UDC 531.383
Siberian Journal of Science and Technology. 2017, Vol. 18, No. 4, P. 910-917
THE STUDY OF THE ENGINE-FLYWHEEL HOUSING MADE BY ADDITIVE TECHNOLOGY
D. V. Ermakov
JSC "Scientific & Industrial Centre "Polyus" 56в, Kirov Av., Tomsk, 634050, Russian Federation E-mail: [email protected]
The first commercial equipment for additive technology production with 3D-printing was made more than 30 years ago.
In the mid 90-ies 3D-printing was used mainly in research activities. The wide spread of digital technology in the field of design, modeling, calculations and machining stimulated a rapid development of additive technology.
To evaluate the application of the parts printed on a 3D-printer, there was conducted a research of the design of the reaction wheels engines. On the basis of the pre-designed 3D-model there were made two housings ofpowder materials -alloys АК9Ч and AlSilOMg were constructed. The analysis of the stability of the geometry of the engine housings to thermal effects, susceptibility to mechanical loads in the model layout of the engine-flywheel was conducted. Outgassing in vacuum was defined and the microstructure of additively manufactured materials was researched.
Test results proved the possibility of application of the additively manufactured housing made of selected alloys with sufficient mechanical strength in the composition of the engine-flywheel.
There is obviously a need to continue the studies on the properties of materials used in additive technologies in order to compile a list of materials with their properties and application characteristics in the design of the engine-flywheel.
Keywords: additive technology, post processing, detail, engine-flywheel, mechanical load, outgassing
Сибирский журнал науки и технологий. 2017. Т. 18, № 4. С. 910-917
ИССЛЕДОВАНИЕ КОРПУСА ДВИГАТЕЛЯ-МАХОВИКА, ИЗГОТОВЛЕННОГО ПО АДДИТИВНОЙ ТЕХНОЛОГИИ
Д. В. Ермаков
АО «Научно-производственный центр «Полюс» Российская Федерация, 634050, г. Томск, просп. Кирова, 56в E-mail: [email protected]
Первые коммерческие разработки оборудования, позволяющего изготавливать изделия по аддитивной технологии методами 3D-печати, появились более 30 лет назад.
Еще в середине 90-х годов трехмерная печать использовалась главным образом в научно-исследовательской деятельности. Широкое распространение цифровых технологий в области проектирования, моделирования расчетов и механообработки стимулировало взрывной характер развития аддитивной технологии.
Для оценки применения деталей, напечатанных на 3D-принтере, в конструкции двигателей-маховиков проведена исследовательская работа. По предварительно спроектированной 3D-модели изготовлены два корпуса из порошковых материалов - сплавов АК9Ч и AlSi10Mg. Проведен анализ стойкости геометрии корпусов к температурным воздействиям, восприимчивости к механическим нагрузкам в составе макета двигателя-маховика, определено газовыделение в условиях вакуума, исследована микроструктура аддитивно полученных материалов.
По результатам испытаний сделано заключение о возможности применения 3D-корпусов из выбранных сплавов с достаточной механической прочностью в составе прибора. Сделан вывод о необходимости дальнейшего изучения свойств материалов, применяемых в аддитивной технологии, для составления перечня материалов с указанием их свойств и особенностей применения в конструкции двигателей-маховиков.
Ключевые слова: аддитивная технология, постобработка, деталь, двигатель-маховик, механическая нагрузка, газовыделение.
Introduction. The object of the study is an additive technology, used in the manufacture of engine-flywheels parts for the systems of orientation and stabilization of
spacecrafts. The subject of research is additively manufactured engine housings made of Russian powder material AK9^ and its foreign counterpart AlSilOMg [1-4].
Work description. On the basis of pre-designed 3D-model two housings were made on 3-D printer of alloys AK9^ and AlSilOMg (fig. 1). Casual housing is made of aluminium rolling brand AMg6 GOST 21488-97.
To evaluate the performance of the studied housings the following program of works was composed:
- mechanical processing on accordance to the drawing;
- control of dimensions according to the drawing;
- check of gassing in accordance with the requirements of the materials used in engine-flywheels, GOST R50109-92;
- the impact of temperature of +60 and -60 °C;
- control dimensional stability on accordance to the drawing;
- analysis of the microstructure of the alloys;
- testing the mechanical strength of the housing with the installed load, simulating the weight of the electronics and the electric motor.
The results of the tests should show whether the housings possess the sufficient mechanical strength, resistance
to temperature changes; the value of outgassing in vacuum also must be determined.
It should be noted that the housings were printed at different angles to the main setting surface adjacent to the spacecraft (fig. 2). This is reflected in the amount of required technological support (the support surface for forming planes that are in suspended state), and subsequently on the post-processing of the case.
Support of the housing of the alloy AlSi10Mg was insignificant; it was removed using the special machining tool (fig. 3) [5; 6]. Then the body was subjected to sandblast treatment, which completed the process of rough post-processing, and then machined using universal equipment to conform to the drawing.
Due to the massive support of the housing from the alloy AK9^ from the beginning were used the universal machines for removal. This made it possible to combine the removal of the support (fig. 4) and machining of surfaces to meet the requirements of the drawing, which ultimately reduced the production cycle of the housing.
b
Fig. 1. 3D model of engine housing (a), printed housings made of alloys АК9Ч (b) and AlSilOMg (c) Рис. 1. 3D-модель корпуса (а), напечатанные корпуса из сплавов АК9Ч (б) и AlSilOMg (в)
Fig. 2. 3D model of engine housing made of alloys АК9Ч (a) and AlSilOMg (b) with the support surface Рис. 2. 3D-модель корпусов из сплавов AlSilOMg (а) и АК9Ч (б) с поддержкой
Fig. 3. Special machining tool for removing the support of the housing made of the alloy AlSilOMg Рис. 3. Инструмент для удаления поддержки корпуса из сплава AlSilOMg
а
с
а
Fig. 4. Housing from the alloy АК9Ч at the stage of support removal Рис. 4. Корпус из сплава АК9Ч в процессе снятия поддержки
After removing the support and monitoring of the geometry of housings for compliance with the drawing the surfaces not subjected to post-processing were measured. All dimensions meet the drawing, which indicates repeatability of the geometry of engine housings in 3D printing.
Thus, we can conclude: the manufacture of details of precision mechanics by means of additive technologies requires a minimal of finishing post-processing. Therefore, when creating 3D models in CAD, you must set allowances taking into account the subsequent mechanical surface treatment to the required dimensions and choose the optimal variant of the support when printing on a 3D printer [7; 8].
To reduce the impact of increased gassing in vacuum conditions from the materials that are sensitive to the influence of its own external atmosphere, in the design of engines-flywheels must be used the materials that in accordance with GOST R 50109-92 have total mass loss of not more than 1 % and the content of volatile condensable substances is not more than 0.1 %, and the residual outgassing in the vacuum pressure chamber of engine-flywheel, where the low pressure is supported.
The residual outgassing in vacuum chamber was defined at the low pressure 1.33-10 -1.33-10-2 Pa (10-310-4 mmHg) and the temperature (80 ± 3) °C during 48 hours and in accordance with GOST R 50109-92.
The residual outgassing in vacuum chamber is calculated:
AP = P3 - Pn,
where P3 - is the pressure in a loaded chamber, Pa; Pn - is the pressure in an unloaded chamber, Pa.
Then it comes to the volume V2 =1 l using the formula:
P2 = APVj/ V2 ,
where P2 - given volume in the finished item, Pa; V -chamber volume, l; V2 - volume of the finished item, l.
The results of outgassing are supplied at tab. 1 and 2.
Table 1
The residual outgassing in vacuum chamber
Housing material data
AMg6 0.25
АК9Ч 0.48
AlSi10Mg 0.90
construction of engines-flywheels of non-hermetic character in the construction of the spacecraft.
Table 2
Outgassing in accordance with GOST R 50109-92
Housing material Mass loss, % Condensing volatiles, %
AMg6 0.0 0.0
АК9Ч 0.0 0.0
AlSi10Mg 0.0 0.0
Housings made by additive technology meet the requirements for outgassing for the materials used in the
After the control of outgassing the housings were subjected to temperature exposure +60 and -60 °C (three cycles). The dwell time at each temperature was 2 hours, excluding the time of its setting.
Control of the geometry of the housings after these exposures showed no deviation relative to initial values. Consequently, the housings have sufficient vitality to temperature effects and can be recommended for the usage in the construction of the engines-flywheels of the spacecrafts.
Analysis of the microstructure of the alloys showed that it is mainly a mixture of aluminium and silicon. However, on the photographs of the microstructure the grains of primary aluminum, crystallizing in the first hypoeutectic alloys are not clearly observed [9]. While the silicon inclusions have predominantly spherical shape in comparison with the conventional lamellar cast structure (fig. 5). The hardness of the housings made of alloys system Al-Si has the extremely high value (HB 110 in the initial state and HB 107 after annealing at temperature 320 °C). Possible reasons for these differences lie in non-equilibrium conditions of crystallization and cooling, which are the feature of additive technologies.
The results of the preliminary calculation. Before the full-scale tests of the layout model of the engine-flywheel on a vibration stand the model with the defined parameters of the studied housings with mounted loads, simulating the weight of the electric motor 1 and controlling electronics 2 for mechanical calculation was prepared (fig. 6) [10; 11].
When designing the mathematical model the mechanical properties of the materials of the housings were taken the same as the alloys AlSi10Mg and AK9^ are interchangeable.
As the joints of details was selected the global contact, in the result while constructing the final elemental model we obtained a joint mesh (fig. 7) [12; 13]. Mount housing
set by the parameter "fixed geometry" for main setting surface.
The results of a modal analysis of the housings confirmed the absence of resonant frequencies below 100 Hz, which meets the general requirements for the design of engine-flywheels. The first resonant frequency of the model is 476.64 Hz.
Analysis of the response of housings to random broadband vibration (RBV) conducted to determine their resistance to external influence and identify areas of maximum stress concentration. The study was performed along three mutually perpendicular axes: in the direction
perpendicular to the setting plane (along axis OZ) and in directions parallel to it (along the axes OX and OY).
The loads were selected from the condition of passing the preliminary and qualification of the engine-flywheels.
For comparison, tab. 3 shows the safety factors of the housings made of AK9^ and AlSi10Mg alloys and a standard housing of AMg6 alloy.
The results of full-scale tests. After performing the preliminary calculations of the layout model we produced simulators of the electric motors and service electronics (fig. 8) for installation on a 3D body.
Fig. 5. Microstructure of alloys system Al-Si made by 3D-printing Рис. 5. Микроструктура сплавов системы Al-Si, полученных 3D-печатью
Fig. 6. Analyzed 3D-model Рис. 6. Расчетная 3D-модель
Fig. 7. Finite-element 3D-model Рис. 7. Конечно-элементная 3D-модель
Table 3
The calculated values of the safety factors
The mean quadratic value of acceleration, g The direction of action Material The reserve coefficient K3
on yield stress on strength limit
17 along axis OZ АК9Ч/ AlSilOMg l.27 l .25
AMg6 2.49 3.32
along axis OX АК9Ч/ AlSilOMg l.Ol O.99
AMr6 2.O 2.68
along axis OY АК9Ч/ AlSilOMg O.99 O.97
AMg6 l .98 2.64
12 along axis OZ АК9Ч/ AlSilOMg l .89 l .85
AMg6 3.5l 4.7
along axis OX АК9Ч/ AlSilOMg l .58 l .55
AMr6 3.l2 4.l5
along axis OY АК9Ч/ AlSilOMg l.4 l .37
AMg6 3.O3 4.O4
Fig. 8. 3D-model (а) and layout model for mechanical testing (b) Рис. 8. 3D-модель (а) и макет для механических испытаний (б)
Fig. 9. The scheme of installed on the layout sensors Рис. 9. Схема установки датчиков на макете
а
■ •у * и MM J ПМЯ
i
* 1.1 1«1S
\
ш
1 \
/
I
I \д
J / А v\
\
\
! \
V w
Ш ЯРО » » И то t \ t \ Н IWC ft «и яохч
b
Fig. 10. Search results of resonances along the axis OX before the vibration effect (а); after the vibration effect (b)
Рис. 10. Результаты поиска резонансов вдоль оси OX до воздействия вибрации (а); после воздействия (б)
b
Fig. 11. Search results of resonances along the axis OY before the vibration effect (а); after the vibration effect (b)
Рис. 11. Результаты поиска резонансов вдоль оси OY до воздействия вибрации (а); после воздействия (б)
b
Fig. 12. Search results of resonances along the axis OZ before the vibration effect (a); after the vibration effect (b)
a
a
а
Рис. 12. Результаты поиска резонансов вдоль оси О1 до воздействия вибрации (а); после воздействия (б)
Fig. l3. Damages of housings made of AK94 (а) and AlSilOMg alloys (b) Рис. l3. Повреждения корпусов из сплавов АК9Ч (а) и AlSilOMg (б)
The full-scale tests on the response of housings to random broadband vibration (RBV) were carried out in two stages according to the requirements for acceptance and qualification testing.
The tests were carried out alternately in each of three mutually perpendicular directions with the installed on the model sensors (fig. 9) in the following order [14; 15]:
- search for resonant frequencies of structural elements;
- loading of random broadband vibration (RBV);
- search for resonant frequencies of structural elements.
The results of full-scale tests on the axes of the model
at the stage of preliminary tests are presented on graphs (fig. 10-12).
The full-scale tests on the response of housings to random broadband vibration (RBV) during the qualification tests confirmed the results of the preliminary mechanical analysis of the mathematical model: housings made of AK9^ and AlSi10Mg alloys are unstable to the selected load values, and will deform in the most loaded areas (fig. 13).
The check of the full-scale model on a vibration stand not only showed the adequacy of the preliminary analysis of a mathematical model but also proved the correctness of the choice of properties of additively manufactured materials that is proved by the nature of the deformation on the housings.
Conclusion. The porosity between the printed layers is higher than in one layer of rolling. This should be considered when choosing the location of the workpiece in the print chamber. The content of pores is less than 1 % in the transverse and longitudinal directions and the pores are about the same size and geometry, which demonstrates the high quality of the sintering.
Housings made of AK9^ and AlSi10Mg alloys by means of additive technology can be recommended for use in the construction of the engine-flywheels of unpres-surized form while reducing the demands of the susceptibility of the structure to mechanical loads.
However, having chosen an alloy that meets the requirements for materials used in the design of the engine-flywheels; it is possible to use additive technology for
manufacturing the parts without the reduction of these requirements. So, when adding titanium carbide in the alloys of the studied housings, the reserve coefficient is increased in 1.5-2 times.
Thus, the samples obtained by laser sintering can be used for the manufacture of parts while maintaining properties similar to the properties of their prototypes, made by means of traditional technology.
There is obviously a need to continue the studies on the properties of materials used in additive technologies in order to compile a list of materials with their properties and application characteristics in the design of the engine-flywheel construction.
References
1. Official site of Boeing company. Available at: http:// www.boeing.com/features/2016/08/record-books-08-16.page (accessed: 06.10.16).
2. Official site of SpaseX company. Available at: http:// www.spacex.com/news/2014/07/31/spacex-launches-3D printed-part-space-creates-printed-engine-chamber-crewed (accessed: 06.10.16).
3. Balyakin A. V., Smelov V. G., Chempinskiy L. A. [Additive technology application details of combustion]. Vestnik Samarskogo gosudarstvennogo aerokosmiches-kogo universiteta. 2012, No. 3 (34), P. 458.
4. Samara University scientists for the first time "printed" on a 3D printer the combustion chamber of a gas turbine engine. Available at: http://www.ssau.ru/ news/ 12978-Uchenye-Samarskogo-universiteta-vpervye-napechatali-na-3Dprintere-kameru-sgoraniya-gazoturbinnogo-dvigatelya/ (accessed: 06.10.16).
5. Lysych M. N., Shabanov M. L., Romanov V. V. [Sphere of technologies 3D printing]. Sovremennye nau-koemkie tekhnologii. 2014, No. 12, P. 345.
6. Tokarev B. E., Tokarev R. B. [Technology analysis of 3D printing market: two years later]. Naukovedenie. 2016, Vol. 8, No. 1. DOI: 10.15862/28EVN116.
7. Merkin D. R. Giroskopicheskie sistemy [Gyroscopic systems]. Moscow, Phizmatgiz, Nauka Publ., 1974, 356 p.
8. Ishlinskij A. J. Mehanika giroskopicheskih system [Mechanics of gyroscopic systems]. Moscow, AN SSSR Publ., 1963, 327 p.
9. Ticshenko O. F. Elementy pribornyh ustrojstv [Element of instrument devices]. Moscow, Vycshaja shkola Publ., 1978, 384 p.
10. Afanasev V. A. Eksperimentalnaya otrabotka le-tatelnich apparatov (The experimental testing of aircraft). Moscow, MAI Publ., 1994, P. 3.
11. Egorov Y. P., Lozinskii Y. M., Hvorova I. A. Materialovedenie. Tomsk, Tomskii politechniheskii uni-versitet. Publ., 2009. 219 p.
12. Pervickij J. D. Raschet i konstruirovanie tochnyh mehanizmov [Calculation and design exact machinery]. Moscow, Vycshaya shkola Publ., 1976, 456 p.
13. Birger I. A., Shorr B. A., Iosilevich G. B. Raschet na prochnost' detaley machin [Calculations details of machines on durability]. Moscow, Mashinostroenie Publ., 1979, 702 p.
14. Perchanok B. H. Ustranenie vibratsii elek-tricheskikh mashin [Elimination of vibration in electric machines]. Leningrad, Energiya Publ., 1979, 200 p.
15. Shubov I. G. Shum i vibratsiya elektricheskikh mashin [Din and vibration of electrical machines]. Leningrad, Energiya Publ., 1973, 259 р.
Библиографические ссылки
1. Официальный сайт компании Boeing [Электронный ресурс]. URL: http://www.boeing.com/features/ 2016/08/record-books-08-16.page (дата обращения: 06.10.16).
2. Официальный сайт компании SpaseX [Электронный ресурс]. URL: http://www.spacex.com/news/ 2014/07/31/spacex-launches-3Dprinted-part-space-creates-printed-engine-chamber-crewed (дата обращения: 06.10.16).
3. Балякин А. В., Смелов В. Г., Чемпинский Л. А. Применение аддитивных технологий для создания деталей камеры сгорания // Вестник Самар. гос. аэрокосмич. ун-та. 2012. № 3 (34). С. 458.
4. Ученые Самарского университета впервые «напечатали» на 3D-принтере камеру сгорания газотурбинного двигателя : офиц. сайт НИ СГАУ [Электронный ресурс]. URL: http://www.ssau.ru/ news/12978-Uchenye-Samarskogo-universiteta-vpervye-napechatali-na-3Dprintere-kamem-sgoraniya-gazoturbinnogo-dvigatelya/ (дата обращения: 06.10.16).
5. Лысыч М. Н., Шабанов М. Л., Романов В. В. Области применения технологий 3D-печати // Современные наукоемкие технологии. 2014. № 12. С. 345.
6. Токарев Б. Е., Токарев Р. Б. Анализ технологий рынка 3D-печати: два года спустя // Науковедение : интернет-журнал. 2016. Т. 8, № 1. DOI: 10.15862/ 28EVN116 (дата обращения: 06.10.16).
7. Меркин Д. Р. Гироскопические системы. М. : Физматгиз : Наука, 1974. 356 с.
8. Ишлинский А. Ю. Механика гироскопических систем. М. : Изд-во АН СССР, 1963. 327 с.
9. Тищенко О. Ф. Элементы приборных устройств. М. : Высш. шк., 1978. 384 с.
10. Афанасьев В. А. Экспериментальная отработка летательных аппаратов. М. : МАИ, 1994. 345 с.
11. Егоров Ю. П., Лозинский Ю. М., Хворова И. А. Материаловедение : учеб. пособие. 3-е изд. Томск : Изд-во Том. политехн. ун-та, 2009. 219 с.
12. Первицкий Ю. Д. Расчет и конструирование точных механизмов. М. : Высш. шк., 1976. 456 с.
13. Биргер И. А., Шорр Б. А., Иосилевич Г. Б. Расчет на прочность деталей машин : справочник. 3-е изд., перераб. и доп. М. : Машиностроение, 1979. 702 с.
14. Исаакович М. М., Клейман Л. И., Перчанок Б. Х. Устранение вибрации электрических машин. Л. : Энергия. Ленингр. отд-ние, 1979. 200 с.
15. Шубов И. Г. Шум и вибрация электрических машин. Л. : Энергия, 1973. 259 с.
© Ermakov D. V., 2017