Направляющая предназначена для придания изделию требуемого профиля гиба. Она полностью повторяет его линию и изготавливается из полосы 4х30. Крепление направляющей к плите осуществляется по средствам сварки тавровым швом с внутренней стороны. Сварка с внешней стороны не производиться, чтобы обеспечить плотное прилегание изделия к лекалу.
Центральная направляющая служит для закрепления профилированного конца заготовки. В центральной направляющей имеются два отверстия диаметром 15,5 мм, посредством которых, мега-лекало устанавливается на станок. Сварные швы в местах прилегания изделия к мега-лекалу зачищаются заподлицо с основным материалом. Все элементы изделия изготавливаются из стали 3 ГОСТ 380-71, что обеспечивает хорошую свариваемость и невысокую цену.
Использование при производстве спроектированного мега-лекала позволяет снизить стоимость производимых изделий, предать им эксклюзивный внешний вид, а значит повысить их конкурентоспособность на рынке сбыта.
Литература
1. Технология конструкционных материалов: Учебник для студентов машиностроительных специальностей вузов. 6-е изд., испр. и доп. / А. М. Дальский, Т. М. Барсукова, А. Ф. Вязов и др. -М.: Машиностроение, 2005. - 592 с.
2. Технологическое обеспечение качества [Электронный ресурс]: практикум / В. А. Макаров [и др.].— Электрон. текстовые данные.— Егорьевск: Егорьевский технологический институт (филиал) Московского государственного технологического университета «СТАНКИН», 2015.— 102 ^— Режим доступа: http://www.iprbookshop.ru/31953.— ЭБС «IPRbooks», по паролю.
3. [Электронный ресурс]: Stanki-Shop.ru Оборудование для ковки. Производители. Режим доступа: http://www.stanki-shop.ru/vendors/Ыacksmith/
The synthesis of the optical system, the model analyzer photoluminescence
Gavrilenkov V.1, Belyakov M.2, Chulakova V.3 (Russian Federation) Синтез оптической системы модели анализатора фотолюминесценции Гавриленков В. А.1, Беляков М. В.2, Чулакова В. Г.3 (Российская Федерация)
'Гавриленков Владимир Андреевич / Gavrilenkov Vladimir - кандидат технических наук, доцент; 2Беляков Михаил Владимирович / Belyakov Mikhail - кандидат технических наук, доцент, заведующий кафедрой; 3Чулакова Валентина Геннадьевна / Chulakova Valentina - студент, кафедра оптико-электронных систем, Национальный исследовательский университет (филиал) Московский энергетический институт, г. Смоленск
Abstract: the article describes the principle of construction of the device for Express analysis of the photoluminescence of a large number of bulk materials. The optimized source and the radiation detector and edge filters. The optical scheme for this device is designed in such a way that the radiation receiver will get maximum radiation flux of the photoluminescence. Presents a visual model of the analyzer. Аннотация: в статье излагается принцип построения прибора для экспресс-анализа фотолюминесценции большого количества сыпучих материалов. Подобраны оптимальные источник и приемник излучения, а также отрезающие светофильтры. Оптическая схема для данного прибора разработана таким образом, что на приемник излучения будет попадать максимальный поток излучения фотолюминесценции. Представлена наглядная модель анализатора.
Keywords: photoluminescence, analysis, analyzer, sensitivity, a radiation source, a radiation receiver, an ellipsoid.
Ключевые слова: фотолюминесценция, анализ, анализатор, чувствительность, источник излучения, приемник излучения, эллипсоид.
Fluorescent methods of analysis are used in various fields of science, technology, agriculture, etc. in the study of the structure and properties of various materials [1, 2]. Among the known methods of fluorescent analysis of photoluminescence methods is one of the leading places [3]. In the present paper the principles of construction of the optical system of the analyzer photoluminescence, intended for solution of tasks of assessment of the quality seed of various crops. The analysis of known solutions in this area shows that at the
present time to solve these problems apply spectral methods, exploring individually luminescence spectra of each seed from a large array (100 elements) with subsequent processing of results. Believing that such a method is irrational, we have developed a device (the analyzer photoluminescence), the principle of which is based on measuring the integral characteristics of the radiation stream. This method (and device) allows to detect simultaneously a large enough needed for research, the seed batch.
The solution of the problem of synthesis of optical system of the analyzer requires the following basic tasks:
1) justification of the source of ultraviolet radiation;
2) justification of the receiver of optical radiation;
3) justification of the optical system;
4) the layout of the system components.
When selecting the source of radiation is necessary, firstly, to ensure the consistency of the source spectrum and the spectral sensitivity of the seed that defines the efficiency of fluorescence excitation and, secondly, to exclude or to minimize the imposition on each other of the source spectrum and luminescence spectra of the investigated materials.
According to the technical task given the distribution of the spectral sensitivity of the studied material -seeds of wheat (Fig. 1) and the expected distribution of the emission spectrum of the luminescence. The analysis of these characteristics (Fig. 1) allows us to conclude that the sources should emit in the range of 370470 nm. The analysis of literature shows that the most suitable known sources for this task are the «UV» LEDs (e.g., LEDs type SD403), the spectral characteristics are also shown in Fig. 1.
The lack of LEDs - single low power (1-3 Watts) - can be offset by the increase in their number [4].
When choosing a detector it is necessary to harmonize the spectral sensitivity of the radiation receiver with the spectrum of luminescence of the studied objects. These conditions are satisfied, for example, selenium photodetector FES-10 and a silicon photodiode FD-7K, whose characteristics are given in table. 1.
Fig. 1. Spectral distribution of sensitivity (1) and radiation luminescence (2) of wheat seeds. The emission spectrum of the led SD403 (3)
Table 1. Characteristics of photodetectors
The dark curren t, ^A The
The type of detector Material sensitive layer Range sensitiv ity, ^m ^max fllll The volta ge, V diamete r of the sensitiv e layer, mm Sensitivit y> ^A/LK (^A/LM) Housing diameter mm
FD-7K Silicon 0,4 -1,2 1,0 < 5 30 10 0,47 19,6
FES-10 Selenium 0,40,75 0,5 7 10 (80- 600)
The spectral sensitivity of the receivers shown in Fig. 2. 1
0,9 0,3 0,7 0,6 0,5 0,4 0,3 0,2 0,1
0
350 400 450 500 550 600 650
Fig. 2. Emission Spectrum of the led Cff403 (1), radiation luminescence (2) seeds of wheat, the spectral sensitivity photodetectors photovoltaic power plant-10 (3), andFD-7K (4)
Unfortunately, the emission spectrum of the led and is superimposed on the emission spectrum of the luminescence (see Fig. 1), and the spectrum of the radiation receiver (see Fig. 2) that leads to necessity of application of the separating filters.
To separate the spectra for the purpose of allocation of a useful informative signal need two filters (see Fig. 3). Cut-off filter (1) with long wave cut-off X = 440 nm is set in front of the led it passes only the ultraviolet and shortwave visible radiation with X < 440 nm. Second, also cutting off the filter with a short wavelength boundary X = 440 nm is set in front of the radiation receiver - this filter passes only the useful signal is visible light with X > 440 nm.
Such a system of filters called crossed - it allocates and provides the contact with the receiver of radiation is an informative signal of the signal proportional to flux intensity of luminescence.
1
o,a 0,7 o,s 0,5 0,4 0,3 0,2 0,1
350 400 450 500 550 600 650
Fig. 3. Emission Spectra Cff403 (1) and of luminescence (2). Transmission spectrum of the filter UFS-2 (3) and GS-12 (4)
Literature analysis allows to recommend for this task filters type GS-12, the transmission spectrum of which lies in the visible region and UFS - 2, the transmission spectrum of which lies in the ultraviolet region [5].
In solving the problem of layout model analyzer, you must consider the following points.
1. Subject table, on which set the cuvette with the studied granular material should be placed horizontally.
2. The source (or sources) of UV radiation should be installed over the object table so that all (or at least most) of the radiant flux falling on the cell with the investigated material.
3. The luminescence flux is emitted in the upper hemisphere, diffuse. Therefore, the radiation detector should be installed above the cuvette and use optical device which collects multiple thread on its photosensitive surface.
4. The analyzer used a source of ultraviolet radiation, so the space in which applies ultraviolet radiation, must be isolated by an opaque body.
Taking into account these and other considerations suggest the following arrangement of the analyzer (Fig. 4).
The camera body has a cylindrical shape. Cuvette 5 is aligned with the focal plane of the ellipsoidal reflector and the function of the substage analyzer. The radiation receiver 2 is installed in the upper part of the chamber coaxially with the cuvette and combined with the second focal plane of the reflector parallel to the subject table. The 3 light sources (LEDs) mounted in the plane (or slightly higher) so that the flow of their radiation falling on the radiation receiver. Axis light beams of the LEDs are oriented on the axial point of the object stage. Filters (UFS-2), longwave radiation shear set in front of the LEDs; light filters (GS-12), shear-wave radiation installed in front of the radiation receiver. For collecting diffusely scattered radiation luminescence is used ellipsoidal reflector 4, in the lower focal plane of which a specimen stage, and the second focal plane of the radiation receiver.
Fig. 4. Cross Section model analyzer meridional plane: 1 - body of the analyzer; 2 - receiver; 3 - led; 4 - reflector;5 - tray; 6 - focal plane of the reflector; 7, 8 - electronic components
When adjusting the system, the radiation detector may be out of focus is displaced along the axis. Electronic components 7 and 8 and other auxiliary components are placed in the upper part of the body.
References
1. Kozina L. V., Repin E. N. Vlijanie plenok raznogo spektral'nogo sostava na rostovye i produkcionnye processy hvojnyh porod., Problemy sovremennoj nauki i obrazovanija; N 3 (21), 2014, pp. 36-46.
2. Malkin V. M., Tulina T. A. Vyjavlenie kolebatel'noj struktury spektrov ispuskanija ljuminescencii vodnyh rastvorov timina pri komnatnoj temperature, Problemy sovremennoj nauki i obrazovanija; N 2 (44); 2016, pp. 13-17.
3. Nosova D. A., Kushaeva M. A. et al. Sensibilizirovannaja ljuminescencija v primesnyh kristallah tripticena i fenantrena. // Problemy sovremennoj nauki i obrazovanija; N 1 (43); 2016, pp. 13-17.
4. PrikupecL. B. Sovremennye istochniki UF izluchenija dlja ustanovok i processov fotobiologicheskogo dejstvija. Sostojanie i perspektivy // Svetotehnika. 2004, N 4. p. 10-14.
5. Gavrilenkov V. A. Teorija i raschet opticheskih sistem: uchebnoe posobie / V. A Gavrilenkov, E. M. Starostin; pod red. V. A. Gavrilenkova. - Smolensk, RIO filiala MPEI v g. Smolenske, 2012, 120 pp.