№ 10 (103)
A UNI
/т те;
UNIVERSUM:
технические науки
октябрь, 2022 г.
THE MAIN FACTORS AFFECTING THE RATE OF SEPARATION OF THE SLAG AND MATTE PHASES BY THEIR DENSITY: A GENERAL OVERVIEW
Abdirashid Khasanov
Professor, doctor of technical Science, deputy Chief Engineer for Science at "Almalyk MMC" JSC,
Republic of Uzbekistan, Almalyk
Shokhrukh Khojiev
Associate professor of department of Metallurgy, PhD, Tashkent State Technical University, Republic of Uzbekistan, Tashkent E-mail: hojiyevshohruh@,yandex. ru
Kakhramon Ochildiev
Senior teacher of department of Metallurgy, Tashkent State Technical University, Republic of Uzbekistan, Tashkent
Khusnobod Abjalova
Student of master course of department of Metallurgy, Tashkent State Technical University, Republic of Uzbekistan, Tashkent
ОСНОВНЫЕ ФАКТОРЫ, ВЛИЯЮЩИЕ НА СКОРОСТЬ РАЗДЕЛЕНИЯ ШЛАКОВОЙ И ШТЕЙНОВОЙ ФАЗ ПО ИХ ПЛОТНОСТИ: ОБЩИЙ ОБЗОР
Хасанов Абдирашид Салиевич
профессор, д-р техн. наук, зам. гл. инженера по науке АО «Алмалыкский ГМК», Республика Узбекистан, г. Алмалык
Хожиев Шохрух Тошпулатович
и.о. доц. кафедры Металлургия, PhD, Ташкентский государственный технический университет, Республика Узбекистан, г. Ташкент
Очилдиев Кахрамон Тоштемирович
ст. преподаватель кафедры Металлургия, Ташкентский государственный технический университет, Республика Узбекистан, г. Ташкент
Абжалова Хуснобод Турсунали кизи
магистрант кафедры Металлургии, Ташкентский государственный технический университет, Республика Узбекистан, г. Ташкент
ABSTRACT
The article discusses the main factors affecting the rate of separation of the slag and matte phases by their density, one of the urgent problems of copper production. The results of the analysis showed that during the processing of sulfide copper concentrates in melting furnaces, due to the high partial pressure of oxygen, a large amount of magnetite compound appears in the system, which increases the density of the slag. An increase in slag density slows down the separation of the slag and matte phases. As a result, the loss of copper with slag increases, which leads to a decrease in the productivity of the furnace for copper.
Библиографическое описание: THE MAIN FACTORS AFFECTING THE RATE OF SEPARATION OF THE SLAG AND MATTE PHASES BY THEIR DENSITY: A GENERAL OVERVIEW // Universum: технические науки : электрон. научн. журн. Khasanov A.S. [и др.]. 2022. 10(103). URL: https://7universum.com/ru/tech/archive/item/14459
A UNIVERSUM:
№ 10 (103)_ТЕХНИЧЕСКИЕ НАУКИ_октябрь. 2022 г.
АННОТАЦИЯ
В статье рассмотрены основные факторы, влияющие на скорость разделения шлаковой и штейновой фаз по их плотности, одной из актуальных проблем медного производства. Результаты анализа показали, что при переработке сульфидных медных концентратов в плавильных печах из-за высокого парциального давления кислорода в системе появляется большое количество соединения магнетита, что увеличивает плотность шлака. Увеличение плотности шлака замедляет разделение шлаковой и штейновой фаз. В результате увеличиваются потери меди со шлаком, что приводит к снижению производительности печи по меди.
Keywords: magnetite, copper, density, slag, matte, phase separation, copper loss, matte droplets.
Ключевые слова: магнетит, медь, плотность, шлак, штейн, разделение фаз, потери меди, штейновые капельки.
One of the main reasons why copper remains in the the specific density of the converter slag selected for
converter slag in large quantities is the increased density the study, its mineralogical composition was first deter-
of the slag [1]. The substance that increases the density mined [3]. The material composition of the converter
of converter slag is magnetite [2]. In order to determine slag selected for the study is presented in Table 1 [4].
Table 1.
Mineralogical composition of the converter slag of "Almalyk Mining and Metallurgical Combine"
selected for the experiment, %
Fe3Ü4 Fe2SiO4 AI2O3 MgSiO3 CaSiO3 TiO2 K2SiO3 FeS
19,70 33,66 8,75 4,39 2,83 0,30 3,72 7,49
Na2SiO3 ZnSiO3 PbSiO3 BaSiO3 Ca3(PO4)2 CU2S CU2O others
6,11 2,76 1,18 0,35 1,99 3,58 2,03 1,08
Based on the material composition presented in using the specific densities of each substance listed in
Table 1, the density of the converter slag was determined Table 2 [5].
Table 2.
Densities of the main components in converter slag of "Almalyk Mining and Metallurgical Combine"
selected for the experiment, g/cm3
Fe3O4 Fe2SiO4 AI2O3 MgSiO3 CaSiO3 TiO2 K2SiO3 FeS
5,2 4,0 3,23 2,9 2,9 4,23 2,47 4,84
Na2SiO3 ZnSiO3 PbSiO3 BaSiO3 Ca3(PO4)2 CU2S CU2O others
2,4 3,89 6,49 4,39 2,81 5,81 6,1 2,3
Using the individual densities of each component given in Table 2, the average densities of converter slags selected as research objects were determined by the following formula [6]:
Pslag = (®1"Pl + ©2^2 +... + ©n-pn)/100 (1)
Here: ©1, ©2, and ©n are the respective mass fractions of each component that makes up the slag, %; and p1, p2, and pn are their respective individual densities, g/cm3.
Using the formula (1), average densities of converter slags with different magnetite content obtained for the study were determined and these values are listed in Table 3 [7].
Table 3.
Changes in the densities and the amount of copper compounds in the order of increasing magnetite content in the converter slag of "Almalyk Mining and Metallurgical Combine" selected for the experiment
№ Amount of magnetite, % Density of slag, g/cm3 Amount of CrnS, % Amount of CrnO, % Amount of FeS, %
1 19,70 4,09 3,58 2,03 7,49
2 21,98 4,11 3,36 2,27 7,68
3 23,58 4,13 3,20 2,43 7,81
4 25,29 4,15 3,04 2,61 7,95
5 27,20 4,18 2,85 2,81 8,11
6 28,11 4,19 2,76 2,90 8,19
7 29,04 4,20 2,68 3,00 8,27
8 30,90 4,22 2,50 3,19 8,42
9 32,78 4,25 2,32 3,39 8,58
10 34,68 4,27 2,13 3,58 8,74
№ 10 (103)
A UNI
/m te;
UNIVERSUM:
ТЕХНИЧЕСКИЕ НАУКИ
октябрь, 2022 г.
The values in Table 3 indicate that an increase in the amount of magnetite in the slag causes an increase in its overall density [8]. It can be seen from the graph
shown in Figure 1 that increasing the amount of magnetite leads to a linear increase in the density of the slag [9]
Amount of magnetite, %
Figure 1. Dependence of slag density on the amount of magnetite in converter slag
An overabundance of magnetite in the slag causes several magnetite crystals to coalesce to form a larger magnetite crystal [10]. In this case, the density of large magnetite particles is higher than the density of slag,
but close to the density of matte, so they sink to the bottom of the slag layer and accumulate at the boundary of the slag and matte phase separation (Fig. 2).
Figure 2. Scheme offormation of magnetite layer between the contact boundary of slag and matte
As shown in Figure 2, the magnetite layer formed at the interface between the slag and matte prevents the small matte droplets in the slag phase from passing into the main matte phase below. This increases the mechanical loss of copper with slag [11].
In the diagram in Figure 3, it can be seen that as the amount of magnetite in the slag phase increases, the amount of copper sulfide decreases and the amount
of copper oxide increases. This causes an increase in the chemical loss of copper. Because the surface tension of oxidized copper compounds is very different from the surface tension of matte, it is similar to the surface tension of slag and therefore remains in the slag phase.
The relative density of matte droplets suspended in the slag phase and the corresponding concentrations are presented in Table 4.
№ 10 (103)
A UNI
/m te;
UNIVERSUM:
ТЕХНИЧЕСКИЕ НАУКИ
октябрь, 2022 г.
а?
10 9 8 7 6 5
^-
№ Composition of matte droplets, % The corresponding matte density, g/cm3 № Composition of matte droplets, % The corresponding matte density, g/cm3
CuiS FeS CuiS FeS
1 19,167 80,833 5,02592 9 37,304 62,696 5,201849
2 21,66 78,34 5,050102 10 39,399 60,601 5,22217
3 24,083 75,917 5,073605 11 41,356 58,644 5,241153
4 26,394 73,606 5,096022 12 42,689 57,311 5,254083
5 28,689 71,311 5,118283 13 43,953 56,047 5,266344
6 30,922 69,078 5,139943 14 45,207 54,793 5,278508
7 33,095 66,905 5,161022 15 46,475 53,525 5,290808
8 35,242 64,758 5,181847
01 ■ 2 3
29
34
Figure 3. The dependence of the percentage of the main components affecting the density of the converter slag on the amount of magnetite: 1-CmS, 2-CmO and 3-FeS
Table 4
Value of density of matte droplets with different composition
№
Composition of matte droplets, %
CuiS
FeS
The corresponding matte density, g/cm3
№
Composition of matte droplets, %
Cu2S
FeS
The corresponding matte density, g/cm3
19,167
80,833
5,02592
37,304
62,696
5,201849
21,66
78,34
5,050102
10
39,399
60,601
5,22217
24,083
75.917
5,073605
11
41,356
58,644
5,241153
26,394
73,606
5,096022
12
42,689
57,311
5,254083
28,689
71,311
5,118283
13
43,953
56,047
5,266344
30,922
69,078
5,139943
14
45,207
54,793
5,278508
33,095
66,905
5,161022
15
46,475
53,525
5,290808
35,242
64,758
5,181847
Figure 4. Changes in the density of the matte with increasing copper content in the matte
9
№ 10 (103)
A UNÍ
/m те;
UNIVERSUM:
ТЕХНИЧЕСКИЕ НАУКИ
октябрь, 2022 г.
From the values in Table 4 and the graph in Figure 4, it can be seen that the more copper content the matte has, the higher its density. For example, when the content
of copper in matte reached 37.18%, its density reached a maximum of 5.29 g/cm3.
References:
1. Khojiev Sh.T., Matkarimov S.T., Narkulova E.T., Matkarimov Z.T., Yuldasheva N.S. The Technology for the Reduction of Metal Oxides Using Waste Polyethylene Materials // Conference proceedings of "Metal 2020 29th International Conference on Metallurgy and Materials", Czech, May 20 - 22, 2020. - P. 971-978.
2. Alamova G.K., Khojiev Sh.T., Okhunova R.K. Current State Of Copper Smelting Slags And Their Processing: A Review // Central Asian Journal of Literature, Philosophy and Culture. - Spain, 2021. - Vol.2, Issue 2. - P. 49-55.
3. Alamova G.Kh., Khojiev Sh.T., Okhunova R.Kh. Comparative Estimation of the Efficiency of Various Materials in the Reduction of Magnetite in Slag Melt // International Journal for Innovative Engineering and Management Research. - India, 2021. - Vol.10, Issue 3. - P. 191-196.
4. Khojiev Sh.T. Pyrometallurgical Processing of Copper Slags into the Metallurgical Ladle // International Journal of Advanced Research in Science, Engineering and Technology. - India, February 2019. - Vol.6, Issue 2. - P. 8094 - 8099.
5. Khojiev Sh.T., Yusupkhodjaev A.A., Rakhmonaliev M., Imomnazarov O.O'. Research for Reduction of Magnetite after Converting // Kompozitsion materiallar. - Toshkent, 2019. - № 4. - C. 54 - 55.
6. Matkarimov S.T., Yusupkhodjaev A.A., Khojiev Sh.T., Berdiyarov B.T., Matkarimov Z.T. Technology for the Complex Recycling Slags of Copper Production // Journal of Critical Reviews. - Malaysia, April 2020. - Vol.7, Issue 5. -P. 214 - 220.
7. Khojiev Sh., Berdiyarov B., Mirsaotov S. Reduction of Copper and Iron Oxide Mixture with Local Reducing Gases // Acta of Turin Polytechnic University in Tashkent. - Tashkent, 2020. - Vol.10, Issue 4. - P. 7-17.
8. Khojiev Sh.T., Nuraliev O.U., Berdiyarov B.T., Matkarimov S.T., Akramov O'.A. Some thermodynamic aspects of the reduction of magnetite in the presence of carbon // Universum: технические науки. - Москва, 2021. - № 3. -C. 60-64.
9. Юсупходжаев А.А., Хожиев Ш.Т., Акрамов У.А. Использование нетрадиционных восстановителей для расширения ресурсной базы ОАО «Узметкомбинат» // Черные металлы. - Москва, 2021. - № 4. - С. 4 - 8.
10. Berdiyarov B.T., Khojiev Sh.T. Thermodynamic analysis of reduction of oxidized copper compounds in a slag phase // Kompozitsion materiallar. -Toshkent, 2021. - № 4. - С. 39 - 43.
11. Хожиев Ш.Т., Бердияров Б.Т., Мухаметджанова Ш.А., Нематиллаев А.И. Некоторые термодинамические аспекты карботермических реакций в системе Fe-Cu-O-C // O'zbekiston kimyo jurnali. - Toshkent, 2021, - №6. -C. 3 - 13.