УДК 544.72:538.9
ТРИБОХИМИЧЕСКИЕ СВОЙСТВА ГЕТЕРОГЕННЫХ СИСТЕМ, СОДЕРЖАЩИХ ПОВЕРХНОСТНО-МОДИФИЦИРОВАННЫЙ ДИСПЕРСНЫЙ АЛЮМИНИЙ
ТАРАБАН ВВ., СЫРКОВ А.Г., СИЛИВАНОВ МО., НАЗАРОВА Е.А.
Национальный минерально-сырьевой университет "Горный", 199106, г. Санкт-Петербург, 21-я линия, 2
АННОТАЦИЯ. Осуществлены приоритетные измерения коэффициента / и силы трения (^тр) для гетерогенных систем в виде масла И-20 с твердыми добавками дисперсного алюминия, поверхностно-модифицированного триамоном (Т), алкамоном и этилгидридсилоксаном по различным программам. Выявлено, что при прочих равных условиях, введение подслоев триамона в А1-добавку с внешним хемосорбированным слоем этилгидридсилоксана приводит к снижению ^тр и/в системе по мере уменьшения числа Т-подслоев от трех до одного. Обнаружено, что использование низкомолекулярных Т-подслоев в А1-добавке является тонким инструментом регулирования величины слагаемого (от 10,8 до 13,2 Н), ответственного в уравнении граничного трения за межмолекулярное притяжение в применяемой трибологической паре.
КЛЮЧЕВЫЕ СЛОВА: нанотрибология, нелинейные эффекты, мономолекулярные слои ПАВ, модифицирование поверхности алюминия, антифрикционный эффект, силы межмолекулярного притяжения, граничное трение.
Последовательная (совместная) хемосорбция на металлах триамона и алкамона -препаратов на основе четвертичных соединений аммония (ЧСА) с разноразмерными молекулами - показала себя перспективным методом регулирования водоотталкивающих, антифрикционных свойств металла и его реакционной способности при окислении [1, 2]. С точки зрения уровня перечисленных свойств и наблюдаемых синергетических эффектов, одними из наиболее интересных объектов являются адсорбционно-модифицированные образцы на основе дисперсного алюминия и соответствующие Al-содержащие смазки [1 - 3]. Учитывая благоприятное воздействие гидрофобизации металла-наполнителя на антифрикционные свойства смазки [1, 4], открытым остается вопрос о влиянии числа и расположения поверхностных наноподслоев ЧСА модифицированного металла, содержащего внешний гидрофобный слой, на его адсорбционные характеристики и на свойства смазки. Кроме того, ранее не были измерены и описаны фундаментальные трибологические характеристики - сила и коэффициент трения - для трибосистем, содержащих в составе смазки дисперсные металлы с нанесенными на поверхность многослойными (n = 1 - 4) структурами на основе ЧСА и гидрофобных органогидридсилоксанов. Настоящая работа направлена на решение перечисленных задач.
ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ
В качестве основного исходного дисперсного металла был выбран Al-порошок марки ПАП-2 с удельной поверхностью (2,6±0,2) м /г (БЭТ). По данным электронной просвечивающей микроскопии, в структуре ПАП-2, в основном, присутствуют частицы размером от единиц до десятка микрон, встречаются также более мелкие частицы размером 45 - 70 нм. Использованные в работе режимы модифицирования поверхности ПАП-2 не приводят к заметному изменению формы и размера частиц. Порошок обрабатывали в парах триамона (Т), алкамона (А) и гидрофобизирующей кремнийорганической жидкости ГКЖ-94 на основе этилгидридсилоксана (далее ГКЖ) при комнатной температуре по различным программам модифицирования, согласно методике, описанной в работах [2, 5]. Состав полученных образцов определяли методами EDX-спектроскопии (аналитическая приставка EDAX/TSL режим съемки - 6 кВ) и рентгенофлюоресцентного анализа (РФлА, прибор "Bruker S4 Explorer"). О водоотталкивающих свойствах образцов судили по величине
адсорбции паров воды (a), измеренной гравиметрически эксикаторным методом при относительном давлении паров p/p0 = 0,98±0,02. В качестве смазки применяли масло И-20, в которое в одинаковых концентрациях вводили Al-порошки, модифицированные в парах ЧСА и/или ГКЖ. Силу трения (F^,) и коэффициент трения f) определяли в изотермических условиях на машине трения ДМ-29М с трибологической парой сталь Ст45 (ГОСТ 1050-88) -бронза Бр АЖ 9-4 (ГОСТ 18175-78), содержащей масло И-20 с модифицированными Al-присадками. Данные трибологических измерений сопоставляли с результатами измерений на машине трения МТУ-01, где улучшение антифрикционных свойств смазки регистрируется по уменьшению момента силы трения в трибосистеме. Кроме того, при анализе найденных трибологических характеристик гетерогенных систем смазка-дисперсный металл учитывали полученные ранее результаты измерения интегрального показателя трения D, пропорционального силе трения, методом акустической эмиссии с помощью сертифицированного прибора АРП-11 в диапазоне частот 20 - 300 кГц по ГОСТу 27655-88.
Исследовались следующие дисперсные наполнители на основе алюминия марки ПАП-2 (помимо исходного Al-порошка). Al/T - образец с хемосорбированным триамоном, Al/A - образец с хемосорбированным алкамоном, Al/(A+T) - образец обработанный смесью паров алкамона и триамона; Al/T/A - образец с последовательно хемосорбированными на алюминии триамоном и алкамоном, а также образцы вида Al/A/T (изменена последовательность нанесения А и Т) и Al/T/T (с нанесенными двумя слоями триамона). Кроме того, впервые были синтезированы образцы Al/T/ГКЖ, Al/T/T/ГКЖ, Al/T/T/T/ГКЖ, чтобы изучить влияние на свойства внешнего слоя этилгидридсилоксана (ГКЖ) числа подслоев низкомолекулярного триамона. Препарат триамон отвечает следующей химической формуле [(НОС2Н4 )3 N+CH3 ][CH3SO-] . Основное отличие алкамона состоит в том, что он
имеет существенно более крупные алкильные радикалы (С16 - С18) в строении катиона [4]. Наличие в молекулах Т и А атомов азота и серы позволяет количественно контролировать адсорбцию ЧСА по мере нанесения различного числа их нанослоев на поверхность алюминия. Исходный ПАП-2 заметных количеств N и S, по данным EDX-спектроскопии и РФлА, не содержит. После однократной обработки триамоном образец Al/T содержит 0,21 мол % N и 0,22 мол % S. Последовательная обработка алюминия Т и А приводит к возрастанию содержания N и S до 0,55 и 0,43 мол % соответственно. Используемые методы анализа позволяют также определять содержание кремния, углерода и кислорода на всех стадиях синтеза [2]. Как показали опыты, адсорбционное модифицирование ПАП-2 в парах ЧСА не вызывает заметного снижения величины поверхности полученного алюминия. Удельная поверхность модифицированных образцов дисперсного алюминия составляет (2,7±0,1) м2/г [2].
ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ
Из данных рис. 1 следует, что наибольшее снижение силы трения при прочих равных условиях обеспечивает Al-порошок, обработанный в смесевом режиме А и Т. Al-добавка, модифицированная парами промышленного гидрофобизатора ГКЖ [6], с самой низкой величиной адсорбции воды [5] не дает заметного антифрикционного эффекта (см. также характеристики образца Al/ГКЖ в табл. 1). Этот эффект заметно усиливается при введении 1 - 2 Т-подслоев под внешний ГКЖ-слой. Подобный эффект подтвержден на машине трения ДМ-29М (рис. 1, 2) и для добавки Al/Т/А с низкомолекулярным Т-подслоем. Важно отметить, что добавка Al/А/Т с А-подслоем уже не вызывает такого снижения F^, как Al/Т/А (рис. 1, табл. 1).
Рис. 1, 2 наглядно иллюстрируют, что обработка алюминия смесью (А+Т) дает лучший антифрикционный эффект, чем модифицирования каждым из компонентов в отдельности (А или Т). Этот, по сути, синергетический эффект ещё более ярко проявляется, когда о снижении трения судят акустическим методом по уменьшению интегрального показателя трения D (рис. 3). Гистограммы, построенные по данным работы [5], показывают
что D (трение) в системе с добавкой А1/(А+Т) в разы меньше, чем при использовании добавок А1/А или A1/T. Обеспечиваемое установкой для акустического метода нагрузочное давление P может быть почти в 3 раза выше, чем на машине трения (47 и 17 МПа соответственно). В этом, на наш взгляд, состоит причина того, что на рис. 3 можно наблюдать более резкое снижение трения в системе с добавкой A1/(A+T), чем на рис. 2.
Рис. 1. Значение силы трения в трибосистеме со смазкой, содержащей дисперсный алюминий, модифицированный в различных режимах (данные получены при нагрузке N = 5000 Н и содержании дисперсной добавки 0,5 мас %)
Сила трения, Н 50
400
И-20/Al
V
И-2 0/Al/A И-20/Al/T И-20/Al/T Г/A
И-20/ Al/(A+T)
Коэффициент трения
0,0100
450
500
550
600
650
700
750
0,0090
0,0080
0,0070
0,0060
0,0050
0,0040
0,0030
0,0020
0,0010
0,0000 800
1/д, отн. ед.
Рис. 2. Зависимость ^тр и/от величины 1/а, где а - адсорбция паров воды на А1-добавке, модифицированной в парах ЧСА N = 5 кН, Р = 17 МПа)
Согласно представлениям, развиваемым в работах [1, 5, 7], при высоких нагрузочных давлениях, когда жидкая смазка (И-20) выдавливается из зоны контакта пары трения и система приближается к режиму "сухого трения", антифрикционные свойства системы в значительной мере определяются характеристиками поверхности самой твердой добавки. Исходя из этих представлений, становится также понятным, почему в более мягких условиях трения (рис. 4) несколько смазываются эффекты, обусловленные физико-химической природой поверхности А1-добавки (табл. 1), по сравнению с данными рис. 3 и работ [1, 5].
900 800 700 600 2 500
я 400 £ 300 ^ 200 100 0
-
а 1
1800 1600 1400 1200 1000 800 600 400 200 0
D
Al/T
Al/A
Al/(A+T)
Al
Al/T/A
■ 1/a, отн.ед. ■ D
Рис. 3. Влияние программы модифицирования Al-порошка на гидрофобность добавки (~1/a) и показатель трения D смазки на основе масла И-20 (давление P = 47 МПа)
.Гтр, Н 50
45
40
35
30
25
И-20/Al
И- 20/А1/ГКЖ
И-20
20
И-20/AlAA+T)
300
350
400
450
500 N, кгс
Рис. 4. Влияние нагрузки на величину силы трения для смазки с разными А1-добавками
(содержание добавки - 0,5 мас %)
Зависимость между силой трения и нагрузкой для смазки с разными А1-добавками и для исходного масла И-20, как видно из табл. 1, может быть аппроксимирована линейной зависимостью со степенью достоверности Я2 в диапазоне 0,986 - 0,999. Полученные уравнения вида у = кх + Ь совпадают с формулой закона граничного трения с учетом межмолекулярного притяжения контактирующих поверхностей [8]
Гтр = к (N + 8р0 ) = кМ + кЗро,
где к - коэффициент трения в диапазоне изменения М; N - нагрузка (сила нормального давления); £ - площадь контакта между телами; р0 - добавочное давление, обусловленное силами межмолекулярного притяжения. А1-добавкам, которые максимально снижают ^р в системе (А1/(А+Т), А1/Т/ГКЖ), соответствуют уравнения с минимальными коэффициентами пропорциональности к и наименьшими значениями
Я (0,991 и 0,986 соответственно). Компонента уравнения (свободный член), ответственная за межмолекулярное притяжение, минимальна для добавки А1/Т/А и максимальна для добавки А1/ГКЖ (табл. 1). Смазка с А1/Т/А входит в тройку лидеров по антифрикционным свойствам, смазка с А1/ГКЖ имеет максимальный коэффициент трения / соответственно.
Таблица 1
Влияние вида А1-добавки (0,5 мас %) на уравнение взаимосвязи ^тр = Ф(^), изменение ^тр (А^тр) относительно исходного масла и на величину коэффициента трения (/)
№ Al-добавка (смазка) Уравнение Fp = Ф(М) R2 AFp (ср), % DFtp (N = 5 кН), % f (N = 3,5 кН)
1 Al/(A+T) y = 0,037x + 12,47 0,991 -11,41 -15,92 0,0075
2 Al/T/ГКЖ y = 0,043x + 12,15 0,986 -7,42 -5,99 0,0075
3 Al/T/A y = 0,048x + 10,81 0,992 -7,75 -3,69 0,0079
4 Al/A y = 0,050x + 12,05 0,997 -1,05 -1,40 0,0089
5 И-20 (без добавки) y = 0,050x + 12,29 0,994 0 0 0,0089
6 Al/T y = 0,050x + 11,86 0,999 -1,52 0,13 0,0087
7 Al/Т/Т/ГКЖ y = 0,049x + 12,49 0,993 -0,21 0,89 0,0085
8 Al/Т/Т/Т/ГКЖ y = 0,048x + 12,50 0,995 -0,20 0,88 0,0086
9 Al/T/T y = 0,051x + 11,59 0,994 -1,59 0,89 0,0086
10 Al/ГКЖ y = 0,048x + 13,22 0,994 2,32 3,80 0,0086
11 Al/A/T y = 0,050x + 12,68 0,992 1,96 3,95 0,0085
12 Al (ПАП-2) y = 0,065x + 11,74 0,997 12,61 20 0,0101
Исходя из данных табл. 1, А1-добавки с внешним ГКЖ - слоем на поверхности по способности снижать Бтр в трибосистеме, располагаются следующим образом:
А1/Т/ ГКЖ > А1/Т/Т/ ГКЖ > А1/Т/Т/Т/ ГКЖ > А1/ ГКЖ
^ Уменьшение Рр
Таким образом, наибольшее влияние на усиление антифрикционных свойств смазки оказывает добавка с одним Т-подслоем. Добавки вида А1/Т/Т/ГКЖ и А1/Т/Т/Т/ГКЖ мало изменяют силу трения при варьировании нагрузки от 50 до 350 кгс, а при повышенной нагрузке 500 кгс даже ухудшают свойства масла И-20 (в табл. 1 Арр > 0).
Интересно, что в работе [9] экспериментально установлено, что увеличение числа Т-подслоев под внешним А-слоем на порошке алюминия только ухудшает водоотталкивающие свойства образца. Поэтому не исключено, что наилучшие антифрикционные свойства добавки А1/Т/ГКЖ и усиление гидрофобности образца А1/Т/А -ещё один пример эффекта монослоя по Алесковскому [10]. То, что удаление внешнего гидрофобного слоя от исходного металла, происходящее при увеличении числа Т-подслоев, приводит к снижению уровня определенных трибохимических свойств образцов, свидетельствует о влиянии силы взаимодействия между металлом и внешним адсорбционным слоем. По Алесковскому, влияние твердой подложки практически угасает при нанесении 3 - 4 монослоев вещества. По Абрамзону [4], для достижения хороших антифрикционных и защитных свойств при адсорбции ПАВ на твердой подложке благоприятны гидрофобизация поверхности и высокая адгезия нанесенной пленки ПАВ к подложке. Результаты данной работы подтверждают, что фактор адгезии из двух названных факторов является приоритетным, что ранее доказывалось с использованием акустического метода для разных металлов-наполнителей с адсорбированными ЧСА [1, 11].
Особенность изученных А1-добавок на основе ПАП-2 состоит в том, что усиление адгезии металла (М) к нанесенной пленке ЧСА за счет гетероатомного взаимодействия со смещением электронной плотности по схеме М ^ N [11] осложнено наличием на поверхности частиц исходного алюминия стеариновой нанопленки толщиной до двух монослоев [12]. В этом, по-видимому, основная причина того, что по данным измерений на
машине трения (см. табл. 1, 2) и акустическим методом (рис. 3), сильнее всего снижает трение добавка А1/(А+Т), а не А1/Т/А. Согласно выводам работы [13], смесевая обработка ПАП-2, когда молекулы Т и А подходят к поверхности металла в одной связке, более благоприятна для стабилизации двухкомпонентного Т - А -слоя, чем в случае последовательного нанесения препаратов Т и А. Для сравнения, при введении в масло И-20 Си-добавки с более "чистой" металлической поверхностью преимуществом обладает порошок вида Си/Т/А, в котором методом РФЭ-спектроскопии доказано взаимодействие М^ N [11].
Измерения, проведенные на машине трения МТУ-01 Центра коллективного пользования высокотехнологичным оборудованием Горного университета, показали снижение момента силы трения (М1) при введении в масло И-20 добавки А1/(А+Т) в 2,6 раза (М1 = 0,52, М2 = 0,20 отн. ед.) при N = 2 кН. Таким образом существенный антифрикционный эффект добавки А1/(А+Т) обоснован тремя независимыми методами. Анализ величины коэффициента трения для 11 различных видов смазки (табл. 2) при разных нагрузках показывает, что добавка А1/(А+Т) обладает преимуществом при повышенных нагрузках. При пониженных нагрузках (до 150 кгс, то есть примерно до 1500 Н) добавки вида А1/Т/ГКЖ и А1/Т/А демонстрируют сопоставимый с А1/(А+Т) антифрикционный эффект.
Как видно из рис. 2, сила трения в трибосистеме снижается по мере уменьшения адсорбции паров воды на металле-наполнителе, то есть с возрастанием гидрофобности А1-добавки, обработанной по разной программе в парах ЧСА.
Таблица 2
Влияние нагрузки в диапазоне 50 - 500 кгс на величину коэффициента трения
№ А1-добавка (смазка) Коэффициент трения /
50 кгс 100 кгс 150 кгс 250 кгс 500 кгс
1 А1/(А+Т) 0,0299 0,0173 0,0125 0,0086 0,0064
2 А1/Т/ГКЖ 0,0293 0,0170 0,0129 0,0094 0,0072
3 А1/Т/А 0,0275 0,0164 0,0127 0,0091 0,0074
4 А1/А 0,0299 0,0173 0,0133 0,0101 0,0076
5 И-20 0,0308 0,0185 0,0134 0,0098 0,0077
6 А1/Т 0,0299 0,0173 0,0131 0,0101 0,0077
7 А1/Т/Т/ГКЖ 0,0316 0,0182 0,0137 0,0097 0,0077
8 А1/Т/Т/Т/ГКЖ 0,0313 0,0183 0,0135 0,0099 0,0077
9 А1/Т/Т 0,0305 0,0176 0,0133 0,0096 0,0077
10 А1/ГКЖ 0,0322 0,0185 0,0141 0,0105 0,0079
11 А1/А/Т 0,0322 0,0185 0,0139 0,0102 0,0080
12 А1 (ПАП-2) 0,0316 0,0193 0,0146 0,0112 0,0092
Созвучный вывод был получен ранее [7]. Интегральный показатель трения О в аналогичных трибосистемах уменьшается симбатно с понижением адсорбции воды на А1-добавке, коэффициент линейной корреляции для зависимости О = Ф (а) составил 0,82. Тем не менее, просто нанесение гидрофобного вещества (А или ГКЖ) на алюминий не дает серьезных результатов по снижению Гтр (см. табл. 1, образцы 4 и 10) и возрастанию водоотталкивающих свойств (~1/а) металла-наполнителя (рис. 3). Из изученных А1-добавок преимуществом обладают те, в составе поверхностного слоя которых наличествует триамон с небольшими по размеру (С1 - С2) органическими заместителями у атома азота. Это, очевидно, способствует тому, что молекулы Т относительно легко проникают в "прорехи" несовершенной стеариновой нанопленки на алюминии, наносимой в заводских условиях.
Благодаря стерической доступности атомов азота в триамоне, по нашему мнению, создаются благоприятные условия для гетероатомного взаимодействия металл-азот, а также между триамоном и внешним слоем А или ГКЖ. Перечисленные факторы способствуют стабилизации поверхностного слоя Al-добавки и усилению антифрикционного эффекта смазки с этой добавкой.
Сопоставление полученных результатов с данными испытаний в составе масла И-20 нанопорошков мягких металлов (Cu, Zn, Pb, латунь), полученных электровзрывным способом [14], показывает, что синтезированные нами Al-добавки позволяют формировать смазочные композиции с улучшенными антифрикционными свойствами со значениями f близкими по порядку величины к измеренным в работе [14]. Необычность этого факта состоит в том, что исходный дисперсный алюминий ПАП-2, строго говоря, нанопорошком не является, поскольку в его структуре есть частицы микронного размера [12]. Эффект снижения Fjp и f достигается за счет нанесенных на металл нанопленок ЧСА и ГКЖ.
Таким образом, установлено, что в гетерогенных системах в виде масла И-20 с добавкой дисперсного алюминия с модифицированной этилгидридсилоксаном поверхностью, возрастание антифрикционного эффекта системы (снижение F^ и f) происходит по мере уменьшения числа подслоев триамона от трех до одного в условиях одинаковых концентраций и дисперсности твердой добавки, механической нагрузки, природы трибологической пары и температуры эксперимента. Обнаруженное благоприятное влияние подслоя триамона на водоотталкивающие свойства Al-добавок и свойства трибосистем с их участием связывается с небольшими размерами молекулы триамона, стерической доступностью атома азота, способствующей стабилизации структуры, адсорбционных и антифрикционных характеристик поверхностного слоя металла.
СПИСОК ЛИТЕРАТУРЫ
1. Быстров Д.С., Сырков А.Г., Пантюшин И.В., Вахренева Т.Г. Антифрикционные свойства индустриального масла с присадками наноструктурированных металлов // Химическая физика и мезоскопия. 2009. Т. 11, № 4. С. 462-466.
2. Сырков А.Г. Синергетическое усиление реакционной способности алюминия в присутствии четвертичных соединений аммония на поверхности // Журнал общей химии. 2013. Т. 83, № 8. С. 1392-1393.
3. Ворончихина Л.И., Журавлев О.Е., Андрианова Е.В., Кротова Н.И. Ионные жидкости - соли пиридиния, у- и ß- пиколиния // Международный журнал прикладных и фундаментальных исследований. 2014. Вып 3-1. С. 139-140.
4. Поверхностные явления и поверхностно-активные вещества : Справочник / под ред. А.А. Абрамзона, Е.Д. Щукина. Л. : Химия, 1984. 392 с.
5. Сырков А.Г., Фадеев Д.В., Тарабан В.В., Силиванов М.О.Количественная оценка нелинейных эффектов в зависимости интегрального показателя трения трибосистемы от водоотталкивающих свойств металла-наполнителя // Конденсированные среды и межфазные границы. 2014. Т. 16, № 2. С. 215-219.
6. Хананашвили Л.М., Андрианов К.А. Технология элементоорганических мономеров и полимеров. М. : Химия, 1983. 416 с.
7. Syrkov A.G. Smart Nanoobjects. From Laboratory to Industry / ed. by K. Levine. New York : Nova Science Publishers, Inc., 2013. 214 p.
8. Трофимова Т.Н. Курс физики. М. : Издательский центр "Академия", 2010. 560 с.
9. Быстров Д.С. Наноструктурное регулирование реакционной способности и антифрикционных свойств поверхности алюминия и стали : дис. канд. хим. наук. СПб. : СПбГТИ(ТУ), 2009. 182 с.
10. Алесковский В.Б. Химия надмолекулярных соединений. СПб. : Изд-во СПбГУ, 1996. 256 с.
11. Сырков А.Г. Синергетическое изменение трибохимических свойств меди в присутствии четвертичных соединений аммония на поверхности // Журнал общей химии. 2015. Т. 85, № 6. С. 1043-1045.
12. http://www.icp.ac.ru/conferences/old/Nanochem/Kolesnikova (дата обращения 15.11.2014).
13. Сырков А.Г., Быстров Д.С., Журенкова Л.А., Вахренева Т.Г. Водоотталкивающие свойства наноструктурированных металлических порошков на основе алюминия // Цветные металлы. 2009. № 2. С. 79-82.
14. Tarasov S., Kolubaev A., Belyaev S., Lerner M. et al. Study of friction reduction by nanocopper additives to motor oil // Wear. 2002. V. 252, № 1-2. P. 63-69.
TRIBOCHEMICAL PROPERTIES OF THE HETEROGENEOUS SYSTEMS CONTAINING THE SURFACE-MODIFIED DISPERSE ALUMINIUM
Taraban V.V., Syrkov A.G, Silivanov M.O., Nazarova E.A.
National Mineral Resources University "Mining", Saint-Petersburg, Russia
SUMMARY. The priority measurings of friction coefficient (f and friction force (Ffr) are carried out for the heterogeneous systems as oil H-20 with Al-additives modified by triamon (T), alkamon and ethylhydridsiloxane according to various programs. It is reduced, with other things being equa, that introducing of triamon underlayers to Al-additives with the external chemisorpted layer of ethylhydridsiloxane lead to the decline of Ffr and fin the system as far as reduction of number of T-underlayer from three to one. It is discovered that the use of low-molecular T-underlayer in Al-additives is the thin method of regulation of value of summand (from 10.8 to 13.2 H), answerable in equation for intermolecular forces in the used tribological pair.
KEY WORDS: nanotribology, nonlinear effects, monomolecular layers surfactant, modifying of the aluminum surface, antifrictional effect, intermolecular forces, boundary friction.
Тарабан Владимир Всеволодович, кандидат физико-математических наук, доцент, Национальный минерально-сырьевой университет «Горный»
Сырков Андрей Гордианович, доктор технических наук, профессор, Национальный минерально-сырьевой университет «Горный» е-таИ: syrkovandrey@spm:.ги
Силиванов Михаил Олегович, аспирант, Национальный минерально-сырьевой университет «Горный» Назарова Елена Александровна, аспирант, Национальный минерально-сырьевой университет «Горный»