Научная статья на тему 'Темная энергия со специальной формой неоднородного уравнения состояния'

Темная энергия со специальной формой неоднородного уравнения состояния Текст научной статьи по специальности «Математика»

CC BY
156
33
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
темная энергия / космологическая сингулярность / космическое ускорение / Dark energy / cosmological singularity / cosmic acceleration

Аннотация научной статьи по математике, автор научной работы — Timoshkin Aleksandr Vasilyevich

Рассматривается пространственно-плоская Вселенная Фридмана, заполненная идеальной жидкостью с нелинейным неоднородным уравнением состояния. Получены решения гравитационного уравнения движения. Показано, что в некоторых случаях возникает квазипериодическая Вселенная. С другой стороны, такая модель темной жидкости может также описывать космическое расширение с ускорением (квинтэссенцию). Обсуждается возможность появления будущих сингулярностей в зависимости от выбора ряда значений параметров.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

The four-dimensional flat Friedman universe filled with ideal fluid with a nonlinear inhomogeneous equation of state depending on time is considered. The equations of motion are solved. It is shown that in some cases there appears a quasi-periodical universe. On the other hand, such dark fluid models may also describe quintessence-like cosmic acceleration. The appearance of future singularities resulting from various choices for the input parameters is discussed.

Текст научной работы на тему «Темная энергия со специальной формой неоднородного уравнения состояния»

UDC 530.12:531.551

A. V Timoshkin

DARK ENERGY wITH SPECIAL FORM INHOMOGENEOUS EQUATION OF STATE

The four-dimensional flat Friedman universe filled with ideal fluid with a nonlinear inhomogeneous equation of state depending on time is considered. The equations of motion are solved. It is shown that in some cases there appears a quasi-periodical universe. On the other hand, such dark fluid models may also describe quintessence-like cosmic acceleration. The appearance of future singularities resulting from various choices for the input parameters is discussed.

Key words: dark energy, cosmological singularity, cosmic acceleration.

1. Introduction

As is known, the present universe is subject to acceleration, which can be explained in terms of an ideal fluid (dark energy) weakly interacting with usual matter. Among the different possible models that have been considered in the literature, one that has a good probability to reflect what may be going on there, is a model in which dark energy is described by some rather complicated ideal fluid with an uncommon equation of state (EoS). Very general dark fluid models can be described by means of an inhomogeneous EoS [1-4]. However, it is worth stressing that term inhomogene-ous does not mean that we consider an inhomogeneous universe (so that the RW metric may still be retained) nor that we consider the possibility that dark energy may cluster in the nonlinear regime of perturbation. Some particular examples of such kind of equations have been considered in [5-11]. Moreover, a dark energy fluid obeying a time-depending EoS [6, 12] may also be successfully used with the purpose to mimic the classical string landscape picture [13], which is very interesting as regard establishing a connection with a different fundamental approach.

In this paper we shall investigate a specific model for a dark fluid with a non-linear EoS, which seems to be particularly natural and exhibit quite nice properties.

In this sense it can be considered as a conviniently simple paradigm for that class of models.

2. Inhomogeneous equation of state for the universe and its solutions

Let us assume that our universe can be conveniently described by a field giving rise to an ideal fluid (dark energy) that obeys a non-linear inhomogeneous EoS depending on time [14]:

p = w(f)p + /(p) + A(t), (1)

where w (t) and A (t) depend on time t, and where f(p) is an arbitrary function in general. Let us write down the law of energy conservation:

p + 3H(p + p) = 0 (2)

and the corresponding FRW equation for spatially flat FRW universe:

-H2 = p.

where p is the energy density, p is the pressure.

a

H = — is the Hubble parameter, a (t) is the scale factor

a

of the three-dimensional flat Friedman universe, X2 = 8nG with Newton’s gravitational constant G.

Taking into account (1)-(3), we obtain the gravitational equation of motion:

1

p + V3k p2 [ (w (t) +1 )p + f (p) + A(t)] = 0. (4)

First of all, we assume here, that the function f (p) = 0 and that both the function w (t) and A (t) depend linearly on time:

w( t) = a1t + b, (5)

A(t) = ct + d , (6)

where a1,b, c, d are some constants.

This kind of behaviour may be consequence of a modification of gravity (see [1, 13]).

Note that special version of our model introduced in [15] was considered recently in [16].

Let us assume, for simplicity that a1 = 0, b ^ 1. For the energy density we obtain:

p(5) =-----------------7~------------

3 X2 52 (1+b )2

1+-

2

(7)

Y

Hubble’s parameter takes the form: 2

3^(1 + b)

1+

(8)

Y

where y = -^- and E = — y2 (ct + .

3cx s 4X V '

d

(3)

If ^ —> 0 ^t ^—J, the functions H (%) and p(£,) simultaneously approach zero. For b > -1 when

p > 0 the energy density grows, and there occurs expansion of the universe. In the case when ^>^2, p <0, a < 0, there occurs compression of the universe. The derivative H > 0 if $1 <^2 and we obtain the phantom phase of the universe. When and 5>5 2 the derivative H < 0 we obtain non-phantom phase.

But if b < -1 then with 5<5 2 the energy density diminishes, p <0 and a < 0, and there occurs compression of the universe. When 5>52, P > 0, there occurs expansion of the universe.

A graphical representation of H (%) is given in Fig. 1.

Since d > 0, we have H < 0, and we get the nonphantom phase of the universe. The functions p (t) and H (t) change quasi-periodically (Fig. 2). Cosmological singularities appear also quasi-periodically. The energy density and the Hubble parameter simultaneously approach infinity. That is, we have singularity of the type Big Rip [17]. Note that such singularities can be of very different types [18].

X / d -3 X a y n(+1)3

3 V b +1 Z 2 3 n (b+1)5

(12)

Fig. 1. Hubble parameter H (^), t>1 = 0.757y3, ^2 = 1.272y

Assume now that w(t~) = a1t + b and A(t) = d . Then the energy density takes the form:

P(t ) =

z

-11% (it + b + ^

Qi\ 3

(9)

Fig. 2. Hubble parameter H = H (t)

Let us finally consider the case of the nonlinear EoS with function A (t) = 0 and parameter w (t) to be linearly dependent on time (5); while for the function f (p) we choose it to be f (p) = Ayjp , where A is a parameter.

The solution of (4) looks like

and the Hubble parameter becomes

Id (t + b + ^2

P(t ) =

1

H (t ) = * . rd

3 ,J(t + b +1)

Ce

Axt

ax

2 A

(13)

-^a^ + b + l)2

(10)

and the Hubble parameter is H (t) = - X

where Zv = CjJv + C2Yv, i.e. the general solution of

Bessel’s equation, C1, C2 are arbitrary constants, and

b +1 t >--------.

The derivative equals

d X2

^ Axt

Ce 2 X

(14)

6

f ] 2

1 + 3

Z 2

V 3 )

(11)

where C is an integration constant. We shall investigate, for further simplicity, the case when a1 = 0. Then the EoS acquires the form

P(t) = bP(t) + A/p . (15)

The Hubble parameter is H ()= ?, — ■ (16)

AX't b + 1

A

2

c

a

a

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

2

e

and the derivatives of H(t) and p (t) correspondingly become

H (1 ) = •

^3 A ^A%t

—AXe

tAx1 b +1

Y

(17)

A

3^3

P(t ) = ~

A 'yA%t

— e 2

X______

(18)

, 2

A

The scale factor is given by the expression

Ax-t b +1

A

Sx{b+i)

The derivative of scale factor is

i(t ) = ,

A 4Ax-t b+1V3^1)

A

2

-ln

(19)

(20) b +1

and we see that a(t) = 0 for t = tx =- r ,

\3%A A

while the second derivative of scale factor is

A

o -----1

b+1

a e

S — Aft ^

1 Axe 2

(21)

2 2

and we also have a (t) = 0 for t = t2 = ^— ln^—•

. y/3%A yj3%A

The simultaneous divergence of p (t) and H (t) appears at t1. However, the scale factor a (t1) = 0, which

is finite. That is, we have singularity of the type III.

In the case t > t, a simple study of the Hubble parameter sigh shows (H > 0) that one has an expanding universe and the contrast (H < 0) (the contracting universe) when t < t1. If A > 0 and b > -1 the expanding universe is always in the non-phantom phase (H < 0).

Provided A > 0 and b > -1 for values of t < t2 it turns out that the first and second derivatives of the scale factor are both positive (i.e., the universe expands with acceleration), while for t > t2 the first derivative is positive but the second derivative is negative (in this case it is still expanding but the expansion is decelerated). This is a very interesting transition.

3. Summary

In this work we have studied a model of the universe in which there is a nonlinear inhomogeneous EoS with a linear dependence on time. The consequences of various choices of parameters in the linear functions are examined. The presence of a linear inho-mogeneous term in the linear EoS leads either to compression of the universe in the evolution process or to quasi-periodical change in the energy density and in the Hubble parameter, and also to the quasi-periodical appearance of singularities. In the absence inhomoge-neous term in the nonlinear EoS it is possible to have a description of the evolutionary transition according to the values of the scale factor a (t) and its first and second derivatives, which characterize different types of accelerating and decelerating expansions of the universe. Adding a cosmological constant-like term to the EoS led us to the conclusion that a future singularity forms, in the sense that the energy density and the Hubble parameter simultaneously approach infinity. We have considered a pure dark energy model.

Acknowledgements. We thank professor Sergey Odintsov for very valuable discussions.

References

1. Nojiri S., Odintsov S. D. Introduction to Modified Gravity and Gravitational Alternative for Dark Energy // Int. J. Geom. Meth. Mod. Phys. 2007. Vol. 4. P. 115-146.

2. Nojiri S., Odintsov S. D. Unified cosmic history in modified gravity: from F(R) theory to Lorentz non-invariant models // ar-Xiv: 1011.0544v3 [gr-qc].

3. Nojiri S., Odintsov S. D. Inhomogeneous equation of state of the universe: phantom era, future singularity and crossing the phantom barrier //

Phys. Rev. 2005. D 72, 023003 [hep-th/ 0505215].

4. Nojiri S., Odintsov S. D. The new form of the equation of state for dark energy fluid and accelerating universe // Phys. Lett. 2006. B 639. P. 144150.

5. Brevik I., Nojiri S., Odintsov S. D.,Vanzo L. Entropy and universality of Cardy-Verlinde formula in dark energy universe // Phys. Rev. D. 2004. Vol. 70. 043520 [hep-th 0401073].

6. Nojiri S., Odintsov S. D. The oscillating dark energy: future singularity and coincidence problem // Phys. Lett. 2006. B 637. P. 139-148.

7. Ren J., Meng X. H. Modified equation of state, scalar field and bulk viscosity in Friedmann universe // Phys. Lett. 2006. B 636. P. 5-12.

8. Hu M., Meng X. H. Bulk viscous cosmology: Statefinder and entropy // Phys. Lett. 2006. B 635. P. 186-194.

9. Cardone V., Tortora C., Troisi A., Capozziello S. Beyond the perfect fluid hypothesis for the dark energy equation of state // Phys. Rev. D. 2006. Vol. 73. 043508. ar-Xiv: 0511528 [astro-ph].

10. Nojiri S., Odintsov S. D. The final state and thermodynamics of dark energy universe // Phys. Rev. D. 2004. Vol. 70, 103522 [hep-th/0508170].

11. Capozzielo S., Cardone V., Elizalde E. et al. Observational constraints on dark energy with generalized equations of state // Phys. Rev. 2006. D 73, 043512 [astro-ph/0508350].

e

2

A

2

A

12. Brevik I., Gorbunova O. G., Timoshkin A. V. Dark energy fluid with time-dependent inhomogeneous equation of state // Europ. Phys. J. 2007. C 51. P. 179-183.

13. Nojiri S., Odintsov S. D. Multiple lambda cosmology: dark fluid with time dependent equation of state as classical analog of cosmological landscape // Phys. Lett. 2007. B 649. P. 440-444. [hep-th/0702031].

14. Nojiri S., Odintsov S. D. Modified gravity with negative and positive powers of the curvature: unification of the inflation and of the cosmic acceleration // Phys. Rev. D. 2003. Vol. 68. 123512 [hep-th/0307288].

15. Brevik I., Elizalde E., Gorbunova O. G., Timoshkin A. V. A FRW dark fluid with a non-linear inhomogeneous equation of state // Europ. Phys. J.

2007. C 52. P. 223-228.

16. Houndjo S. J. M. Transition between phantom and non-phantom phases with time dependent cosmological constant // ar-Xiv: 1103.3006v1 [astro-ph.CO].

17. Nojiri S. Dark energy and modified gravities // Tomsk State Pedagogical University Bulletin. 2004. Issue 7(44). P. 49-57.

18. Nojiri S., Odintsov S. D. Properties of singularities in (phantom) dark energy universe // Phys. Rev. D. 2005. Vol. 71. 063004 [hep-th/0501025].

Tomsk State Pedagogical University.

Ul. Kievskaya, 60, Tomsk, Russia, 634061.

E-mail: [email protected]

Received 14.03.2011.

А. В. Тимошкин

ТЕМНАЯ эНЕРГИЯ СО СПЕЦИАЛЬНОЙ ФОРМОЙ НЕОДНОРОДНОГО УРАВНЕНИЯ СОСТОЯНИЯ

Рассматривается пространственно-плоская Вселенная Фридмана, заполненная идеальной жидкостью с нелинейным неоднородным уравнением состояния. Получены решения гравитационного уравнения движения. Показано, что в некоторых случаях возникает квазипериодическая Вселенная. С другой стороны, такая модель темной жидкости может также описывать космическое расширение с ускорением (квинтэссенцию). Обсуждается возможность появления будущих сингулярностей в зависимости от выбора ряда значений параметров.

Ключевые слова: темная энергия, космологическая сингулярность, космическое ускорение.

Тимошкин А. В., кандидат физико-математических наук.

Томский государственный педагогический университет.

Ул. Киевская, 6О, Томск, Россия, 634О61.

E-mail: [email protected]

i Надоели баннеры? Вы всегда можете отключить рекламу.