов для повышения точности измерений дальномера на основе стереоизображений Текст научной статьи по специальности «Медицинские технологии»

CC BY
305
70
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
ЦИФРОВОЕ ИЗОБРАЖЕНИЕ / СТЕРЕОКАМЕРА / ДИСТОРСИЯ / ФОТОПРИЕМНАЯ МАТРИЦА

Аннотация научной статьи по медицинским технологиям, автор научной работы — Козлов В. Л.

Широкое использование цифровой фотосъемки обусловило значительный прогресс в развитии теории и методов восстановления трехмерной картины пространства по двумерным цифровым изображениям. Для решения задачи повышения точности измерений таких систем необходимо учитывать влияние ряда дестабилизирующих факторов. Целью данной работы являлась разработка методики учета и компенсации влияния дестабилизирующих факторов, таких как отклонение от горизонтальной линии положения камер стереопары, непараллельность оптических осей объективов, взаимный наклон фотоприемных матриц и искажения оптической системы стереокамеры для повышения точности измерений дальномера на основе корреляционного анализа стереоизображения.Разработано программное приложение для анализа оптических искажений серийно выпускаемых объективов, позволяющее наглядно показать характер искажений и определить коэффициенты полинома, компенсирующего оптические искажения. Получено, что для стереофотокамеры Fujifilm FinePix Real 3 D дисторсия цифрового изображения достигает величины ±20-35 пикселей на краях фотоприемной матрицы и неодинакова для первого и второго объективов. Различие в значениях оптических искажений обусловлены неодинаковым наклоном фотоприемной матрицы к оптической оси объектива. Экспериментально определенны полиномы, компенсирующие искажения оптической системы первого и второго объективов стереокамеры.Получено выражение для расчета дальности до объекта по стереоизображению с учетом компенсации оптических искажений. Показано, что для повышения точности измерения расстояний определяющим фактором является не абсолютное значение дисторсии объективов, а разность вносимых оптических искажений объективов стереокамеры в зависимости от разности координат измеряемого объекта на фотоприемных матрицах. Экспериментальные исследования разработанной методики компенсации искажений показали уменьшение абсолютной погрешности измерений более чем на порядок при измерениях на расстояниях до 100 м.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по медицинским технологиям , автор научной работы — Козлов В. Л.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Consideration of the Destabilizing Factors Influence for Increasing of the Measurements Accuracy of a Rangefinder Based on Stereo Images

The wide using of digital photography has led to significant progress in the development of the theory and methods of restoring the three-dimensional space picture on base of two-dimensional digital images. To solve the problem of increasing the measurements accuracy of such systems, it is necessary to take into account the influence of a number of destabilizing factors. The aim of this work was development of technique for accounting and compensating of destabilizing factors influence, such as the deviation from the horizontal position line of the stereo pair lens, the non-parallelism of the lenses optical axes, the mutual inclination of the photo detector matrices, and the distortion of the stereo camera optical system for increasing of the measurements accuracy of rangefinder based on the correlation analysis of the stereo image.A software application has been developed for analyzing the optical distortions of serially produced lenses, which allows to visually demonstrate the distortions nature and to determine the polynomial coefficients for compensating of the optical distortion.It is obtained that for the Fujifilm FinePix Real 3D stereo camera the distortion of the digital image reaches ± 20-35 pixels at the edges of the photo detective matrix and is not the same for the first and second lenses. The difference in the optical distortion values is due to the unequal slope of the photo detector matrix to the optical axis of the objective. Compensating polynomials for the optical system distortions of the first and second lenses of the stereo camera are experimentally determined. The range object expression from the stereo images taking into account the optical distortion compensa-tion is obtained. It is shown for increasing of the measurements accuracy, the determining factor is not the absolute value of the lenses distortion, but the difference in the optical distortions of the stereo camera lenses, depending on the difference of the measured object coordinates of the on the photo detective matrices. Experimental studies of the developed technique for distortions compensation showed a decrease of the absolute measurements error more than by an order of magnitude at distances up to 100 m.

Текст научной работы на тему «Учет влияния дестабилизирующих факторов для повышения точности измерений дальномера на основе стереоизображений»

УДК 621.375.826

Учет влияния дестабилизирующих факторов для повышения точности измерений дальномера на основе

Козлов В.Л.

Белорусский государственный университет, пр. Независимости, 4, г. Минск 220050, Беларусь

Поступила 09.07.2017 Принята к печати 11.08.2017

Широкое использование цифровой фотосъемки обусловило значительный прогресс в развитии теории и методов восстановления трехмерной картины пространства по двумерным цифровым изображениям. Для решения задачи повышения точности измерений таких систем необходимо учитывать влияние ряда дестабилизирующих факторов. Целью данной работы являлась разработка методики учета и компенсации влияния дестабилизирующих факторов, таких как отклонение от горизонтальной линии положения камер стереопары, непараллельность оптических осей объективов, взаимный наклон фотоприемных матриц и искажения оптической системы стереокамеры для повышения точности измерений дальномера на основе корреляционного анализа стереоизображения.

Разработано программное приложение для анализа оптических искажений серийно выпускаемых объективов, позволяющее наглядно показать характер искажений и определить коэффициенты полинома, компенсирующего оптические искажения. Получено, что для стереофотокамеры Fujifilm FinePix Real 3D дисторсия цифрового изображения достигает величины ±20-35 пикселей на краях фотоприемной матрицы и неодинакова для первого и второго объективов. Различие в значениях оптических искажений обусловлены неодинаковым наклоном фотоприемной матрицы к оптической оси объектива. Экспериментально определенны полиномы, компенсирующие искажения оптической системы первого и второго объективов стереокамеры.

Получено выражение для расчета дальности до объекта по стереоизображению с учетом компенсации оптических искажений. Показано, что для повышения точности измерения расстояний определяющим фактором является не абсолютное значение дисторсии объективов, а разность вносимых оптических искажений объективов стереокамеры в зависимости от разности координат измеряемого объекта на фотоприемных матрицах. Экспериментальные исследования разработанной методики компенсации искажений показали уменьшение абсолютной погрешности измерений более чем на порядок при измерениях на расстояниях до 100 м.

Ключевые слова: цифровое изображение, стереокамера, дисторсия, фотоприемная матрица. DOI: 10.21122/2220-9506-2017-8-3-254-262

стереоизображений

Адрес для переписки:

Козлов В.Л.

Белорусский государственный университет, пр. Независимости, 4, г. Минск 220050, Беларусь e-mail: KozlovVL@bsu.by

Для цитирования:

Козлов В.Л.

Учет влияния дестабилизирующих факторов для повышения точности измерений дальномера на основе стереоизображений. Приборы и методы измерений. 2017. - Т. 8, № 3. С. 254-262. DOI: 10.21122/2220-9506-2017-8-3-254-262

Address for correspondence:

Kozlov V.L.

Belarusian State University, NezavisimostyAve., 4, Minsk 220050, Belarus e-mail: KozlovVL@bsu.by

For citation: Kozlov V.L.

[Consideration of the Destabilizing Factors Influence for Increasing of the Measurements Accuracy of a Rangefinder Based on Stereo Images]. Devices and Methods of Measurements. 2017, vol. 8, no. 3, pp. 254-262 (in Russian). DOI: 10.21122/2220-9506-2017-8-3-254-262

Consideration of the Destabilizing Factors Influence for Increasing of the Measurements Accuracy of a Rangefinder Based on Stereo Images

Kozlov V.L.

Belarusian State University, Nezavisimosty Ave., 4, Minsk 220050, Belarus

Received 09.07.2017

Accepted for publication 11.08.2017

Abstract

The wide using of digital photography has led to significant progress in the development of the theory and methods of restoring the three-dimensional space picture on base of two-dimensional digital images. To solve the problem of increasing the measurements accuracy of such systems, it is necessary to take into account the influence of a number of destabilizing factors. The aim of this work was development of technique for accounting and compensating of destabilizing factors influence, such as the deviation from the horizontal position line of the stereo pair lens, the non-parallelism of the lenses optical axes, the mutual inclination of the photo detector matrices, and the distortion of the stereo camera optical system for increasing of the measurements accuracy of rangefinder based on the correlation analysis of the stereo image.

A software application has been developed for analyzing the optical distortions of serially produced lenses, which allows to visually demonstrate the distortions nature and to determine the polynomial coefficients for compensating of the optical distortion.It is obtained that for the Fujifilm FinePix Real 3D stereo camera the distortion of the digital image reaches ± 20-35 pixels at the edges of the photo detective matrix and is not the same for the first and second lenses. The difference in the optical distortion values is due to the unequal slope of the photo detector matrix to the optical axis of the objective. Compensating polynomials for the optical system distortions of the first and second lenses of the stereo camera are experimentally determined.

The range object expression from the stereo images taking into account the optical distortion compensation is obtained. It is shown for increasing of the measurements accuracy, the determining factor is not the absolute value of the lenses distortion, but the difference in the optical distortions of the stereo camera lenses, depending on the difference of the measured object coordinates of the on the photo detective matrices. Experimental studies of the developed technique for distortions compensation showed a decrease of the absolute measurements error more than by an order of magnitude at distances up to 100 m.

Keywords: digital image, stereo camera, distortion, photodetector matrix.

DOI: 10.21122/2220-9506-2017-8-3-254-262

Адрес для переписки:

Козлов В.Л.

Белорусский государственный университет, пр. Независимости, 4, г. Минск 220050, Беларусь e-mail: KozlovVL@bsu.by

Для цитирования:

Козлов В.Л.

Учет влияния дестабилизирующих факторов для повышения точности измерений дальномера на основе стереоизображений. Приборы и методы измерений. 2017. - Т. 8, № 3. С. 254-262. DOI: 10.21122/2220-9506-2017-8-3-254-262

Address for correspondence:

Kozlov V.L.

Belarusian State University, Nezavisimosty Ave., 4, Minsk 220050, Belarus e-mail: KozlovVL@bsu.by

For citation: Kozlov V.L.

[Consideration of the Destabilizing Factors Influence for Increasing of the Measurements Accuracy of a Rangefinder Based on Stereo Images]. Devices and Methods of Measurements. 2017, vol. 8, no. 3, pp. 254-262 (in Russian). DOI: 10.21122/2220-9506-2017-8-3-254-262

Введение

Широкое использование цифровой фотосъемки обусловило значительный прогресс в развитии теории и методов восстановления трехмерной картины пространства по двумерным цифровым изображениям. На сегодняшний день разработано достаточно много технологий для цифрового восстановления трехмерной картины пространства. Методы измерения размерных параметров и координат 3D-объектов можно разделить на контактные (координатно-измерительные машины, механические щупы, методы, основанные на получении срезов объекта) и бесконтактные (стерео-бинокулярные системы, лазерное и рентгеновское сканирование, структурированное освещение) [1]. Однако наиболее эффективными и универсальными являются современные методики восстановления трехмерной модели сцены с использованием двух цифровых изображений (стереопары) [2, 3]. Возможность измерения расстояний и размеров объектов по анализу фотографических изображений может дать значительный экономический эффект при использовании, например, в области зрения мобильных роботов, для решения задач строительства и архитектуры, в геодезии и картографии, в криминалистике для повышения оперативности и качества фиксации следов совершенного преступления, для решения военных задач и т.п. Задача определения дальности и координат объекта сводится к задаче поиска соответствующих точек объекта на стереопаре. По паре соответствующих точек и информации о взаимном расположении камер выполняется триангуляция и определяются координаты их прообраза в трехмерном пространстве. Зная трехмерные координаты прообраза, можно вычислить глубину как расстояние до плоскости камеры. Из-за обратной зависимости глубины и смещения разрешающая способность систем стереозрения обратно пропорциональна расстоянию до сканируемой сцены [3].

В России производится ряд фотограмметрических комплексов, позволяющих измерять расстояния и размеры объектов на основании анализа цифровых фотографических изображений. Основной недостаток этих комплексов заключается в том, что для проведения измерений в них необходимо использовать мерные объекты и маркировочные конусы, расположенные в центре измеряемой зоны, что существенно ограничивает функциональные возможности. Кроме того, точность измерения таких систем составляет всего 1-3 % от

измеряемого расстояния, а диапазон измеряемых расстояний - до 60 м, что в большинстве случаев недостаточно. Из этого следует, что разработка методик повышения точности измерений таких систем является актуальной задачей.

Для решения задачи повышения точности измерения расстояний необходимо учитывать влияние ряда дестабилизирующих факторов и, соответственно, разработать методики устранения их влияния. Первым фактором является отклонение от горизонтальной линии положения камер стереопары. Использование для решения этой задачи известных методов ректификации [4] нецелесообразно, так как в ходе ректификации происходят неизбежные искажения изображений, что вызывает дополнительные трудности сопоставления стереоизображений и, соответственно, снижает точность измерения расстояний. Второй фактор связан с учетом непараллельности оптических осей объективов стереокамеры и взаимным наклоном фотоприемных матриц. Третьим важным фактором, ограничивающим точность измерений, являются искажения изображения, вносимые оптической системой стереокамеры, главным образом дисторсией объективов. Известны ряд методик автоматического определения и коррекции дисторсии цифровых изображениях [5-7]. Однако в литературных источниках отсутствует анализ влияния дисторсии на точность измерения расстояний по стереоизображению, а также не приводятся способы учета и компенсации влияния этого параметра на точность.

Целью работы являлась разработка методик учета и компенсации влияния дестабилизирующих факторов, таких как отклонение от горизонтальной линии положения камер стереопары, непараллельность оптических осей объективов, взаимный наклон фотоприемных матриц и искажения оптической системы стереокамеры для повышения точности измерений дальномера на основе корреляционного анализа стереоизображения.

Компенсация непараллельности оптических осей фотокамеры

Методика измерения расстояний и размеров объектов по анализу цифровых фотографических изображений, не использующая мерный объект, основана на принципах фотограмметрии и корреляционной обработки цифровых изображений [8]. Для определения расстояния R используется стереоскопическая система. В системе регистрируются

два изображения объектов под различными ракурсами, и затем, сопоставляя эти изображения, удается реконструировать трехмерную структуру сцены. Если расстояние между камерой и наблюдаемой сценой значительно превышает фокусное расстояние оптической системы, то можно считать, что изображение строится в ее фокальной плоскости. В современных фотокамерах для регистрации цифрового изображения в плоскости изображения устанавливается фотоприемная матрица. Дальность до объекта R из геометрии изображений определяется из соотношения [8]:

R =

f ■ L

Ч (x'- x")

(1)

где (X - х") = Ах - смещение (диспарантность) объекта в плоскости изображения по оси Х в пикселях на первом и втором снимках стереопары; L - величина базы; f - фокус оптической системы; юх -расстояния между чувствительными элементами фотоприемной матрицы по оси Х.

Схема стереоскопической системы и приведенная формула (1) предполагают, что оптические оси объективов параллельны и фотоприемные матрицы находятся на одной прямой, параллельной оси ОХ. Однако в реальной регистрирующей системе это реализовать достаточно трудно, поэтому одним из источников погрешностей в описанной методике является отклонения от горизонтальной линии положения фотокамер стереопары. Методика учета этого фактора поясняется рисунком 1 и заключается в следующем [8].

1

Если имеется сдвиг между фотокамерами по вертикальной оси АГ (при этом оптические оси объективов камер параллельны), то расстояние между фотокамерами по горизонтальной оси не будет равно Lо, а будет определяться следующим образом: Ь = Ь0 cos а , где Lо- расстояние между фотокамерами в пространстве; а - угол между горизонтальной осью и линией, соединяющей фотокамеры. При этом сдвиг между изображениями объекта на фотокамерах по вертикальной оси не будет равен нулю Ау Ф 0. Определив сдвиг между изображениями объекта по горизонтальной и вертикальной осей Ах = (х' - х") и Ау = (у' - у"), можно найти угол а из выражения tg а = Ау/Ах. Таким образом, по сдвигу между изображениями по горизонтали Ах определяется дальность до объекта, а по положению максимума корреляционной функции по вертикальной оси Ау - отклонение от горизонтальной линии положения двух фотокамер, при этом расчетная формула для дальности до объекта R приобретает вид:

R =

f • L m •Ах

• cos

АуЛ arctg — Ах

(2)

Другим источником измерительных ошибок в приведенной выше методике измерения расстояний является непараллельность оптических осей фотокамеры при получении первого и второго изображений, пример которой представлен на рисунке 2. Если оптические оси объективов первой и второй фотокамер сдвинуты на угол ф, то при определении сдвига между изображениями Ах = (х' - х") будет присутствовать постоянная ошибка АХ, обусловленная этим фактором, равная АХ = / ■ tg ф .Так как в приведенной формуле отсутствует расстояние до объекта, то сдвиг АХ будет одинаков для всех объектов, одновременно попадающих в поле зрения фотокамеры. Для устранения таких измерительных ошибок в расчетную формулу вводится величина сдвига АХ, при этом выражение для расчета дальности до объекта будет иметь вид:

R =

f • L

Рисунок 1 - Стереоскопическая система со сдвигом между фотокамерами по оси OY: 1 - измеряемый объект; 2 - линзы; 3, 4 - фотоприемные матрицы камер Figure 1 - Stereoscopic system with a shift between cameras in the OY axis: 1 - measured object; 2 - lens; 3, 4 -photodetector array of cameras

(Ax -AX)

• cos

Аул arctg —

Ax

(3)

где АХ - сдвиг по горизонтальной оси между изображениями объекта за счет непараллельности оптических осей (знак перед АХ зависит от угла наклона оптических осей).

Козлов В.Л.

I1

Рисунок 2 - Учет непараллельности оптических осей стереокамеры: 1 - измеряемый объект; 2 - линзы; 3, 4 - фотоприемные матрицы камер Figure 2 - Taking into account the nonparallelity of the optical axes of the stereo camera: 1 - measured object; 2 - lens; 3, 4 - photodetector array of cameras

Значение AX можно определить в результате калибровки системы по объекту, находящемуся на фотоснимке на максимальном расстоянии. Исследование данной методики измерений производилось с помощью фотокамеры Canon PowerShot A550 с матрицей размером 7,1 мегапикселей и фокусом объектива 5,8 мм. Результаты показали, что при измерениях на малых расстояниях сдвиг между изображениями Ax составляет сотни и тысячи пикселей, а при расстоянии до объекта порядка 2000 м сдвиг будет 0,7 пикселя. Если разрешение системы обработки изображений составляет 1 пиксель, то калибровка по объекту на расстоянии более 1500 м обеспечит учет отклонения положения оптических осей фотокамеры от параллельного, не увеличивая при этом неопределенность измерений. В случае, когда для измерений используется 3^-фотокамера с жестко закрепленными объективами, значение сдвига AX можно определить путем калибровки по объекту, находящемуся на известном расстоянии.

Другая методика компенсации непараллельности оптических осей фотокамеры при получении первого и второго изображений с использованием жестко соединенного с фотокамерой коллиматора, оптическая ось которого перпендикулярна оптической оси фотокамеры, приводится в [9]. После получения первого снимка фотокамеру перемещают на заданное расстояние L, затем совмещают перекрестие объектива коллиматора с тем же тест-объектом, что и при первом снимке, и получают второй снимок. Использование системы камера-коллиматор позволяет избежать

связанных с поворотом камеры ошибок и существенно увеличить базу съемки, что положительно сказывается на точности измерений.

Учет влияния искажений оптической системы стереокамеры

Одним из основных источников измерительных ошибок при восстановлении дальности по анализу цифрового изображения являются искажения, вызванные оптической системы стереока-меры, главным образом дисторсией. Дисторсия -это аберрация оптических систем, при которой коэффициент линейного увеличения изменяется по полю зрения объектива. При этом нарушается геометрическое подобие между объектом и его изображением. Так как линзы в реальных камерах обычно не обладают идеальной формой и расположением относительно матрицы, то получаемое изображение будет подвергнуто искажениям, которые нужно учитывать, чтобы иметь возможность использовать модель проективной камеры, описанную выше. Оптические искажения, вносимые линзой на фотоприемную матрицу, подразделяются на два вида: радиальные и тангенциальные. Радиальные искажения возникают из-за того, что физическая линза имеет неправильную форму. Например, в некоторых камерах используют не параболические, а сферические линзы, которые проще в изготовлении. В результате возникают искажения изображения, усиливающиеся от центра к краям. Тангенциальные искажения возникают из-за того, что линза в камере расположена непараллельно плоскости матрицы [5-7, 10].

Наиболее распространенным способом компенсации дисторсий камеры является предварительная калибровка с использованием специального калибровочного объекта, помещаемого в поле зрения камеры. В качестве калибровочного объекта может выступать как периодическая структура, так и случайная текстура с определенными статистическими свойствами [11]. Также находят свое применение и методы, не требующие специального калибровочного объекта, но использующие несколько зарегистрированных изображений одной и той же сцены. Такие методы опираются на априорную информацию о геометрии сцены и решают задачу калибровки с учетом ограничений эпиполярной геометрии [5]. При этом на практике возникает ситуация, когда отсутствует возможность получить с ка-

меры требуемые изображения. В этом случае параметры дисторсии могут быть оценены на основе анализа самого изображения. Такой аналитический способ исправления геометрических искажений получил название автоматической (или слепой) калибровки [6]. Наибольшее распространение получили методы, основанные на предположении, что исследуемая сцена содержит большое количество прямых линий, которые остаются прямыми при центральном проецировании, но приобретают кривизну вследствие радиальной дисторсии [7]. Однако в литературных источниках не приводятся результаты исследований по анализу влияния дисторсии на точность измерения расстояний по стереоизображению, а также не разработаны методики учета и компенсации влияния этого параметра на точность измерений.

Для анализа оптических искажений объективов фотокамер было разработано программное приложение, позволяющее наглядно показать характер искажений и определить коэффициенты полинома, компенсирующего оптические искажения. Были проведены экспериментальные исследования оптических искажений следующих объективов и фотокамер:

- Canon EOS 1100D (с объективом EFS 18-55);

- Nikon D3200 (с объективами AF-SDX NIK-KOR 18-55; AF-S NIKKOR 18-105; TAMRON AF 70-300);

- Canon PowerShot A550;

- Fujifilm FinePix Real 3D W3.

Выбор в качестве объекта исследования серийно выпускаемой 3D-фотокамеры Fujifilm FinePix Real 3D обусловлен тем, что она используется в качестве компактного решения аппаратной части дальномера на основе корреляционного анализа цифровых изображений. На рисунках 3, 4 приведены результаты измерения оптических искажений объективов фотокамер Canon EOS 1100D и Fujifilm FinePix Real 3D. В горизонтальной плоскости по осям OX и OY приведены координаты точки на фотоприемной матрице, а по вертикальной оси приведена величина оптических искажений в пикселях для данной точки по оси OX (рисунок 3) и по оси OY (рисунок 4).

Экспериментальные исследования показали, что оптические искажения исследуемых объективов Canon и Nikon можно успешно аппроксимировать известными формулами [12]. Скорректированные точки для радиальных искажений можно получить с помощью следующих выражений:

.X = x(1+k r2+k,r4+k,r6), y = y(1+k r2+k,r4+k r6), (4)

corrected v 1 2 3 ^ corrected ^ v 1 2 3 v y

где (х, у) - координаты точки исходного изображения; r - удаленность точки от оптического центра линзы.

Тангенциальные искажения определяются двумя параметрами p1 и p2:

x t d= x+2p1y+p2(r2+2x2); y td= y+p1 (2r2+2y2)+2p2x. (5)

corrected 1 2 corrected 1 2

Таким образом, общая модель искажения характеризуется пятью параметрами, которые составляют вектор искажения (k, k, k p , p2). Остальные искажения, возникающие в оптической системе, вносят значительно меньший вклад и их можно не учитывать [12].

Рисунок 3 - Х-компоненты искажений для Canon EOS 1100D с объективом EFS 18-55 (а), левого (b) и правого (c) объективов Fujifilm FinePix Real 3D

Figure 3 - Х-component distortion for Canon EOS 1100D with lens EFS 18-55 (a), left (b) and right (c) lenses of Fujifilm FinePix Real 3D

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Козлов В.Л.

Real 3D W3 достаточно полинома третьей степени. Взаимный наклон плоскостей фотоприемных матриц и оптические аберрации приемных линз можно компенсировать с помощью нелинейного полинома P, имеющего следующий вид:

P =Х (Pnоx + P0„У + Pk 1k2xklyk2),

(6)

где Pn0, Pm0, Pklk2 - экспериментально определенные калибровочные коэффициенты; n, m = 1 - 3; k k2 = 1 - 2; x, y - координаты точки измерений на фотоприемной матрице по горизонтали и вертикали соответственно.

Экспериментально определенные полиномы, компенсирующие искажения оптической системы первого P' и второго P" объективов стереока-меры Fujifilm FinePix Real 3D, имеют вид:

P = -12,1738 + 3,90• 10-2 • X- 2,68• 10-

-5,37-10"

-5,07 • 10-3 • y - 5,68 • 10-6 • y2 + 2,59 • 10-10 • y3 + +5,85• 10-7 • xy + -1,51 •Ю-10 • x2y + 4,49 •Ю-9 • xy2

(7)

P = -22,3481 + 5,38 -10-2 ■ x -3,00-10-5 ■ x2 + 5,07 -10-9 ■ x3 --1,02 ■ 10-2 ■ y - 6,36 ■ 10-6 ■ y2 -1,96 ■ 10-10 ■ y3 +

(8)

+5,51 ■Ю-6 ■ xy + -1,83■ 10-11 ■ x2y + 4,04■Ю-9 ■ xy2.

Рисунок 4 - 7-компоненты дисторсии для Canon EOS 1100D с объективом EFS 18-55 (а), левого (b) и правого (с) объективов Fujifilm FinePix Real 3D Figure 4 - Y-component distortion for Canon EOS 1100D with lens EFS 18-55 (a), left (b) and right (c) lenses of Fujifilm FinePix Real 3D

Однако, как показали результаты проведенных исследований для фотоаппарата Fujifilm FinePix Real 3D W3, использование формул (4, 5) для компенсации дисторсии не обеспечивает требуемую точность при измерении расстояний, поэтому для компенсации дисторсии были проведены дополнительные исследования. Для используемой фотокамеры Fujifilm FinePix Real 3D W3 дис-торсия цифрового изображения неодинакова для объективов стереокамеры и достигает величины ±20-35 пикселей на краях фотоприемной матрицы. Различие в значениях оптических искажений для двух объективов обусловлены неодинаковым наклоном фотоприемной матрицы к оптической оси объектива. Из полученных экспериментальных данных следует, что для аппроксимации оптических искажений объективов Fujifilm FinePix

Важно отметить, что значениями коэффициентов полинома порядка 10-10 нельзя пренебрегать, так как они находятся при переменных в третьей степени, а величины х и у могут иметь значение приблизительно равное (3—4)103.

В расчетные формулы для измерения дальности (1)—(3) входят фокус оптической системы /, база съёмки Ь и размер пикселя юх, которые можно объединить в аппаратную константу К:

K =

f • L

(9)

Знать точное значение расстояния между чувствительными элементами фотоприемной матрицы юх, значение фокуса объектива и базы съемки нет необходимости, так как значение аппаратной константы измерительной системы К можно определить при калибровке системы по объектам, находящимся на известных расстояниях.

Таким образом, с учетом компенсации оптических искажений первого и второго объективов стереокамеры выражение для расчета дальности до объекта по стереоизображению имеет вид:

K cos

Z =

arctg

Ay

Ax

Ax -AX + P -P '

(10)

где K - аппаратная константа измерительной системы (9); Ах - сдвиг между изображениями объекта по горизонтальной оси; Ау - сдвиг между изображениями объекта по вертикальной оси; АХ -сдвиг по горизонтальной оси между изображениями объекта за счет непараллельности оптических осей объективов; P' P" - полиномы, компенсирующие искажения объективов стереокамеры.

Необходимо отметить, что для повышения точности измерения расстояний определяющим фактором является не абсолютное значение дис-торсии объективов, а разность вносимых оптических искажений объективов стереокамеры в зависимости от разности координат положения измеряемого объекта на фотоприемных матрицах. Экспериментальные исследования разработанной методики учета и компенсации влияния искажений на точность измерений дальномера на основе корреляционного анализа стереоизображения показали уменьшение абсолютной погрешности измерений более чем на порядок при измерениях на расстояниях до 100 м.

Заключение

Предложена и обоснована методика компенсации искажений, вносимых оптической системой стереокамеры, непараллельностью оптических осей объективов, взаимным наклоном фотоприемных матриц, заключающаяся в использовании при вычислении дальности экспериментально определенных полиномов, компенсирующих упомянутые искажения в зависимости от координат объекта на фотоприемных матрицах стереокамеры.

Разработано программное приложение для анализа оптических искажений серийно выпускаемых объективов, позволяющее наглядно показать характер искажений и определить коэффициенты полинома, компенсирующего оптические искажения. Экспериментальные исследования показали, что оптические искажения исследуемых объективов Canon и Nikon можно аппроксимировать известными формулами, при этом обеспечивается достаточно высокая точность измерения расстояний с использованием таких объективов.

Для стерео фотокамеры Fujifilm FinePix Real 3D W3 использование упомянутых формул для компенсации искажений не обеспечивает требуемую точность при измерении расстояний. Дис-торсия цифрового изображения стереокамеры Fujifilm Fine достигает величины ±20-35 пикселей на краях фотоприемной матрицы и неодинакова для первого и второго объектива. Различие в значениях оптических искажений для двух объективов обусловлены неодинаковым наклоном фотоприемной матрицы к оптической оси объектива. Экспериментально определенны полиномы, компенсирующие искажения оптической системы первого и второго объективов стереокамеры. Получено выражение для расчета дальности до объекта по стереоизображению с учетом компенсации оптических искажений объективов стере-окамеры. Для повышения точности измерения расстояний определяющим фактором является не абсолютное значение дисторсии объективов, а разность вносимых оптических искажений объективов стереокамеры в зависимости от разности координат измеряемого объекта на фотоприемных матрицах. Экспериментальные исследования разработанной методики компенсации искажений показали уменьшение абсолютной погрешности измерений более чем на порядок при измерениях на расстояниях до 100 м.

Список использованных источников

1. Шапиро, Л. Компьютерное зрение / Л. Шапиро, Д. Стокман. - М. : БИНОМ, 2006. - С. 752.

2. Золотухин, Д.А. Реконструкция и фильтрация трехмерной формы микрообъекта по стереопаре изображений с параллельной проекцией / Д.А. Золотухин, И.В. Сафонов, К.А. Крыжановский // Механика, управление и информатика. - 2012. - Т. 9, № 9. -С. 174-179.

3. Форсайт, Д. Компьютерное зрение. Современный подход / Д. Форсайт, Ж. Понс. - М. : Вильямс, 2004.- 928 с.

4. Hartley, R.I. Theory and practice of projective rectification / R.I. Hartley // International Journal of Computer Vision. - 1999. - Vol. 35, no. 2. - P. 115-127.

5. Zhang, Z. Camera calibration with lens distortion from low-rank textures / Z. Zhang, Y. Matsushita, Y. Ma // Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference. - 2011. - P. 2321-2328.

6. Alemán-Flores, M. Automatic Lens Distortion Correction Using One-Parameter Division Models / M. Alemán-Flores, L. Alvarez, L. Gomez, D. Santana-Cedres // Image Processing On Line. - 2014. - Vol. 4. - P. 327-343.

doi: 10.1007/s10851-012-0342-2.

7. Бугаенко, Е.И. Способ автоматического определения и коррекции радиальной дисторсии на цифровых изображениях / Е.И. Бугаенко, М.И. Труфа-нов // Изв. вузов. Приборостроение. - 2008. - Т. 51, №2. - С. 16-22.

8. Способ измерения расстояний на цифровой фотокамере: патент № 2485443 Российской Федерации /

B.Л. Козлов. - 2013. - Бюл. № 17.

9. Способ определения расстояния до объекта посредством цифровой фотокамеры: патент № 18666 Республика Беларусь / В. Л. Козлов. - 2014. - № 5. - С. 95.

10. Titov, D.V. Correction Device of Distortion / D.V Titov, T.A. Shirabakina // Information and Telecommunication Technologies in Intelligent Systems. Proc. 5th Int. Conf. Spain. - 2007. - P. 122-124.

11. Кунина, И.А. Слепая компенсация радиальной дисторсии на одиночном изображении с использованием быстрого преобразования Хафа / И.А. Кунина,

C.А. Гладилин, Д.П. Николаев // Компьютерная оптика. - 2016. - Т. 40, № 3. - С. 395-403.

12. Гонсалес, Р. Цифровая обработка изображений / Р. Гонсалес, Р. Вудс. - М. : Техносфера, 2005. - 1072 с.

References

1. Shapiro, L. Computer vision / L. Shapiro, D. Stockman - Moscow: BINOM, 2006. - 752 p.

2. Zolotukhin, D.A. Reconstruction and filtration of a three-dimensional shape of a microobject by a stereopair of images with a parallel projection. Zolotukhin, I.V Safonov, K.A. Kryzhanovsky // Mechanics, management and informatics. - 2012. - V. 9, No. 9. - P. 174-179. (in Russian)

3. Forsythe, D. Computer vision. Modern approach /

D. Forsythe, J. Pons. - Moscow: Williams, 2004. - 928 p.

4. Hartley, R.I. Theory and practice of projective rectification / R.I. Hartley // International Journal of Computer Vision. - 1999. - Vol. 35, № 2. - P. 115-127,

doi: 10.1023/A:1007957826135.

5. Zhang, Z. Camera calibration with lens distortion from low-rank textures / Z. Zhang, Y. Matsushita, Y. Ma // Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference. - 2011. - P. 2321-2328 - DOI: 10.1109/ CVPR.2011.5995548.

6. Alemán-Flores, M. Automatic Lens Distortion Correction Using One-Parameter Division Models / M. Alemán-Flores, L. Alvarez, L. Gomez, D. Santana-Cedres // Image Processing On Line. - 2014. - Vol. 4. - P. 327-343.,

doi: 10.1007/s10851-012-0342-2.

7. Bugaenko, EI A method for automatic detection and correction of radial distortion on digital images / EI Bugaenko, MI Trufanov // Izv. Universities. Instrument making. - 2008. - V 51, No. 2. - P. 16-22. (in Russian)

8. Method for measuring distances on a digital camera: patent 2485443 Russian Federation, / VL Kozlov. - 2013. -Bul. No. 17.

9. Method for determining the distance to the object through a digital camera: pat. 18666 Rep. Belarus, / V.L. Kozlov; - 2014. - No. 5. - P. 95.

10. Titov D. V, Shirabakina T. A. Correction Device of Distortion // „Information and Telecommunication Technologies in Intelligent Systems". Proc. 5th Int. Conf. Spain, 2007. - P. 122-124.

11. Kunina, I.A. Blind compensation of radial distortion on a single image using a fast Hafa transformation. Kunina, S.A. Gladilin, D.P. Nikolaev // Computer Optics. -2016. - V 40, No. 3. - P. 395-403. (in Russian)

12. Gonzalez, R. Digital image processing / R. Gonzalez, R. Woods. - Moscow: Technosphere, 2005. - 1072 p.

i Надоели баннеры? Вы всегда можете отключить рекламу.