Научная статья на тему 'The etching of the copper alloys used in automotive industry'

The etching of the copper alloys used in automotive industry Текст научной статьи по специальности «Химические науки»

CC BY
133
38
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
латунь / ионизация / травильный раствор / селективность растворения / латунь / іонізація / травильний розчин / селективність розчинення. / brass / ionization / dissolution medium / dissolution selectiveness

Аннотация научной статьи по химическим наукам, автор научной работы — L. Egorova, V. Larin, E. Khobotova

The pattern of the electrochemical ionization and passivation of Cu 62 Zn brass in chloridesolutions with different compositions is studied. It is shown that the electrochemical dissolutionof Cu 62 alloy in concentrated chloride solutions is controlled by ionization of the coppercomponent in the alloy. There was studied the selectiveness of Cu 62 Zn brass component dissolutionand modification of the alloy surface at electrochemical dissolution in chloride solutions.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «The etching of the copper alloys used in automotive industry»

Автомобильный транспорт, вып. 36, 2015

27

ОБЩИЕ ВОПРОСЫ АВТОМОБИЛЬНОГО ТРАНСПОРТА

УДК 621.794.42:546.56

THE ETCHING OF THE COPPER ALLOYS USED IN AUTOMOTIVE

INDUSTRY

L. Egorova, Assoc. Prof., Ph. D. (Chem.), E. Khobotova, Prof., D. Sc. (Chem.), Kharkov National Automobile and Highway University,

V. Larin, Prof., D. Sc. (Chem.), Director of the Scientific Research Institute of Chemistry, Karazin National University

Abstract. The pattern of the electrochemical ionization and passivation of Cu 62 Zn brass in chloride solutions with different compositions is studied. It is shown that the electrochemical dissolution of Cu 62 alloy in concentrated chloride solutions is controlled by ionization of the copper component in the alloy. There was studied the selectiveness of Cu 62 Zn brass component dissolution and modification of the alloy surface at electrochemical dissolution in chloride solutions.

Key words: brass, ionization, dissolution medium, dissolution selectiveness.

ТРАВЛЕНИЕ МЕДНЫХ СПЛАВОВ, ИСПОЛЬЗУЕМЫХ В АВТОМОБИЛЬНОЙ ПРОМЫШЛЕННОСТИ

Л.М. Егорова, доц., к.х.н., Э.Б. Хоботова, проф., д.х.н.,

Харьковский национальный автомобильно-дорожный университет,

В.И. Ларин, проф., д.х.н., директор НИИ химии при Харьковском национальном университете им. В.Н. Каразина

Аннотация. Изучен механизм электрохимической ионизации и пассивации латуни Л-62 в хло-ридных растворах различного состава. Показано, что электрохимическое растворение сплава Л-62 в концентрированных хлоридных растворах контролируется ионизацией медной компоненты сплава. Установлено, что равномерное электрохимическое растворение а-латуни протекает в кислой среде в присутствии ионов хлора и окислителя - Fe3+.

Ключевые слова: латунь, ионизация, травильный раствор, селективность растворения.

ТРАВЛЕННЯ МІДНИХ СПЛАВІВ, ЩО ВИКОРИСТОВУЮТЬСЯ В АВТОМОБІЛЬНІЙ ПРОМИСЛОВОСТІ

Л.М. Єгорова, доц., к.х.н., Є.Б. Хоботова, проф., д.х.н.,

Харківський національний автомобільно-дорожній університет,

В.І. Ларін, проф., д.х.н., директор НДІ хімії при Харківському національному

університеті ім. В.Н. Каразіна

Анотація. Вивчено механізм електрохімічної іонізації і пасивації латуні Л-62 у хлоридних розчинах різного складу. Показано, що електрохімічне розчинення сплаву Л-62 в концентрованих хлоридних розчинах контролюється іонізацією мідної компоненти сплаву. Встановлено, що рівномірне електрохімічне розчинення а-латуні протікає в кислому середовищі за наявності іонів хлору й окисника - Fe .

Ключові слова: латунь, іонізація, травильний розчин, селективність розчинення.

28

Автомобильный транспорт, вып. 36, 2015

Introduction

The progressive application of microelectronic components in electronic engineering expands the spectrum of printed circuits used. Among them are the standard printing boards for output components, plates for surface mounted assemblies, modem boards for personal computers, multichip modules, high frequency boards, plates with an optical interface, etc. [1-5]. The amount of electrical equipment has considerably increased in modern vehicles. When manufacturing the equipment in question, etching of printed circuit boards made of copper and its alloys is required.

In the technologies for their manufacture, anodic processes with application of a metal, namely, copper and its alloys, are of importance. It is necessary to study the mechanisms of the processes of chemical and electrochemical dissolution of copper and its alloys in order to control the kinetics, the selectivity of the etching processes, and increasing their efficiency.

The mechanism of anodic dissolution of brass in chloride media was described in [4-6]. The authors described the initial dissolution selectivity of zinc, which created a surface layer enriched with copper with nonequilibrium vacancies. The anodic dissolution both of pure copper and that on the surface of brass was found to occur with the formation of strong 1-n from their dissociation, enter into a balanced reaction with copper

Cu+ + e ^ Cu,

and determine its potential. In the case of brass, the potential determining reaction is different

Cu+ + e ^ Cu* (alloy),

where Cu* (alloy) are hyperactive copper atoms in the brass surface layer, which were formed as a result of the dissolution selectivity of zinc. Owing to the increased activity of Cu* (alloy), the stationary potential of brass is more negative than the stationary potential of copper in its own phase at the same ion concentration of the latter. In this case, Cu* ions that were formed during the anode oxidation of brass are reduced to their own phase. During the reduction, the concentration of Cu* ions decreases in the near electrode layer of the solution; there-

fore, the stationary potential of the brass must shift towards the negative side, which allows us to infer the presence of dezincing of brasses

[7]. It is shown [8] that, at alternating current polarization of a brass in a chloride media, the first anodic half period of dissolution of the alloy is controlled by

+

the diffusion of CuCl2 complexes from the electrode to the solution. Thus, the controlling stage of the anodic dissolution of a brass is the dissolution of the precious component.

Theoretical analysis

Each of the components of the alloys during the dissolution displays its electrochemical properties. The experimental studies of electrochemical ionization of brasses [9] created a foundation for the modern image of the anodic dissolution of intermetallic phases. A.V. Ve-denskii showed [10, 11] that the state of the nonequilibrium layer that is formed during the dissolution selectivity of a homogeneous system determines the peculiarities of the ionization, the electrochemical properties of the alloy, and the change of the electrocatalytic activity of the alloys.

At present, despite the great variety of literary data, there has not yet been developed a unified theory on the chemical and electrochemical dissolution of metals. The study of the processes of electrochemical dissolution of copper and its alloys is very important for the creation of a unified theory to connect the processes that occur in the liquid phase and on the surface of the «metal-solution» for the development of the theory on passivation and for solving a number of application problems of size etching of metals and alloys.

Purpose and tasks. The aim of this work is to study the regularities of he electrochemical dissolution of Cu62Zn brass in chloride solutions and the topography of the surface of the alloy.

Experimental

The electrochemical polarization measurements were carried out using a PI 50 1.1 potentiostat with a PR 8 programmer. The cyclic voltammograms (CVA) were obtained during the dissolution of Cu 62 Zn alloy in solutions of NaCl, HCl, and FeCl3 with various

Автомобильный транспорт, вып. 36, 2015

29

concentrations in the potential range of E = -0,2-2,0 V with a potential sweep of V = 2 x 10-2 V/s. The reference electrode used was a silver chloride electrode, and a platinum plate served as the auxiliary electrode. The auxiliary Pt electrode was kept for ten minutes in concentrated nitric acid prior to the measurements, after which it was rinsed thoroughly. A standard initial treatment of the surface of the disk electrode was selected that included mechanical peeling and polishing, degreasing, and chemical polishing in an H3PO4 solution. All the E values in this work are presented with respect to the hydrogen electrode. The accuracy of the maintenance of the potential is ±3 x10-3 V. The error of setting the polarizing current is ±2 %. The error of a B7 21 voltmeter at the boundary of the measuring is 1 V ± 0,7 %.

The measurements were performed at 25 ± 0,1 °C. Thermostating was carried out using a YT 15 Y 42 thermostat. The working cell was equipped with a casing through which distilled water from the thermostat was constantly pumped. The tests were conducted with the lid closed, which was equipped with holders for the electrodes.

The Luggin-Haber capillary was brought to the very surface of the working electrode. The area of the brass surface of the electrode was 6,4 x10-5 m2. The concentrations of Cu(II) and Zn(II) ions in the etching solutions were determined by an atomic absorption method using a «Saturn» spectrophotome ter with wave lengths of 213,9 nm for Zn and 324,8 nm for Cu. The morphologic peculiarities of the surface of the electrode were studied by the method of electron probe microanalysis (EPMA) on a JSM 6390 LV electron microscope with an INCA system of X ray microanalysis. An NT 206 scanning probe microscope equipped with a CSC 37 probe cantilever was used to examine the roughness of the electrodes and the difference in the nanosize peculiarities of the morphology of the electrode samples. The mineralogical composition of the sediments with low solubility compounds, which are formed in the waste etching solutions, was determined using X ray analysis on a Siemens D500 powder diffractometer in copper radiation with a graphite monochromator [12]. The initial search of the phases was performed using a PDF 1 card file [13] followed by the calculation of the X ray diffraction patterns veri-

fiedusing the Ritveld method according to the FullProf program [14].

The effect of the composition of the electrolyte on the electrochemical dissolution of the Cu 62 Zn alloy

The effect of chloride ions on the electrochemical dissolution of the Cu 62 Zn alloy was studied. Figure 1 shows the anodic polarization curves for the Cu 62 Zn alloy in NaCl solutions of various concentrations. With the shift of the potential towards the anodic area, the current density increases, and the slope of dj/dE > 0 (Fig. 1, curves 1-5). The active dissolution of brass in NaCl solutions of 0,52,0 mol/L (Fig. 1, curves 3-5) is observed in the range of potentials of 0-0,8 V.

Fig. 1. Anodic polarization curves for the Cu 62 Zn alloy in NaCl solutions with the following concentrations, mol/L: (1) 0,1, (2) 0,25, (3) 0,5, (4) 1,0, and (5) 2,0 at V = 2 x 10 -2 V/s and ю = 0 rot/s

For the diluted solutions (Fig. 1, curves 1, 2), the T afel fractions of the curves have a longer range of potentials. The medium of the NaCl solutions is neutral; therefore, there is an increase in the angle of the j slope; the E curves result only from the activating effect of the chlorine ions. A similar effect of anions on the electrochemical dissolution of metals is described in [15], namely, the increasing concentrations of Cl-, Br-, and I- ions in the solution is accompanied by an increase in the rate of the process of dissolution of the metal phase. The observed maximum of the current density j is indicative of the onset of the pas-

30

Автомобильный транспорт, вып. 36, 2015

sivation of the surface of the alloy. The maximum of j increases with an increase in CCl-. Thus, the activating effect of chlorine ions manifests itself.

In the inactive region, the rate of dissolution of the alloy is almost independent of the potential (Fig. 1, curves 1-4), which is connected with an increase in the amount of the inactive compounds on its surface. The potential of the passivation Ep is in the range of 0.8-0.9 V (Fig. 1, curves 3-5), at which the transition of the metal from an active to a passive state starts. For curves 1 and 2, the passivation starts at higher values of the anodic potential. The occurrence of passivation at lower Ep with a growth in the concentration of the chlorine ions can be explained by the easier deposition of CuCl from the near electrode layer due to the parallel process of the chemical dissolution of copper. However, the range of passivation in the area of high CCl- is short (Fig. 1, curve 5), and the inactive state of he metal or the alloy is disturbed either partially or entirely owing to the introduction of Cl-, Br-, and I- anions into the solution [15]. A new increase in j with the growth of the potential is observed in a 2.0 M solution of sodium chloride. The process of the disturbance of the passivity near the potential of complete passivation Ecp is considered by the authors [16] as resulting from the appearance in unsound sites of an inactive layer with zones of rapid dissolution, which then turn into pittings. A crucial factor for the appear ance of the pittings is the rivalry between the passive action of the water and the activating action of the chlorine anions.

The shape of the j and E curves is affected by a number of factors, one of which is the pH of the medium [16]. In the region of low pH, where the concentration of OH- ions is low and the share of the surface occupied is insignificant, Cl- anions can be adsorbed on a vacant surface. Under these conditions, the rate of dissolution increases with an increase in the overall concentration of anions [17]. In order to reveal the effect of the acidity of the solution on the electrochemical dissolution of the alloy, we obtained the anodic polarization curves for Cu 62 Zn in HCl solutions with various concentrations. For curves 1-5(Fig. 2), a large angle of slope is observed for the fraction of the active dissolution of the alloy and an increase in the j maxima compared to the NaCl solutions, which can be associated not only with

the effect of the chlorine ions on the electrochemical dissolution of the alloy but also with the effect of the H+ ions. In an acidic medium, the chemical dissolution of the Zn component of the alloy occurs more easily.

Two j extreme points were registered on curves 1-3 (Fig. 2). In [18], the appearance of two peaks on the Cu polarization curves was shown to be connected with the change in the structure of the passive layer of CuCl from spongy to dense packed as the anode potential grows.

Fig. 2. Anodic polarization curves for the Cu 62 Zn alloy in HCl solutions with the following concentrations, mol/L: (1) 0,1, (2) 0,25, (3) 0,5, (4) 1,0, and (5) 2.0 at V = 2 x 10-2 V/s and ю = 0 rot/s

At high concentrations of chlorine ions, the second peak of the anodic dissolution of copper disappeared owing to the formation of the spongy surface phase of CuCl. As the concentration of the HCl solutions grew, a second maximum of the current during the brass dissolution is produced to a lesser degree, and, at curve 3, it is in the shape of a bend of the curve. The reason for this is that both the passivation of the Cu 62 Zn alloy and the disturbance of the passivity by Cl- ions can occur in the region of potentials of E > Ep. Note that, with an increase in the concentration of HCl in the solution, the second process predominates.

The passivation of brass can take place not only due to the anodic polarization but also during the introduction of an oxidizing component

Автомобильный транспорт, вып. 36, 2015

31

into the solution. In [15], the intensity of the pitting corrosion of metals is found to increase in the presence of dissolved oxygen and Fe3+ ions. The introduction of iron(III) ions into the chloride solution caused a shift of the potential of the metal up to a critical value and to the formation of pittings [15]. The activity of the oxidizing agent is determined by the nature of the metal, the pH value, the nature and concentration of the corrosion active anion, and the temperature and rate of mixing of the solution.

To study the influence of ions of the oxidizing agent on the shape of j of the E curve, we obtained the anodic polarization curves using the Cu 62 Zn alloy in solutions of ferric (III) chloride with various concentrations (Fig. 3). For a 0,1 M FeCl3 solution, the anodic polarization curve is characterized by a region of active dissolution of the alloy (Fig. 3, curve 1) and the preservation of the passivation of the brass electrode.

The extremum of j is observed at Ep = +1,1 V. As E increases, the passive region passes to the region of repassivation. With an increase in the FeCl3 concentration, the slope of the activation branch grows (Fig. 3, curves 2, 3). On j of the E curves, a second j maximum is also observed, which disappears with an increase in the concentrations of the solutions (Fig. 3, curve 4).

Fig. 3. Anodic polarization curves for Cu 62 Zn alloy in FeCl3 solutions with the following concentrations, mol/L: (1) 0,1, (2) 0,25, (3) 0,5, and (4) 2,0 at V = 2 x 10-2 V/s and ю = 0 rot/s

The anodic j of the E curves for the Cu 62 Zn alloy in the solutions of ferric(III) chloride are

similar to those for copper. It was shown in [18] that the formation of a CuCl compound with low solubility on the surface of copper corresponds to the region of the minimum of the current, while, in the region of high anodic polarizations, CuO is found to form.

With a further increase of the potential, a new rise in the current is observed, which corresponds to the dissolution of the manufactured layer and the formation of Cu2+ and CuCl+ ions and a CuCl2 compound. The copper dissolution continues up to the beginning of a new passivation by copper (II) compounds.

Conclusions

Thus, the dependence of the pattern of the electrochemical dissolution of the Cu 62 Zn alloy on the composition of the electrolyte, the anion concentration, the acidity, and the presence of an oxidizing agent was justified. Chlorine ions in the region of high concentrations were shown to activate the process of the electrochemical dissolution of the Cu 62 Zn alloyand disturb the passivation of its surface.

References

1. Черкасов С. Средства производства современных печатных плат. Оборудование и линии травления фирмы RESCO /

С. Черкасов // Электроника: наука, технология, бизнес. - 2005. - № 6. - С. 66-69.

2. Флеров В.Н. Химическая технология в производстве радиоэлектронных деталей / В.Н. Флеров. - М.: Радио и связь, 1988.

- 104 с.

3. Евженко В. Рынок печатных плат стран Восточной Европы / В. Евженко // Технологии в электронной промышленности.

- 2008. - № 4. - С. 4-8.

4. Ситников А.Д. Обесцинкование а-лату-ней при коррозии в хлоридных растворах / А.Д. Ситников, А.П. Пчельников, И.К. Маршаков, В.В. Лосев // Докл. АН СССР. - 1978. - Т. 240, № 5. - С. 11641167.

5. Кондрашин В.Ю. Начальное селективное растворение а - и Р-латуней и их склонность к обесцинкованию / В.Ю. Кондрашин, Г.А. Боков, И.К. Маршаков // Защита металлов. - 1994. - Т. 30, № 3. -

С.229-233.

6. Лосев В.В. Особенности электрохимического поведения селективно растворяю-

32

Автомобильный транспорт, вып. 36, 2015

щихся сплавов / В.В. Лосев, А.П. Пчельников, А.И. Маршаков // Электрохимия.

- 1979. - Т. 15, № 6. - С. 837-842.

7. Чан Фыонг Зунг. Склонность латуней к обесцинкованию в хлоридных средах / Чан Фыонг Зунг, Н.М. Тутукина, И.К. Маршаков // Конденсированные среды и межфазные границы. - 2009. - Т.11, № 4.

- С. 349-353.

8. Маршаков И.К. Характер растворения и парциальные электродные процессы при переменно - токовой инфранизкочастотной поляризации латуней в хлоридных средах. I. а - латунь Cu20Zn / И.К. Маршаков, О.Ю. Куксина, В.Ю. Кондрашин // Физикохимия поверхности и защита материалов. - 2007. - Т. 43, № 2. -

С.128-134.

9. Маршаков И.К. Электрохимия интерметаллических фаз / И.К. Маршаков // Конденсированные среды и межфазные границы. - 1999. - Т. 1, № 1. - С. 5-9.

10. Vvedenskii A.V. Reorganization of the Surfase of the Alloy after Selective Anodic Dissolution / A.V. Vvedenskii, I.K. Mar-shakov // Electrochim. Acta - 1991. -Vol. 36, № 5/6. - P. 905-910.

11. Введенский А.В. Анодное растворение гомогенных сплавов при ограниченной мощности вакансионных стоков /

А.В. Введенский, И.К. Маршаков // Электрохимия. - 1994. - Т. 30, № 4. - С. 459472.

12. Бокий Г.Б. Рентгеноструктурный анализ. Т. 1 / Г.Б. Бокий, М.А. Порай-Кошиц. -

М.: МГУ, 1964. - 264 с.

13. JCPDS PDF-1 File. International Committee for Diffraction Data, release 1994. PA, USA.

14. Rodriguez-Carvajal J., Roisnel T. FullProf. 98 and WinPLOTR: New Windows 95/NT Applications for Diffraction. Commission for Powder Diffraction, International Union of Crystallography, Newsletter No. 20 (May-August) Summer 1998.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

15. Колотыркин Я.М. Влияние анионов на кинетику растворения металлов / Я.М. Колотыркин // Успехи химии. -1962. - Т. XXXI, Вып. 3. - С. 322.

16. Фрейман Л.И. Потенциостатические методы в коррозионных исследованиях и электрохимической защите / Л.И. Фрей-ман, В.А. Макаров, И.Е. Брыксин. - Л.: Химия, 1972. - 239 с.

17. Антропов Л.И. Теоретическая электрохимия / Л.И. Антропов. - М.: Высшая школа, 1984. - 519 с.

18. Электрохимическое растворение меди и ее сплавов в растворах различного состава и создание технологических процессов регенерации отработанных травильных растворов: монография / В.И. Ларин, Э.Б. Хоботова, В.В. Даценко и др. - Х.: ХНУ им. В.Н. Каразина, 2009. - 204 с.

References

1. Cherkasov S. Sredstva proizvodstva sov-

remennyih pechatnyih plat. Oborudovanie i linii travleniya firmyi RESCO [Production facilities for modernprinted circuit boards. RESCO equipment and etching lines]. Elektronika: Nauka, Tehnologiya, Biznes. 2005, no. 6. pp. 66-69.

2. Flerov V. N. Himicheskaya tehnologiya v

proizvodstve radioelektronnyih detaley. [Chemical technology in production of radio electronic parts]. Radio i svyaz. Moskow, 1988. 104 p.

3. Evzhenko V. Ryinok pechatnyih plat stran

Vostochnoy Evropyi [Market of printed circuit boards in the countries of Eastern Europe]. Tehnologii v elektronnoy promy-ishlennosti. 2008, no. 4. pp. 4-8.

4. Sitnikov A.D., Pchelnikov A.P., Marshakov

I.K., Losev V.V. Obestsinkovanie a-latuney pri korrozii v hloridnyih rastvorah [Dezincing of a brasses during corrosion in chloride solutions]. Dokl. AN SSSR. 1978. Vol. 240, no. 5. pp. 1164-1167.

5. Kondrashin V.Yu., Bokov G.A., Marsha-

kov I.K. Nachalnoe selektivnoe rastvorenie a- i P-latuney i ih sklonnost k obestsinko-vaniyu [Initial selective dissolution a and P brasses and their tendency for dezincing]. Zaschita metallov. 1994.

Vol. 30, no 3. pp. 229-233.

6. Losev V.V., Pchelnikov A.P., Marshakov A.I.

Osobennosti elektrohimicheskogo pove-deniya selektivno rastvoryayuschihsya splavov [Peculiarities of electrochemical behavior of selectivelydissolving alloys]. Elektrohimiya. 1979. Vol. 15, no 6.

pp. 837-842.

7. Chan Fyiong Zung, Tutukina N.M., Mar-

shakov I.K. Sklonnost latuney k obestsin-kovaniyu v hloridnyih sredah [Tendency of brasses for dezincing in chloride media]. Kondensirovannyie sredyi i mezh-

Автомобильный транспорт, вып. 36, 2015

33

faznyie granitsyi. 2009. Vol. 11, no. 4. pp.349-353.

8. Marshakov I.K., Kuksina O.Yu., Kondra-

shin V.Yu. Harakter rastvoreniya i partsialnyie elektrodnyie protsessyi pri peremenno - tokovoy infranizkochastotnoy polyarizatsii latuney v hloridnyih sredah. I. a-latun Su20Zn. [Character of dissolution and partial electrodic processes at alternating current infra low frequency polarization of brasses in chloride media. I. a brass Cu20Zn].Fizikohimiya poverhnosti i zaschita materialov. 2007. Vol. 43, no. 2. pp.128-134.

9. Marshakov I. K. Elektrohimiya intermetalli-

cheskih faz [Electrochemistry of interma-tallicphases]. Kondensirovannyie sredyi i mezhfaznyie granitsyi. 1999. Vol. 1, no. 1. pp. 5-9.

10. Vvedenskii A. V. Reorganization of the Surfase of the Alloy after Selective Anodic Dissolution [Reorganization of the surface of the alloy after selective anodic dissolution]. Electrochim. Acta. 1991. Vol. 36, no. 5/6. pp. 905-910.

11. Vvedenskiy A. V. Anodnoe rastvorenie go-

mogennyih splavov pri ogranichennoy moschnosti vakansionnyih stokov [Anodic dissolution of homogenous alloys at a limited power of vacancy drains]. Elektrohimiya. 1994. Vol. 30, no 4. pp. 459-472.

12. Bokiy G.B., Poray-Koshits M.A. Rentgenos-

trukturnyiy analiz [X ray analysis, vol. 1]. T. 1. Moscow, Izd-vo MGU Publ., 1964. 264 p.

13. JCPDS PDF-1 File. International Committee

for Diffraction Data, release 1994. PA, USA.

14. Rodriguez-Carvajal J., Roisnel T. FullProf.

98 and WinPLOTR: New Windows 95/NT Applications for Diffraction. Commission for Powder Diffraction, International Un-

ion of Crystallography, Newsletter No. 20 (May-August) Summer, 1998.

15. Kolotyirkin Ya.M. Vliyanie anionov na ki-

netiku rastvoreniya metallov [The effect of anions on kinetics of dissolution of metals]. Uspehi himii. 1962. T. XXXI, Vol. 3. p. 322.

16. Freyman L.I., Makarov V.A., Bryiksin I.E.

Potentsiostaticheskie metodyi v kor-rozionnyih issledovaniyah i elektrohimich-eskoy zaschite [Potentsiostaticheskie metody v korrosionnykh issledovaniyakh ielektrokhimicheskoi zashchite (Potenti-ostatic methods in corrosion investigations and electrochemical protection]. Leningrad, Himiya Publ., 1972. 239 p.

17. Antropov L.I. Teoreticheskaya elektrohimi-

ya [Theoretical electrochemistry]. Moscow, Vyisshaya shkola Publ., 1984. 519 p.

18. V.I. Larin, E.B. Hobotova, V.V. Datsenko,

L.M. Egorova, M.A. Dobriyan Elektro-himicheskoe rastvorenie medi i ee splavov v rastvorah razlichnogo sostava i sozdanie tehnologicheskih protsessov regeneratsii otrabotannyih travilnyih rastvorov: mono-grafiya. [Electrochemical dissolution of copper and its alloys in solutions with various compositions and creation of technological processes of regeneration of waste etching solutions]. Kharkov, HNU im. V.N. Karazina Publ., 2009. 204 p.

Рецензент: А.М. Каотмов, профессор, д.т.н., Государственное предприятие «Украинский научно-технический центр металлургической промышленности «Энергосталь».

Статья поступила в редакцию 19 марта 2015 г.

i Надоели баннеры? Вы всегда можете отключить рекламу.