Sons, 1969. USA.
2. Rogachev N. V, Fedorov V.A. Primary treatment of wool. “Light Industry”, Moscow, 1967 (in Russian).
3. Gusev V.E. Raw materials for wool and non-woven products and primary treatment of wool, 1977 (in Russian).
4. Simpson W. S., Crawshaw G.H. Wool: Science and technology, The Textile Institute. “Woodhead Publishing Limited”, Cambridge, England, 2002. ISBN 1855735741.
5. Cristoe J. R. Entanglement and wool scouring, Proceedings of the 2nd China Wool Textile Conference. April 15-17, 1998. Xian, China.
6. Sharma C. S. and Purohit K. Theory of Mechanisms and machines, Prentice-Hall of India Private Limited, New Delhi, 2006.
7. Kempe A. B. How to draw a straight-line mechanisms, “MacMillan and Co”, London, 1877.
8. Eugene S. Ferguson Kinematics of mechanisms from the time of Watt, “Smithsonian Institution”, Washington DC, 1962.
9. Hrones J. A. and Nelson G. L. Analysis of four bar linkage: Its application to the synthesis of the mechanisms, The Technology Press of the Massachusetts Institute of Technology, 1951.
10. Hartenberg R. S. and Denavit J. Kinematic synthesis of linkages, McGraw-Hill Book Company, United States of Amerika, 1964.
The spectral characteristics of oilseed, fodder and vegetable plants seeds reflection Belyakov M. (Russian Federation)
Спектральные характеристики отражения семян масличных, кормовых и овощных растений Беляков М. В. (Российская Федерация)
Беляков Михаил Владимирович /Belyakov Mikhail - кандидат технических наук, доцент,
заведующий кафедрой, кафедра оптико-электронных систем,
Национальный исследовательский университет Московский энергетический институт (МЭИ) (филиал), г. Смоленск
Abstract: we investigated the spectral characteristics of reflection oilseed, fodder and vegetable plants in the visible and near UV and IR ranges. A comparative evaluation. Аннотация: исследованы спектральные характеристики отражения масличных, кормовых и овощных растений в видимом и ближнем УФ и ИК диапазонах. Дана их сравнительная оценка.
Keywords: reflection spectra, the seeds of oilseeds, fodder and vegetable plants.
Ключевые слова: спектры отражения, семена масличных, кормовых и овощных растений.
While developing the methodologies and systems of diagnostics of quality indicators of seeds of plants it is necessary to study their spectral characteristics of reflection. Plant seeds are opaque to radiation of the optical range (transmittance x^=0), so the measured dependence p(X) can qualitatively judge the absorption of radiation by a layer of seeds. It is advisable to assess the reflective properties of opaque object in comparison with an ideal diffuse scatterer under the same conditions of illumination and observation. Aperture
39
measurements spectral reflectance was performed on a diffraction spectrophotometer «Spekol 10» with the use of the prefix Rd/0.
Seeds studied, placed in the cell in multiple layers to eliminate the effect of the walls of the specimen chamber, was covered with diffuse photometric ball. The radiation detector was installed at an angle of about zero degrees to the normal - photometric diagram «diffuse/0».
To determine the spectral characteristics of the reflection layer of the seeds was consistently measured the aperture reflection coefficients for wavelengths in the range 350 to 850 nm with a step of 10 nm. Control of seed moisture. For each type of seed the experiment was repeated at least five times [1].
Measured seed oil (sunflower), forage (clover, rape, galega, amaranth) and vegetables (pumpkin, zucchini) crops. Seed moisture was 10...14 %. The measurement results for sunflower in the shell and without the shell are presented in Fig.1.
From figure 1 it is seen that the layers of seeds have different spectral reflection characteristics. The sunflower seeds without the shell, the reflection coefficient is much higher than that of seeds in the shell, as in-shell seeds have a dark color, and without light. The seeds in the shell, the reflection coefficient is almost identical in all spectral regions, whereas, in seeds without the shell it changes from short wave to long-wave part of the spectrum on 73 % (25-98 %).
Also measured the aperture reflection coefficient of forage crops, which include clover, rape, galega (goat's Rue) nesterilizovanny and amaranth (Fig. 2).
Of figure 2. it is seen that layers of seeds specified humidity have similar spectral characteristics of reflectance in the visible and near UV and IR regions of the spectrum. Then with increasing wavelength and increases the proportion of reflected radiation.
Fig. 1. Spectral characteristics of reflection of oilseeds:
1 - sunflower seeds without the shell, 2 - the sunflower seeds in the shell
40
Fig. 2. Spectral characteristics of reflection offodder plants: 1 clover, 2 - galega, 3 - amaranth 4 - the rape
For different seeds, this increase begins at different wavelengths: from 470 nm from clover to 620 nm at amaranth. In the long-wave region of the spectrum becomes more noticeable quantitative difference of the reflection coefficients. Almost all forage crops curves are in the range of 5-75 %, in clover, in which the reflection coefficient reaches 97 %. This is because the seeds of fodder crops mostly dark.
Just measured the aperture reflection coefficient of vegetable crops: pumpkin in shell, without shell pumpkin and zucchini in the shell (Fig. 3).
As shown in figure 3, the layers of seeds in vegetable crops have similar spectral characteristics of reflectance in the visible and near UV and IR regions of the spectrum. They also have the largest reflectivity among all the studied crops, reaching almost to 100 %, because they have light color and their shell is covered with a highly reflective film. If you take the reflection of the seeds without the shell, the result is far less to 70 %, as well as many other cultures.
100 90 80 70 60 50 40 30 20 10
350 400 450 500 550 600 650 700 750 800 850
Fig. 3. Spectral reflection characteristics of seeds of vegetable crops:
1 - pumpkin in the shell 2 - squash in the shell, 3 - without a pumpkin shell
41
Let us consider in more detail the effect of the presence of the shell on the spectral reflectance. To do this, compare the appropriate dependencies for sunflower seeds and pumpkin. From figures 1 and 3 shows that the reflectance of sunflower seeds without the shell more than it. This is due to the dark color of the seed coat. And the reflection coefficient at the pumpkin seeds in the shell is higher than that of seeds without it. This can be explained by the fact that vegetable crops in this case, the shell is slightly lighter than seeds, so it is covered with a reflective film, and sunflower seeds are lighter than the wrapper, so the reflection coefficient is higher in seeds without the shell. The pumpkin seeds in the shell reflectance in long-wavelength region is nearing 100 percent. If we compare vegetable crops, it is seen that the dependence of the pumpkin is higher than that of zucchini.
References
1. Башилов А. М., Беляков М. В. Спектральные характеристики люминесценции и отражения семян агрокультур. - М.: ФБГНУ ВИЭСХ, 2016. - 288 с.
User authentication based network analysis of computer handwriting Sapiev A. (Russian Federation)
Аутентификация пользователей сети на основе анализа компьютерного почерка Сапиев А. З. (Российская Федерация)
Сапиев Азамат Заурбиевич / Sapiev Azamat - кандидат экономических наук, доцент, кафедра информационной безопасности и прикладной информатики, факультет информационных систем,
Майкопский государственный технологический университет, г. Майкоп
Аннотация: статья посвящена развитию методов аутентификации
пользователей сети на основе анализа компьютерного почерка. Предлагается модель идентификации пользователей распределенных информационных систем по клавиатурному почерку. Данная модель основана на использовании математического аппарата теории нечетких множеств и теории вероятностей.
Abstract: the article is devoted to the development of methods for authenticating users on the network based on a computer analysis of handwriting. A model of user identification distributed information systems keyboard handwriting. This model is based on the mathematical apparatus of the theory offuzzy sets and probability theory.
Ключевые слова: идентификация, биометрические характеристики,
аутентификация, клавиатурный почерк, модель идентификации.
Keywords: identification, biometrics, authentication, keyboard handwriting, model identification.
Ставшая всеобъемлющей концепция распределенных вычислений, объединяющая технологию клиент-сервер и Интернет, породила массу проблем. Оказалось, что стандартные методы идентификации устарели, проблема, в частности, состоит в том, что общепринятое разделение методов контроля физического доступа и контроля доступа к информации более несостоятельно.
Для решения такой проблемы нужны совершенно новые подходы, необходимо применять методы идентификации, которые не работают в отрыве от их носителя. Главной целью такой идентификации является создание такой системы
42