Научная статья на тему 'THE Tl9ErTe6–Tl9BiTe6 SYSTEM AND SOME PROPERTIES OF SOLID SOLUTIONS'

THE Tl9ErTe6–Tl9BiTe6 SYSTEM AND SOME PROPERTIES OF SOLID SOLUTIONS Текст научной статьи по специальности «Химические науки»

CC BY
194
132
i Надоели баннеры? Вы всегда можете отключить рекламу.
Журнал
Azerbaijan Chemical Journal
Область наук
Ключевые слова
thallium-erbium tellurides / thallium-bismuth tellurides / phase equilibria / solid solutions / crystal structure / tallium-erbium telluridləri / tallium-bismut telluridləri faza tarazlıqları / bərk məhlullar / kristal quruluş

Аннотация научной статьи по химическим наукам, автор научной работы — I. F. Mekhdiyeva, K. N. Babanly, M. A. Mahmudova, S. Z. Imamaliyeva

The phase relations in the Tl–Bi–Er–Te quaternary system on the Tl9ErTe6–Tl9BiTe6 composition area were investigated by using differential thermal analysis, X-ray diffraction, and microhardness measure-ments. Phase diagram, as well as concentration dependencies of the lattice parameters and microhard-ness, were constructed. It is established that the system is characterized by the formation of unlimited series of solid solutions with tetragonal Tl5Te3 structure type (). Obtained experimental data can be used for choosing the composition the growth of high-quality crystals of -phase which are of inte-rest like thermoelectric and magnetic materials.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Tl9ErTe6–Tl9BiTe6 SİSTEMİ VƏ BƏRK MƏHLULLARIN BƏZİ XASSƏLƏRİ

DTA, RFA və mikrobərkliyin ölçülməsi üsulları ilə Tl–Bi–Er–Te dördlü sistemində Tl9ErTe6–Tl9BiTe6 qatılıq sahəsində faza tarazlıqları öyrənilmişdir. Sistemin faza diaqramı, həmçinin kristal qəfəs parametrlərinin və mikrobərkliyin tərkibdən asılılıq qrafikləri qurulmuşdur. Müəyyən edilmişdur ki, sistemdə Tl5Te3 tipli kristal quruluşa malik olan qeyri-məhdud bərk məhlul sırası () əmələ gəlir. Alınmış təcrübi nəticələr termoelektrik və maqnit xassəli materiallar kimi böyük maraq kəsb edən -fazanın monokristallarının alınması üçün istifadə oluna bilər.

Текст научной работы на тему «THE Tl9ErTe6–Tl9BiTe6 SYSTEM AND SOME PROPERTIES OF SOLID SOLUTIONS»

AZ9RBAYCAN KÍMYA JURNALI № 2 2018 ISSN 2522-1841 (Online)

ISSN 0005-2531 (Print)

УДК 544.344.3:546.28924 THE Tl9ErTe6-Tl9BiTe6 SYSTEM AND SOME PROPERTIES OF SOLID SOLUTIONS

I.F.Mekhdiyeva, K.N.Babanly, M.A.Mahmudova*, S.Z.Imamaliyeva

M.Nagiyev Institute of Catalysis and Inorganic Chemistry, NAS of Azerbaijan * Institute of Physics, NAS of Azerbaijan

[email protected]

Received 05.02.2018

The phase relations in the Tl-Bi-Er-Te quaternary system on the Tl9ErTe6-Tl9BiTe6 composition area were investigated by using differential thermal analysis, X-ray diffraction, and microhardness measurements. Phase diagram, as well as concentration dependencies of the lattice parameters and microhard-ness, were constructed. It is established that the system is characterized by the formation of unlimited series of solid solutions with tetragonal Tl5Te3 structure type (5). Obtained experimental data can be used for choosing the composition the growth of high-quality crystals of 5-phase which are of interest like thermoelectric and magnetic materials.

Keywords: thallium-erbium tellurides, thallium-bismuth tellurides, phase equilibria, solid solutions, crystal structure.

Introduction

Complex thallium chalcogenides attracted increased interest as topological insulators [1, 2], Weyl semimetals [3] and thermoelectric materials with anomalously low thermal conductivity [4, 5]. Some of these compounds have photoconductivity and are promising for use as detectors of y- and X-ray radiation [6].

Subtelluride Tl5Te3 one of the most suitable matrix compounds for the synthesis of new ternary compounds - structural analogs and mul-ticomponent phases. According to the phase diagram of the Tl-Te system [7, 8], this compound melts congruently at 725 K and has a wide (34.5-38 at.% Te) homogeneity area. Due to the peculiarities of the crystal structure [9], Tl5Te3 has a number of ternary structural analogs [1013] which form an important class of thermoelectric materials with anomaly low thermal conductivity [14-16]. Particularly, Tl9BiTe6 shows high ZT value comparable to the state-of-the-art thermoelectric materials [14].

A new thallium lanthanide tellurides with composition Tl9LnTe6 (Ln - Ce, Nd, Sm, Gd, Tb, Tm) founded by authors of [17-19] are also ternary analogs of Tl5Te3. Authors of [1921] determined the thermoelectric properties for a number Tl9LnTe6-type compounds and showed that Tl9LaTe6 possess the highest ZT value (~0.21) at 581 K [20]. The Tl9CeTe6, Tl9PrTe6 and Tl9TbTe6 compounds also were found to be paramagnetic due to the presence of unpaired

electrons [22].

It is well known that the development of physicochemical bases for directed synthesis of new multicomponent inorganic phases is associated with fundamental research in the phase equilibria area and thermodynamic properties of the corresponding systems [23]. In this case, systems in which it is possible to expect the formation of structural analogs of known binary and ternary compounds or solid solutions based on them are the most interest.

The results of phase equilibria investigations for a number of systems including the Tl5Te3 compound or its structural analogs showed the formation of continuous series of solid solutions [24-28].

In this paper, we present the experimental results on phase equilibria in the Tl-Bi-Er-Te quaternary system on the Tl9ErTe6-Tl9BiTe6 composition area.

Experimental part

Materials and syntheses

High purity elements (Tl granules, 99.99%; Er powder, 99.9%; Bi foil, 99.999%, Te broken ingots, 99.99%), all purchased from Alfa Aesar were used for the synthesis of the Tl9ErTe6 and Tl9BiTe6 compounds. The elements were weighed to be about 10 g in total according to the molar ratio of the corresponding ternary compound, placed in silica tubes of about 20 cm in length and then sealed under a

vacuum of 10" Pa. The surface of thallium was coated by a thin oxide film, which was removed before use. To prevent a reaction between the quartz and the erbium, the syntheses of the Tl9ErTe6 was carried out in the graphitized ampoule.

The synthesis of the Tl9BiTe6 was carried out by heating of elements in one zone electric furnace at the 850 K, followed by cooling in the switched-off furnace.

The Tl9LnTe6 compounds form by peri-tectic reactions and it is difficult to achieve equilibrium [17-19]. Therefore, the obtained intermediate ingot of Tl9ErTe6 was carefully ground in an agate mortar, pressed into the circular pellet of about 8 mm in diameter and annealed at 680 K within -1000 h. The weight losses during the pellet preparation were less than 0.5 wt %.

Differential thermal analysis (DTA) and X-ray diffraction (XRD) indicated the single-phase synthesis of both compounds. DTA showed that Tl9BiTe6 melts congruently at 830 K. There are two peaks in the heating curve of Tl9ErTe6, which are relevant to the peritectic reaction at 705 K and its liquidus at 1120 K (Figure 1).

o

c,A 13.05 13.00 12.95

[I I 100

M Pa

1 one

900

T. K 1100'

1000

900

800

700

0 - C • - a

©

L+TlErTe3\ \ L ©

\ L+5—Tl ErTe, \ S

*---

TLErTe«

20

40 60

mol%TL,BiTe,l

80

TLBiTe,

Fig.1. Phase diagram of the Tl9ErTe6-Tl9BiTe6 system.

Powder XRD pattern of the Tl9BiTe6 and Tl9TbTe6 compounds were identical to that of Tl5Te3. Unit cell lattice parameters were deter-

mined from a least-squares refinement (Table).

Composition dependence of the properties for the alloys of the Tl9ErTe6-Tl9BiTe6 section of the Tl-Bi-Er-Te system

Phase Temperature of melting, K Microhardness, MPa Parameters of the tetragonal lattice, Â

a c

Tl9ErTe6 705;1120 1070 8.850 12.952

Tl9Bi0.2Er0.8Te6 720-760; 1030 1110 8.851 12.972

Tl9Bi0.4Er0.6Te6 730-790 1120 8.852 12.991

Tl9Bi0.6Er0.4Te6 750-810 1080 8.853 13.011

Tl9Bi0.8Er0.2Te6 780-820 1040 8.854 13.030

Tl9BiTe6 830 980 8.855 13.048

These are practically equal to the literature data [29] for Tl9BiTe6 and slightly differ from literature data [21] for Tl9ErTe6.

The alloys of the Tl9ErTe6-Tl9BiTe6 system were prepared by melting from pre-syn-thesized starting compounds in evacuated silica ampoules. The total mass of the ingot was 1 g. Ampoules were heated to maximal temperature 1200 K, kept at this temperature during 4 h and then cooled slowly to 680 K and kept at this temperature during 300 h. DTA and XRD analyses showed that mixtures containing >70 mol% Tl9ErTe6 were non-homogeneous after the first heating. Therefore, the samples were ground and pressed into pellets under argon and reheated in fused silica tubes at 680 K for a 500 h for the homogenization.

Methods

DTA and XRD analysis, as well as mic-rohardness measurements, were employed to analyze the samples. DTA was performed using a NETZSCH 404 F1 Pegasus system with two chromel-alumel thermocouples. The measurement was performed between room temperature and -1400 K with a heating and cooling rate of 10 K min-1. Temperatures of thermal effects were taken mainly from the heating curves. But, in some samples thermal effects were taken from cooling curves in order to determine the onset of crystallization. The overall uncertainty of the determined phase transformation temperatures was estimated to be ±1 K.

The crystal structure was studied by XRD

at room temperature on a Bruker D8 powder dif-fractometer (CuKoi-radiation) in the range 29=(10-70)°. Microhardness measurements were performed on a PMT-3 microhardness tester.

Results and discussion

The results of DTA and microhardness measurements, as well as the parameters of the crystal lattices for some intermediate alloys of the Tl9ErTe6-Tl9BiTe6 section, are given in the Table. Based on these data, phase diagram and the composition dependencies of properties are plotted (Figure 1). This section is characterized by the formation of continuous solid solutions (5-phase) with Tl5Te3-structure. However, this system is a non-quasi-binary section of the Tl-Bi-Er-Te quaternary system due to the peritectic melting of Tl9ErTe6. This leads to crystallization TlErTe2 compound in a wide

composition interval and formation L+TlErTe2 two-phase and L+TlErTe2+5 three-phase areas. The L+TlErTe2+5 area is shown by a dotted line because not fixed experimentally due to narrow temperature interval.

Microhardness measurements confirmed the phase diagram (Figure1 b). The curve of mi-crohardness has a flat maximum, which is typical for substitutional solid solutions.

The XRD powder patterns for some alloys of the Tl9ErTe6-Tl9BiTe6 section are presented in Figure 2. All intermediate samples have the same diffraction pattern typical to Tl5Te3 and differ from each other by some displacement of the diffraction patterns. The dependence of the lattice parameters of the composition obeys the Vegard's rule within the error limits.

2SDDD 21QQD 23DDD 22DDÛ 21DDD 2DDDQ 19ППП -1SDDÛ -T7DDD -16DDQ -

15DDD -

CO. ■ • HDDÛ -

О 1ЭППП -

О

^12ППЦ

С

11DDD — 1DDDÛ -ЭППП — F.aaa -TDDD -6DDD ~ SQDD -lODD — 3DDD -2П00 -1GDD —

......... hm,A*J

I

LL

TbErTw

20 mol %T№iTee

40 mol %TbBiTe«

60 mol %Т№Тк

80 mol %TkBiTe6

TbBiTM

16 20

2-Theta - Scale

Fig.2. XRD patterns for different compositions in the Tl9ErTeg-Tl9BiTe6 system.

70

Conclusion

The phase diagram of the Tl9ErTe6-Tl9BiTe6 section of the Tl-Bi-Er-Te quaternary system is constructed. This section is characterized by an unlimited solubility of components in the solid state. Obtained experimental data can be used for choosing the composition of solution-melt and to evaluate technologically parameters necessary for the growth of crystals of 5-phase of high quality which are of interest like thermoelectric materials.

Acknowledgments

The work has been carried out within the framework of the international joint research laboratory "Advanced Materials for Spintronics and Quantum Computing" (AMSQC) established between Institute of Catalysis and Inorganic Chemistry of ANAS (Azerbaijan) and Donostia International Physics Center (Basque Country, Spain).

References

1. Eremeev S. V., Koroteev Y. M., Chulkov E.V. Ternary thallium-based semimetal chalcogenides Tl-V-VI2 as a new class of three-dimensional topological insulators // JETP Lett. 2010. V. 91. P. 594-598.

2. Singh B., Lin H., Prasad R., Bansil A. Role of surface termination in realizing well-isolated topological surface states within the bulk band gap in TlBiSe2 and TlBiTe2 // Phys. Rev. B. 2016. V. 93. P. 085113-1-085113-8

3. Ruan J., Jian S.K., Zhang D., Yao H., Zhang H., Zhang S-C., Xing D. Ideal Weyl Semimetals in the Chalcopyrites CuTlSe2, AgTlTe2, AuTlTe2, and ZnPbAs2 // Phys Rev Lett. 2016. V.115. P.226801-1-226801-5.

4. Shevelkov A.V. Chemical aspects of thermoelectric materials engineering // Russ. Chem. Rev. 2008. V. 77. P. 1-19.

5. Matsmoto H., Kurosaki K., Muta H., Yamanaka S. Thermoelectric Properties of TlCu3Te2 and TlCu2Te2 // J Electr. Mat. 2009. V. 38. No 7. P. 1350-1353.

6. Johnsen S., Liu Z., Peters J.A., Song J-H., Nguen S., Malliakas C.D., Jin H., Freeman A.J., Wessels B.W., Kanatzidis M.G. Thallium chalcohalides for X-ray and y-ray detection // J. Am. Chem. Soc. 2011. V. 133. P. 10030-10033.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

7. Asadov M.M., Babanly M.B., Kuliev A.A. Phase equilibria in the system Tl-Te // Izv. Akad. Nauk

SSSR. Neorg. Mater. 1977. V. 13. No. 8. P.1407-1410.

8. Okamoto H. Te-Tl (Tellurium-Thallium). // J. Phase Equilibria. 2001. V. 21. No 5. P. 501

9. Schewe I., Böttcher P., Schnering H.G. The crystal structure of Tl5Te3 and its relationship to the Cr5B3 // Z. Kristallogr. 1989. Bd. 188. P. 287-298.

10. Gotuk A.A., Babanly M.B., Kuliev A.A. Phase equilibria in the system Tl-Sn-Te // Inorg. Mater. 1979. V. 15. P. 1062-1067.

11. Babanly M.B., Gotuk A.A., Kuliev A.A. Tl5Te3-Tl4SnTe3-Tl4PbTe3 system // Inorg. Mater. 1979. V. 15. P. 1011-1012.

12. Babanly M.B., Akhmad'yar A, Kuliev A.A. System Tl-Sb-Te. // Russ. J. Inorg. Chem. 1985. V. 30. P. 1051-1059.

13. Babanly M.B., Akhmad'yar A, Kuliev A.A. System Tl2Te-Bi2Te3-Te. // Russ. J. Inorg. Chem. 1985. V. 30. P. 2356-2361.

14. Wolfing B., Kloc C., Teubner J., Bucher E. High performance thermoelectric Tl9BiTe6 with an extremely low thermal conductivity // Phys. Rev. Let. 2001. V. 36. No 19. P.4350-4353.

15. Guo Q., Chan M., Kuropatwa B.A., Kleinke H. Enhanced Thermoelectric Properties of Variants of Tl9SbTe6 and Tl9BiTe6 // Chem. Mater. 2013. V. 25(20). P. 4097-4104.

16. Guo Q., Chan M., Kuropatwa B. A., Kleinke

H. Thermoelectric properties of Sn- and Pb-doped Tl9BiTe6 and Tl9SbTe6 // J. Appl. Phys. 2014. V. 116. P. 183702-1-183702-9.

17. Imamalieva S.Z., Sadygov F.M., Babanly M.B. New thallium neodymium tellurides // Inorg. Mater. 2008. V. 44. No 9. P. 935-938.

18. Babanly M.B., Imamalieva S.Z., Babanly D.M., Sadygov F.M. Tl9LnTe6 (Ln = Ce, Sm, Gd) compounds - new structural analogs of Tl5Te3 // Azerb. Chem. J. 2009. No 2. P. 122-125.

19. Babanly M.B., Imamalieva S.Z., Sadygov F.M. Physico-chemical interaction of the Tl and Tm(Yb) tellurides // News of Baku University. Ser. of natural sciences. 2009. No 4. P. 5-10.

20. Bangarigadu-Sanasy S., Sankar C.R., Assoud A., Kleinke H. Crystal Structures and Thermoelectric Properties of the series Tli0-xLaxTe6 with 0.2 < x <

I.15 // Dalton Trans. 2011. V. 40. P. 862-867.

21. Bangarigadu-Sanasy S., Sankar C.R., Schlender P., Kleinke H. Thermoelectric properties of Tl:0-xLnxTe6, with Ln = Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho and Er, and 0.25 < x < 1.32 // J. Alloys Compd. 2013. V. 549. P. 126-134.

22. Bangarigadu-Sanasy S., Sankar C.R., Dube P.A., Greedan J.E., Kleinke H. Magnetic properties of Tl9LnTe6, Ln = Ce, Pr, Tb and Sm // J. Alloys Compd. 2014. V. 589. P. 389-392.

23. Babanly M.B., Chulkov E.V., Aliev Z.S., Shevel'kov A.V., Amiraslanov I.R. Phase dia-

grams in materials science of topological insulators based on metal chalkogenides // Russ. J. Inorg. Chem. 2017. V. 62. No 13. P. 1703-1729.

24. Babanly M.B., Tedenac J.-C., Imamalieva S.Z., Guseynov F.N., Dashdieva G.B. Phase equilibria study in systems Tl-Pb(Nd)-Bi-Te new phases of variable composition on the base of Tl9BiTe6 // J. Alloys Compd. 2010. V. 491. P. 230-236.

25. Imamaliyeva S.Z., Gasanly T.M., Sadygov F.M., Babanly M.B. Phase diagram of the Tl2Te-Tl9TbTe6 system // Azerb. Chem. J. 2015. No 3. P. 93-97.

26. Imamaliyeva S.Z., Gasanly T.M., Gasymov V.A., Babanli M.B. Phase equilibria and some properties

of solid solutions in the Tl5Te3-Tl9SbTe6-Tl9GdTe6 system // Acta Chimica Slovenia. 2017. V. 64. P. 221-226.

27. Imamaliyeva S.Z., Gasymov V.A, Babanli M.B. Phase equilibria in the Tl2Te-Tl5Te3-Tl9SmTe6 system // The Chemist. 2017. No 1. P. 1-6.

28. Imamaliyeva S.Z., Mekhdiyeva I.F., Gasymov V.A., Babanli M.B. Phase equilibria in the Tl5Te3-Tl9BiTe6-Tl9TmTe6 section of the Tl-Bi-Tm-Te quaternary system // Materials Research. 2017. V. 20, No 4. P. 1057-1062.

29. Doert T., Böttcher P. Crystal structure of bismuth-nonathalliumhexatelluride BiTl9Te6 // Z. Kristal-logr. 1994. V. 209. P. 95.

Tl9ErTe6-Tl9BiTe6 SiSTEMi УЭ BORK MOHLULLARIN BOZi XASSOLORi

i.F.Mehdiyeva, K.N.Babanli, M.A.Mahmudova, S.Z. imamaliyeva

DTA, RFA va mikrobarkliyin ôlçûlmasi üsullari ils Tl-Bi-Er-Te dördlü sisteminda Tl9ErTe6-Tl9BiTe6 qatiliq sahasinda faza tarazliqlari ôyranilmiçdir. Sistemin faza diaqrami, hamçinin kristal qafas parametrlarinin va mikrobarkliyin tarkibdan asililiq qrafiklari qurulmuçdur. Müayyan edilmiçdur ki, sistemda Tl5Te3 tipli kristal quruluça malik olan qeyri-mahdud bark mahlul sirasi (5) amala galir. Alinmiç tacrübi naticalar termoelektrik va maqnit xassali materiallar kimi böyük maraq kasb edan 5-fazanin monokristallannin alinmasi ûçûn istifada oluna bilar.

Açar sözlar: tallium-erbium telluridlari, tallium-bismut telluridlari faza tarazliqlari, bark mahlullar, kristal qurulu§.

СИСТЕМА Tl9ErTe6-Tl9BiTe6 И НЕКОТОРЫЕ СВОЙСТВА ТВЕРДЫХ РАСТВОРОВ

И.Ф.Мехдиева, К.Н.Бабанлы, М.А.Махмудова, С.З.Имамалиева

Методами ДТА и РФА, а также измерением микротвердости изучены фазовые равновесия в четверной системе Tl-Bi-Er-Te в концентрационной области Tl9ErTe6-Tl9BiTe6. Построены фазовая диаграмма, а также графики концентрационных зависимостей параметров кристаллических решеток и микротвердостей. Установлено, что система характеризуется образованием непрерывного ряда твердых растворов замещения с тетрагональной структурой типа Tl5Te3 (5). Полученные экспериментальные данные могут быть использованы для выбора составов расплавов для выращивания монокристаллов 5-фазы, представляющих интерес как термоэлектрические и магнитные материалы.

Ключевые слова: теллуриды таллий-эрбий, таллий-висмут теллуриды, фазовые равновесия, твердые растворы, кристаллическая структура.

i Надоели баннеры? Вы всегда можете отключить рекламу.