Научная статья на тему 'THE SHARP UPPER BOUND FOR RE(A 3-λA 2) IN U' α'

THE SHARP UPPER BOUND FOR RE(A 3-λA 2) IN U' α Текст научной статьи по специальности «Математика»

CC BY
72
24
i Надоели баннеры? Вы всегда можете отключить рекламу.
Журнал
Проблемы анализа
WOS
Scopus
ВАК
MathSciNet
Область наук

Аннотация научной статьи по математике, автор научной работы — Naraniecka I.

In this note we determine the exact value of max Re(A 3 — λA 2), λ ∈ R, within the linearly invariant family U' α introduced by V. V. Starkov in [4]. For λ = 0 the sharp estimate for |A 3| follows. If α = 1 the corresponding result is valid for convex univalent functions in the unit disk.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «THE SHARP UPPER BOUND FOR RE(A 3-λA 2) IN U' α»

Trudy Petrozavodskogo gosudarstvennogo universiteta

Seria “Matematika” Vypusk 15, 2009

UDK 517

THE SHARP UPPER BOUND FOR K(A3 - AA2) IN U'a

I. Naraniecka

In this note we determine the exact value of max Re(A3 —

AA2), A e R, within the linearly invariant family U4 introduced by V. V. Starkov in [4]. For A = 0 the sharp estimate for |A3| follows. If a =1 the corresponding result is valid for convex univalent functions in the unit disk.

1. For given a > 1, we consider the class of holomorphic functions in the unit disk D = {z : |z| < 1} of the form

f (z) = z + A2Z2 + A3Z3 + ... (1)

which are defined by the formula

f '(z)=expj-2^ log(1

2n

---it y

— ze

d^(t))\ , (2)

where ^(t) is a complex function of bounded variation on [0, 2n] satisfying the conditions

f‘ 2n f‘ 2n

/ d^(t) = 1, / |d^(t)| < a. (3)

J 0 J 0

The class Ua has been introduced by Starkov in [4]. The idea of studing such a class is justified by at least two facts:

1) The class Ua appears to be a linearly invariant family in the sense of Pommerenke of order a, and can be used for studing the universal invariant family Ua [3].

2) The class U'a generalizes essentially the class Vk=2a of functions with bounded boundary variation (Paatero class ) and in the sequel convex univalent functions K = U[.

© I. Naraniecka, 2009

In [5] V. V. Starkov has found sharp bound for |A3| within the class U'a which disproved the Campbell-Cima-Pfaltzgraff conjecture about max | A31 in Ua.

In this note we determine

max Re (A3 — AA2), (4)

f eu'a

for real A, which as a corollary (A = 0) gives the above result of Starkov.

Justification of studing such a functional is highly motivated by corresponding result for the class of univalent functions S [2] (Bombieri Conjecture). As a method we are going to use is the variational method of Starkov for U'a [5].

2. Problem of finding (4) is equivalent to

max Re (C2 — ACi), A G R, (5)

f eua

where f'(z) = 1 + C1z + C2z2 + ..., f G Ua.

Because J(f) = Re (C2 — AC1) is a linear functional, then according to a result of Starkov [4] the extremal function f0(z) is of the form

f0(z) = (1 — ze-it1 )-2ai (1 — ze-it2)-2“2, (6)

where

ti, t2 G [0, 2n] (7)

and

ai + a2 = 1 and |ai | + |«21 = a. (8)

One cand find that the coefficients of f0 are given by

c2

ci = 2(aie itl + a2e it2), C2 = ^ + aie 2itl + a2e 2it2. (9)

Therefore the problem is reduced in finding the maximal value of

^(ai, a2; ti, t2) = R^2 [aie-itl + a2e-it2]2 + [aie-2itl + a2e-2it2]

—2A [aie-itl + a2e-it2]}

where ti, t2, ai, a2 are satysfying the conditions (7) and (8) Moreover same extra conditions follow from the extremality of f0 [4] (see below). We will start with simple technical lemma.

Lemma 1. If ai = |а1|ei^1 and a2 = |a2|e®^2 and

ai + a2 — 1

|«i | + |a21 = a > 1

then

|ai|

sin ^2

sin(^2 — A) ’

|a2 |

— sin ^i

sin(^2 — ft) '

(11)

(12)

Moreover, ft and ft satisfy the condition

ft + ft ft — ft + ft + ft a — 1

i-----------= a cos------------------•<=> tan — tan — =--------------------------

2 2 a +1

A. (13)

22 Proof. The system (11) can be written in the real form:

|ai | cos ft + |a21 cos ft = 1 |ai | sinft + |a21 sinft =0 |ai | + |a21 = a.

Solution of the first two equations by Cramer’s rule is unique and given by (12). (If sin(ft — ft) = 0 then the above system has no solution).

Substitution of (12) into the equation |ai| + |a2| = a gives (13) after slight calculations.

The following lemma plays important rule.

Lemma 2. The extremal function f0 for functional (5) has real coefficient ci .

Proof. If f0 g Ua is an extremal function, then for any e G (0,1), the following variation f£ of f belongs to Ua:

fe(z)

(f0(s))i-£ (f0(s))£ds

0

1 + ci(e)z + C2(e)z2 + ... G Ua.

(14)

But

c2(e) — Aci(e) = c2 — 2ieIm c2 + e(1 — e)(|ci|2 — Re ci) — A(ci — 2ieIm ci) = (c2 — Aci) — 2ieIm c2 + 2iAeIm ci + e(|ci|2 — Re ci) + o(e)

which implies

J(fe) = J(f0) + e(|ci|2 — Re c2) + Re o(e).

The extermality of f0: J(fe) < J(f0), when e ^ 0, gives the condition |ci|2 — Re c2 < 0 which implies Im ci = 0, due to the form of our functional (5).

. If Im [aie-itl + a2e-it2] = 0 then either: both e-itl and e-it2 are real, or e-it2 = eJtl = e-itl.

Denote:

0^-0 V/a2 — 1

cos p = —, sin p = -,

aa

3 — a2 . 3%/ a2 — 1

cos f = -------- , sin f =

(15)

ti/a2 + 3’ a%/ a2 + 3

t = p + f, x = t + p

We have:

Theorem 1. If f g U'a and f'(z) = 1 + ciz + c2z2 + ... then

max Re(c2 — Aci) = $(t0) feua / \ /

where

$(t) = a2 + (3 — a2) cos 2t + 3\Ja2 — 1 sin 2t — 2A ^cos t — Va2 — 1 sin t j

(16)

and

t 0 = t 0 (a, A) G (0, 2n) (17)

is the root of the equation: A sin x — %/a2 + 3 • sin (2x — 2t) = 0, for which f" (t0) < 0.

Proof. Let f g U/ and

f/(z) = ex^ —2J^ log (1 — ze-it) d^(t^ = exp{f(z)} (18)

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

= 1 + Ci z + C2z2 + ....

The functional J(f) = Re(C2 — ACi) is a linear and continuous on the compact family U/ and therefore it attains its sharp bounds on it. V. V. Starkov [3] has proved, that if F(f) = F(f)is Frechet differentiable and its differential functional on U/ with differential Lv(h), and max Re F(f) is attained for a jump function ^(t) with n jumps at points tj, j = 1,..., n and jumps 6j = arg d^n(tj) (we assume that at least two jumps 6j are different), then the following system of equations holds

[Re [e^ [|f(z,tj)]}

[Im [(ei0j — el9m) (L,

0 (19)

g(z,tj)] — [g(z,tm)]^ = 0.

In our case J(f) = Re (C2 — ACi) s Frechet differentiable and its differential is given by the formula:

Lv(h) = {hexpf}2 — A {hexpf}i,

where h = —2log(1 — ze-it) = g(z,t) and {F(z)}p denotes the p-th coefficient of F.

In our problem the extremal function has the form :

f/(z) = 1 + ciz + c2z2 + ... = (1 — ze-itl )-2al (1 — ze-it2)-2“2

where ti,t2 G [0, 2n], ai + a2 = 1, |ai| + |a2| = a.

Because the Freechet differential is equal to

L(log f0) [ —2log(1 — ze Jt)] = e 2it + 2e it(ci — A)

the conditions (19) take the form

"Im [e^1 (e-2itl + e-itl (ci — A))] = 0 Im [eift (e-2it2 + e-it2 (ci — A))] = 0

Im [(e^ — e^2) (e-2itl — e-2it2 + 2(ci — A) (e-itl — e-it2))] = 0.

(20)

The information that for the extremal function f0 the coefficient ci is real i.e.

Im ci =0 sinp2 sin(pi — ti) — sinpi sin(p2 — t2) = 0 (21)

implies eit2 = e-itl which gives t2 = —ti, or that e-itl and e-it2 are real. In the case when e-itl and e-it2 are real we obtain either contradiction or the result for Ui = K which is in the Corollary at the end of the papers.

In the case eit2 = e-itl i.e. t2 = —ti the first two equations of (20)

are

jsin(pi — 2ti) + (ci — A) sin(pi — ti) = 0 |sin(P2 — 2t2) + (ci — A) sin(P2 — t2) =0

which together with (21) for t2 = —ti implies that p2 = —pi. Substitution p2 = —Pi into (12) and (13) give

(22)

|ai| = |a21 = a; cos Pi = -1; cosP2 = -1;

2 a a

. Va2 — 1 . — V a2 — 1

sin pi =-------------; sin p2 =----------------.

(23)

Putting now ti = t G [0, 2n], t2 = —ti = —t, ai = 2e®^, a2 = 2e we

obtain

Re(c2 — Aci) := $(t) = a2 + (3 — a2) cos2t + 3^a2 — 1 sin2t

'______________________ (24)

— 2A(cos t — \J a2 — 1 sin t).

Using notations (15) we obtain:

$(t) = $(x) = a2 + a^a2 + 3 cos(2x — 2t ) — 2Aa cos x. (25)

The equation $'(x) = 0 is equivalent to

—A sin x + Va2 + 3 sin(2x — 2t ) = 0 (26)

or

4(a2 + 3) sin4 x — 4A Va2 + 3 sin 2t sin3 x + [A2 — 4(a2 + 3)] sin2 x

(27)

+ 2A\Ja2 + 3 sin2T sin x + (a2 + 3) sin2 2t = 0,

which ends the proof.

Corolary. If f g Ui = K then

max(A3 — AA2) = 1 + |A|, A G R.

z

The extremal functions have the form f0(z) =-----------.

w 1 ± z

Bibliography

[1] Godula J. Linear-invariant families / J. Godula V. V. Starkov // Tr. Petroz. Gosud. Univ. Seria ”Mathematica”. 5(1998). 3-96 (in Russian).

[2] Greiner R. On support points of univalent functions and disproof of a conjecture of Bombieri / R.Greiner, O.Roth // Proc. Amer. Math. Soc. 129(2001). 3657-3664.

[3] Pommerenke Ch. Linear-invariant Familien analytischer Funktionen / Ch. Pommerenke // Math. Ann. 155(1964). 108-154.

[4] Starkov V. V. The estimates of coefficients in locally-univalent family Ua / V. V. Starkov // Vestnik Lenin. Gosud. Univ. 13(1984). 48-54 (in Russian).

[5] Starkov V. V. Linear-invariant families of functions / Dissertation. 1989. 1-287. Ekaterinburg (in Russian).

Department of Applied Mathematics

Faculty of Economics, Maria Curie-Skiodowska University,

20-031 Lublin, Poland

E-mail: [email protected]

i Надоели баннеры? Вы всегда можете отключить рекламу.