Научная статья на тему 'The analysis of periodic signal detection method based on Duffing system chaotic dynamics'

The analysis of periodic signal detection method based on Duffing system chaotic dynamics Текст научной статьи по специальности «Физика»

CC BY
173
31
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
ОБНАРУЖЕНИЕ СЛАБОГО СИГНАЛА / WEAK SIGNAL DETECTION / ХАОТИЧЕСКИЕ СИСТЕМЫ / ХАОТИЧНі СИСТЕМИ / CHAOTIC SYSTEMS / ОТНОШЕНИЕ СИГНАЛ ШУМ / ВіДНОШЕННЯ СИГНАЛ-ШУМ / SIGNAL-TO-NOISE RATIO / ФАЗОВИЙ ПОРТРЕТ / ФАЗОВЫЙ ПОРТРЕТ / PHASE PORTRAIT / ВИЯВЛЕННЯ СЛАБКИХ СИГНАЛіВ

Аннотация научной статьи по физике, автор научной работы — Martynyuk V.V., Havrylko Ye. V., Boiko J.M., Fedula M.V.

This article presents the analysis of periodic signal detection method based on Duffing system sensitivity to weak influences. The described signal detection method is developed with using of Duffing system that oscillates in chaotic state, without transitions to periodic state. The main advantage of such method is the absence of periodic oscillation modes with low sensitivity. The divergence of Duffing system phase trajectories is investigated with influences of different periodic signals under low signal-to-noise ratio values. The estimation of phase trajectories divergence is performed with using of numeric integration. The signal detection method is analyzed with different forms of input signal: sinusoidal, square, triangle. The analysis shows that a reliable detection of periodic signal can be performed for any of the three presented forms of signal with repeating frequency near the frequency of the driving signal. The obtained results show wide capabilities of Duffing system applications for detection of weak periodic signals.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Анализ метода обнаружения периодических сигналов на основе хаотической динамики системы Дуффинга

В статье предложен анализ метода обнаружения периодических сигналов, базирующийся на чувствительности системы Дуффинга к слабым воздействиям. Метод обнаружения сигналов разработан с использованием системы Дуффинга в хаотическом режиме без переходов в периодический режим. Главное преимущество метода отсутствие переходов в периодические режимы с низкой чувствительностью. Исследованы процессы расхождения фазовых траекторий при разных периодических сигналах на входе (синусоидальный, прямоугольный, треугольный). Результаты анализа показывают возможности обнаружения периодических сигналов с частотой повторения, близкой к частоте задающего сигнала, при низких значениях отношениях сигнал/шум. Полученные результаты показывают широкие возможности применения системы Дуффигна для обнаружения слабых периодических сигналов.

Текст научной работы на тему «The analysis of periodic signal detection method based on Duffing system chaotic dynamics»

УДК 621.391.26

The Analysis of Periodic Signal Detection Method Based on Duffing System Chaotic Dynamics

Martyпуик V. V.1, Havrylko Ye. V?, Botko J. M.\ Fedula M. V.1

1Khmelnytskyi National University 2State University of Telecommunications

E-mail: fcdula&kh-nu. km.ua

This article presents t.lie analysis of periodic signal detection method based on Duffing system sensitivity to weak influences. The described signal detection method is developed with using of Duffing system that oscillates in chaotic state, without transitions to periodic state. The main advantage of such method is the absence of periodic oscillation modes with low sensitivity. The divergence of Duffing system phase trajectories is investigated with influences of different periodic signals under low sigual-to-noise ratio values. The estimation of phase trajectories divergence is performed with using of numeric integration. The signal detection method is analyzed with different forms of input signal: sinusoidal, square, triangle. The analysis shows that a reliable detection of periodic signal can be performed for any of the three presented forms of signal with repeating frequency near the frequency of the driving signal. The obtained results show wide capabilities of Duffing system applications for detection of weak periodic signals.

Key words: weak signal detection: chaotic systems: signal-to-noise ratio: phase portrait

DOI: 10.20535/RADAP.2018.74.5-10

Introduction

At the present time the number of radio electronic devices increases fl 3]. This leads to strict requirements to noise immunity and sensitivity of new communication devices [4 6].

Now. there is a wide variety of methods that are nsed for realization of communication devices with high noise immunity on the base of linear and nonlinear filtering methods [1.2.4.5].

The efficiency of linear filtering [7.8] is limited by superposition principle which leads to the constant proportion between signal and noise at each frequency considered separately The nonlinear signal processing methods have much greater capabilities [9 12] but they require more complicated mathematical models and algorithms for avoiding the nonlinear distortions [9.13,14].

One of the main parts of digital signal reception process is the determining whether high or low logical level is present at the input of signal processing device fl, 15,16]. Tims the development of efficient signal detection methods is necessary for the design of new digital electronics and communication systems with high noise immunity.

During the last 20 years the novel methods of periodic signal detection are developed on the base of chaotic dynamics theory [17]. These methods are based on chaotic system sensitivity to initial conditions and low-energy influences [18 21].

There are known chaos-based methods of signal detection with using of different chaotic systems (Duffing Clma [22], Lorenz [23] and other systems [24 27]).

The most of known chaos based signal detection methods nse the transition between chaotic state and periodic state for indication of presence or absence of signal with required parameters [25,27 30]. The main disadvantage of snch methods is the need to provide the state closed to critical.

The critical state of chaotic system is situated between chaotic and periodic states [30, 31]. It corresponds to very small ranges of driving signal parameters, snch as amplitude, frequency and phase. Tims small signals can drive chaotic system oscillations out of critical state and decrease the sensitivity dramatically.

By the other side, if the chaotic system state changed to periodic, then its sensitivity to weak signals becomes lower.

The described problems do not allow wide practical applications of chaos-based signal detection methods.

Therefore, the development of signal detection methods on the base of chaotic oscillations analysis without state transition is an important problem of chaos-based signal processing [32]. For this purpose the Dnffing system is selected in accordance with its relatively simple structure and double-well potential that allows to obtain a high sensitivity to weak signals.

1 The chaotic dynamics of Duffing system

The Duffing system is characterized by the presence of chaotic and periodic states that depend on the parameters of external influences [31].

A generalized form of Duffing system model is described by differential equation (1):

a ■ x"(t) + b ■ x'(t) + c ■ F (d ■ x(t)) = s(t), (1)

where s(i) is the input signal; x(t) is the output signal; F (x) is a nonlinear function that provides doublewell potential. In this article we consider the function F (x) = x3 — x.

The Duffing system is excited by signal s(t) that consists of two components:

s(t) = so(t) + g(t),

g(t) = sinf (t) + n(t).

(3)

a = 1/u, b = k/w, c = Bset /Bo, d = Bo /Bset,

(2)

where s0(t) = A0 sin(wi) is the driving signal that provides the required oscillation mode; g(t) is the input signal that consists of useful information signal sinf (t) and noise n(t):

In this work the information signal is considered as a periodic signal with amplitude As and repeating frequency w. The noise is a random value with uniform distribution.

The coefficients a, b, c, d determine the oscillation damping and scaling by frequency and amplitude:

Fig. 1. Chaotic oscillations of Duffing system

The shown chaotic oscillations of Duffing system strongly depend on the parameters of input signal s(t). A small changing of input signal parameters can canse significant changing of output signal after some time.

2 The divergence of Duffing system phase trajectories under the influence of periodic signals

The phase plane representation of chaotic oscillations is convenient for analysis of Duffing system response to weak signals [23.31.32].

The typical phase portrait of Duffing system chaotic oscillations is shown in Fig. 2.

(4)

where w is the cyclic frequency of driving signal; k is the damping coefficient; B0 is the driving signal amplitude under c = d = 1; Bset is the established amplitude of driving signal. The values of Bo Mid Bset determine the range of output signal amplitude.

Tims, we can obtain Duffing system models, which can provide the same form of phase portrait at different frequencies with different amplitudes of input and output signals.

In this article the Duffing system dynamics is analyzed with parameters: w = 1 k = 0.5; c = 1; d =1-, A0 =0.41.

But the model can be easily rescaled to any different frequency and amplitude by changing of the coefficients a, b, c, d. The differential equation ( ) is solved numerically with using of trapezoidal integration method.

An example of Duffing system chaotic oscillations (1) is shown in Fig. 1.

Fig. 2. A typical phase portrait of Duffing system chaotic oscillations

As it is shown in Fig. 2. the phase trajectories diverge with time. The difference between Duffing system phase trajectories can be caused by weak signals with periodic components at the frequency of driving signal [32].

For example, the process of phase trajectories divergence is shown in Fig. 3 for changing of driving signal amplitude A0 = 0.41 by small value A A = 4 ■ 10-4. The time of divergence is 15 ■ T (noted by

points in Fig. 3), where T = 2 ■ k/u is the period of The nature of Duffing system sensitivity to weak driving signal so(t). periodic signals is shown in Fig. .

Fig. 3. Divergence of Duffing system phase trajectories without input noise

The phase trajectories diverge along the Poincare section of Duffing system phase portrait. The Poincare section is a set of points (x(m ■ T,^o), (m ■ T,^o)) selected with one driving signal period T and initial phase pot where rn = 0,1, 2,3,..., M.

Fig. 4 shows the divergence of phase trajectories for the same amplitudes Ao, Ao — AA, Ao + A A and the same time 15 ■ T under the presence of strong noise.

The noise is an aperiodic random waveform with uniform distribution. The noise level is characterized by signal-to-noise ratio (5) in the frequency range

G [0.7u; 1.3u].

SNR = 20\og

10

£ 2 X /(sinf {r yfdr 0

f(n(r ))2dT

(5)

In Fig. 4, the three phase trajectories are obtained under the same noise level with SNR = —21 dB. The SNR value is estimated by expression (5) for harmonic input signal with AA amplitude (sinf(t) = AA ■ sin(wi)).

0.5

-0.5

Poincare section

-A -AA

0 Ao A +AA

t 0

■1.5

-0.5

0.5

x(t)

Fig. 4. Divergence of Duffing system phase trajectories with SNR = -21 dB at the input

Fig. 4 shows that noise does not change the direction of phase trajectory shifts along Poincare section caused by changing of periodic component amplitude.

Fig. 5. The dependence between periodic signal amplitude oscillation mode: 1, 3 periodic states; 2 -chaotic state; dashed lines — critical states

Fig. 5 shows that if amplitude of input signal periodic component is in the range [0; 1], then Duffing system can be in chaotic or periodic state. The periodic states appear- when Ao < 0.37^ or Ao > 0.754. If Ao £ [0.375; 0.754], then Duffing system is in chaotic state.

As it is shown in Fig. 5, in periodic states the sensitivity of Duffing system to weak signals is low, such as at different Ao values the output signal oscillation forms are almost the same. In chaotic state a small change of periodic component can lead to significant change of output signal form.

Thus the design of methods and algorithms for estimation of noisy signal parameters with analysis of Duffing system response divergences can allow to realize the signal reception under low SNR values.

3 Periodic signal detection based on the estimation of phase trajectories divergence

As it is shown in Fig. 3 and Fig. 4, the Duffing system phase trajectories diverge along the Poincare section under small changes of input signal periodic component.

For convenient expression of phase trajectories divergence estimation we perform the next replacements:

y(t) = xf (t).

g(t)= A - gn(t)

(6)

(7)

n

where x'(t) is the derivative of output signal; gn(t) is the normalized input signal:

i

2/ (9n(r))2dr = 1.

L(t,A)

r IÍ dx(t,u) + ( dy(t,u) N J V y du J \ du J

«inf(t) = As • sin(wi); square signal:

Sinf

(t) =

Aa,t G [mT; (m + 2) T]

2

-As,t G [ (m + i) T ; (m + 1) T] ; triangle signal:

2

sinf (t) = As • — arcsin (sin(wi)).

Deviation of phase trajectories under the influence of noise

0.5

1.5

2.5

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

x1CT

The corresponding values of SNR are presented in Fig. 7.

(8)

Therefore, the divergence of Duffing system phase trajectories under influence of input signal g(t) can be estimated by expression:

du. (9)

The estimation of phase trajectories divergence is performed for three different periodic signals: sinusoidal signal:

(10)

(ID

(12)

Fig. 7. SNR values for the presented amplitudes of periodic signals

So. we can detect periodic signals with repeating frequencies near the driving signal frequency w with using of the expressions:

Ho

H!

L < Lthri, L ^ Lthr2,

(13)

The values of phase trajectories divergence estimation L are calculated with using of trapezoidal integration method.

The results of estimation of Duffing system phase trajectories divergence are shown in Fig. 6 under the influence of sinusoidal, square and triangle signals for the time 22 • T.

-sinusoidal signal -square signal triangle signal -noise influence limit

Fig. 6. The dependence between periodic signal amplitude and divergence of phase trajectories

Fig. 6 shows that if the amplitude of input signal periodic component is greater than 7 • 10-8, then after 22 periods of driving signal the phase trajectory divergence estimation L is much greater than under aperiodic noise influence only. The region that corresponds to phase trajectories divergence caused by noise is shown in grey color.

where Ho is the hypothesis of signal absence; Hi is the hypothesis of signal presence; Lthri mid Lthr2 the lower and upper threshold values of the divergence estimation L correspondingly. The threshold values can be defined in accordance with the statistical methods used for making the decisions between hypotheses H0 and Hi.

4 Discussion

The presented analysis of dependence between amplitude of input signal periodic components and Duffing system phase trajectories divergence shows that the described chaotic system has great capabilities of application for signal detection purposes.

The presented results (Fig. 6, Fig. 7) demonstrate that Duffing system phase trajectories divergence increases significantly under weak periodic influences at the frequency of driving signal. The corresponding divergence of phase trajectories under noise influence is much less. For example, the noise with low level of periodic components (SNR = -60 dB) causes the maximum estimated divergence only L = 122, while we obtain L = 213 under the influence of periodic signal with SNR = -44 dB. Thus, we can establish a reliable threshold value of L for detection of periodic signals.

Also, the phase trajectories divergence depends on the form of periodic signal. So the square waveform causes the maximum divergence and triangle waveform causes the minimum divergence. The dependence between phase trajectories divergence and the form of periodic signal requires additional investigations. Snch

2

dependence is related to energy of periodic signals at the driving signal frequency.

For digital signal reception applications, the development of new methods is required for analysis of the phase trajectories divergence estimation L that changes with time, amplitude and form of periodic signals. The presented estimation approach can be nsed in program realization of signal detection methods based on discrete Dnffing system modeling. For hardware realization the fast estimation methods are required.

Tims the future works of authors are concentrated on the development of discrete phase trajectories divergence estimation methods.

Conclusions

This article presents the analysis of periodic signal detection method based on Dnffing system chaotic dynamics.

The obtained results show that accurate estimation of Dnffing system phase trajectories divergence allows to detect periodic signals under low SNR values. The presented results show the capabilities of signal detection under SNR = —44 dB and higher in the frequency range [0.7u; 1.3w], where w is the driving signal frequency.

The advantage of the presented method is that the divergence of phase trajectories is not limited by Dnffing system output signal dynamic range in accordance with the fractal geometry of its Poincare section that changes with time.

One of the most important directions for future development of chaos-based signal detection methods is the design of efficient digital estimators of phase trajectories divergence.

References

[1] Vaseghi S.V. ("2008) Advanced Digital Signal Processing and Noise Reduction. DOl: 10.1002/9780470740156

[2] Shannon C. (1949) Communication in the Presence of Noise. Proceedings of the IRE, Vol. 37, Iss. 1, pp. 10-21. DOl: 10.1109/jrproc.1949.232969

[3] Kumar A. (2018) Design and simulation of M1MO and massive M1MO for oO mobile communication system. International .Journal of Wireless and Mobile Computing, Vol. 14, Iss. 2, pp. 197. DOl: 10.1504/ijwmc.2018.10012260

[4] Kotel:nikov V.A., Silverman R.A. and Turin O.L. (1960) The Theory of Optimum Noise Immunity. Physics Today, Vol. 13, Iss". 8, pp. 40-42. DOl: 10.1063/1.3057075

[5] Boiko .1. M. (2015) Increasing the noise immunity of signal processing units of telecommunications on the basis of the modilied synchronization schemes. Visn. N'l'UU KP1, Ser. Radioteh. radioaparatobuduv., no. 61, pp. 91-107. DOl: 10.20535/RADAP.2015.61.91-107

[6] Kalinin V.l. and Chapursky V.V. (2008) UWB wireless communications with signal correlation processing.

2008 18th International Crimean Conference - Microwave & Telecommunication Technology. DOl: 10.1109/crmi-co.2008.4676380

[7] Shapiro R. (1975) Linear iiltering. Mathematics of Computation, Vol. 29, Iss. 132, pp. 1094-1094. DOl: 10.1090/s0025-5718-1975-0389356-x

[8] Vetterli M. and Prandoni P. (2008) Signal Processing for Communications. DOl: 10.1201/9781439808009

[9] Haykin S., Yee P. and Derbez E. (1997) Optimum nonlinear iiltering. IEEE Transactions on Signal Processing, Vol. 45, Iss. 11, pp. 2774-2786. DOl: 10.1109/78.650104

[10] Luchinsky D., Mannella R., McClintock P. and Stocks N. (1999) Stochastic resonance in electrical circuits. 1. Conventional stochastic resonance. IEEE Transactions on Circuits and Systems 11: Analog and Digital Signal Processing, Vol. 46, Iss. 9, pp. 1205-1214. DOl: 10.1109/82.793710

[11] McNamara B. and Wiesenfeld K. (1989) Theory of stochastic resonance. Physical Review A, Vol. 39, Iss. 9, pp. 4854-4869. DOl: 10.1103/physreva.39.4854

[12] Casado-Pascual .1., Cômez-Ordônez .1., Morillo M. and Hânggi P. (2003) Two-State Theory of Nonlinear Stochastic Resonance. Physical Review Letters, Vol. 91, Iss. 21. DOl: 10.1103/physrevlett.91.210601

[13] Markley F.L., Crassidis .1. and Cheng Y. (2005) Nonlinear Attitude Filtering Methods. A1AA Guidance, Navigation, and Control Conference and Exhibit. DOl: 10.2514/6.20055927

[14] Madisetti V. (2009) Digital Signal Processing Fundamentals. Electrical Engineering Handbook. DOl: 10.1201/9781420046076

[15] Sivakrishna S. and Yarrabothu R.S. (2018) Design and simulation of 5C massive M1MO kernel algorithm on S1MD vector processor. 2018 Conference on Signal Processing And Communication Engineering Systems (SPACES). DOl: 10.1109/spaces.2018.8316315

[16] .larry P. and Beneat .I.N. (2015) Digital Communications. Digital Communications, pp. 3-5. DOl: 10.1016/b978-l-78548-037-9.50001-6

[17] Chunyan N. and Zhuwen W. (2011) Application of Chaos in Weak Signal Detection. 2011 Third International Conference on Measuring Technology and Mechatronics Automation. DOl: 10.1109/icmtma.2011.134

[18] .lung S.N., Longtin A. and Maler L. (2016) Weak signal amplification and detection by higher-order sensory neurons. .Journal of Neurophysiology, Vol. 115, Iss. 4, pp. 2158-2175. DOl: 10.1152/jn.00811.2015

[19] Cao S.-L., Zhong S.-C., Wei K. and Ma H. (2012) Weak signal detection based on chaos and stochastic resonance. Acta Phys. Sin, Vol. 61, Iss. 18, pp. 180501. DOl: 10.7498/aps.61.180501

[20] Lu P. and Li Yu. (2005) A Modified Chaos-Based Weak Sinusoidal Signal Amplitude Detection Approach[.I]. Chinese Journal of Electronics, Vol. 33, Iss. 3, pp. 527-529.

[21] Wang C„ Chen D„ Lin .1. and Chen X. (1999) The application of chaotic oscillators to weak signal detection. IEEE Transactions on Industrial Electronics, Vol. 46, Iss. 2, pp. 440-444. DOl: 10.1109/41.753783

[22] Korneta W., Carcia-Moreno E. and Sena A. (2015) Noise activated dc signal sensor based on chaotic Chua circuit. Communications in Nonlinear Science and Numerical Simulation, Vol. 24, Iss. 1-3, pp. 145-152. DOl: 10.1016/j.cnsns.2014.12.010

[23] Rohdn G.K., Nichols .I.M. and Bucholtz F. (2008) Chaotic signal detection and estimation based on attractor sots: Applications to secure communications. Chaos: An Interdisciplinary .Journal of Nonlinear Science, Vol. 18. Iss. 1, pp. 013114. DOl: 10.1063/1.2838853

[24] Liu F., Wang .1. and Wang W. (1999) Frequency sensitivity in weak signal detection. Physical Review E, Vol. 59. Iss. 3, pp. 3453-3460. DOl: 10.1103/physreve.59.3453

[25] Li Y. (2003) Chaotic system for the detection of periodic signals under the background of strong noise. Chinese Science Bulletin, Vol. 48. Iss. 5, pp. 508. DOl: 10.1360/03tb9107

[26] Wei C„ Chen M„ Cheng W. and Zhe Z. (2009) Summary on weak signal detection methods based on Chaos theory. 2009 9th International Conference on Electronic Measurement & Instruments. DOl: 10.1109/icemi.2009.5274836

[27] Martynyuk. V. V., Foduia, M. V. (2013) Weak periodic signal detection with the fractional order modified Duffing-Holmes system. Visn. N'l'UU KPI, Ser. tiadioteh. radioaparatobuduv., no. 53, pp. 13-22. DOl: 10.20535/RADAP.2013.53.13-22

[28] Sun Wenjun, Rui Guosheng, Zhang Yang and Wang Lin (2013) Chaotic oscillator detection method for weak signals. .Journal of Data Acquisition & Processing, 2013-03.

[29] Rongbiao Z., Fuhuan C., Li R. and .lianguang G. (2011) Weak Signal Detection Method under the Strong Noise Background. Advances in Intelligent and Soft Computing, pp. 417-425. DOl: 10.1007/978-3-642-25185-6_54

[30] Le B. (2005) Chaotic Oscillator and Other Techniques for Detection of Weak Signals. 1E1CE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, Vol. Е88-Л, Iss. 10, pp. 2699-2701. DOl: 10.1093/iotfoc/o88-a. 10.2699

[31] Korsch H..I. and .lodl H. (1994) The Duffing Oscillator. Chaos, pp. 157-180. DOl: 10.1007/978-3-662-02991-6_8

[32] Martynyuk V., Foduia M. and Balov O. (2014) Periodic Signal Detection with Using Duffing System Poincare Map Analysis. Adv. Set. Technol. Res J., Vol. 8, Iss. 22, pp. 26 30. DOl: 10.12913/22998624.1105158

Анал1з методу виявлення перюдичних сигнал!в на основ! хаотично!" динамики системи Дуффшга

Мартинюк В. В., Гаврилки 6. В., Бойко Ю. М., Федула М. В.

У статт! запропоповапо апал!з методу виявлеппя перюдичних сигпалш, який базуеться па чутливост! системи Дуффшга до слабких вплшмв.

Процес виявлеппя перюдичних сигпалш е одшею 1з пайважлив!ших задач сучаспо! радютехшки та зв'язку. Зокрема, чутлшметь i завадостшкють в процес! вияв-лоппя перюдичпих сигпал1в суттево впливае па як!сть прийому цифорвих сигпалш !з амшнтудпою, частотною та фазовою машпулящею.

Напрншшц XX ст. було розроблепо пову групу мето-д!в виявлеппя перюдичпих снгпал!в па основ! властпво-стей чутливост! хаотич1шх систем до слабких перюдичпих вплшмв за умови паявпост! вх!дпих шум!в.

В!лышсть в!домих метод!в виявлешш перюдичпих сигпал1в !з застосуваппям хаотичпих систем засповаш

па !дептиф1кацп переходу коливапь 1з хаотичного режиму в перюдичпий режим впастдок зб!лынеппя амшнтуд перюдичпих складових вх1дпого сигналу па частотах, близьких до частоти задаючого сигналу.

Перевагою приведепого методу виявлеппя перюди-чпих сигпал1в е використашш системи Дуфф!пга у хаотичному режим!, без переход!в до пер!одичного режиму, в якому спостер!гаеться зпачпо ппжча чутлшметь до слабких иер!одичних коливапь вх!дпого сигналу.

Описаний у статт! метод базуеться па тому, що при р!зпих ампл!тудах перюдичпих складових вх!дпо-го сигналу системи Дуфф!нга п фазов! траекторп у хаотичному режим! розходяться з р1зпою швидк!стю. Приведено формулу для оцшки величшш розходжеппя фазовпх траекторш.

Досл!джепо процеси розходжеппя фазовпх траекторш системи Дуфф!пга при р!зпих формах пер!одичпих сигпал1в па вход!. Зокрема, наведено апал!з ироцес!в розходжеппя фазовпх траекторш впасл!док впливу си-пусо1далыюго. прямокутпого та трикутпого сигпал!в. Вказапо методику розрахупку зиачень коефщ!епт!в р!в-ПЯ1ШЯ Дуффшга, пеобх1дпих для реал!зацп хаотичпих режим!в коливапь для р!зпих ампл!туд 1 частот задаючого сигналу.

Результати апал!зу показують можливост! виявлеппя перюдичпих сигпал1в р!з1шх форм !з частотою повторения, близькою до частоти задаючого сигналу, за умов пизьких зиачень в!дпошеппя сигнал/шум па вход!.

Отримаш результати показують широк! можливост! застосувашш системи Дуфф!пга для виявлеппя слабких перюдичпих сигпал!в.

Клюноаг слова: виявлеппя слабких сигпал1в: хаоти-чш системи: в!дпошеппя сигпал-шум: фазовий портрет

Анализ метода обнаружения периодических сигналов на основе хаотической динамики системы Дуффинга

Мартыпюк В. В., Гаврилко Е. В., Бойко Ю. Н., Федула М. В.

В статье предложен анализ метода обнаружения периодических сигналов, базирующийся па чувствительности системы Дуффинга к слабым воздействиям.

Метод обнаружения сигналов разработан с использованием системы Дуффинга в хаотическом режиме без переходов в периодический режим. Главное преимущество метода отсутствие переходов в периодические режимы с пизкой чувствительностью.

Исследованы процессы расхождения фазовых траекторий при разных периодических сигналах па входе (синусоидальный, прямоугольный, треугольный).

Результаты анализа показывают возможности обнаружения периодических сигналов с частотой повторения, близкой к частоте задающего сигнала, при низких значениях отношениях сигнал/шум.

Полученные результаты показывают широкие возможности применения системы Дуффигпа для обнаружения слабых периодических сигналов.

Ключевые слова: обнаружение слабого сигнала: хаотические системы: отношение сигнал шум: фазовый портрет

i Надоели баннеры? Вы всегда можете отключить рекламу.