УДК 669.295
О.Г. Оспенникова1, В.И. Лукин1, А.Н. Афанасьев-Ходыкин1, И.А. Галушка1
ТЕХНОЛОГИЯ ВЫСОКОТЕМПЕРАТУРНОЙ диффузионном паики КОНСТРУКЦИИ ТИПА «БЛИСК» ИЗ РАЗНОИМЕННЫХ СПЛАВОВ
DOI: 10.18577/2307-6046-2019-0-9-26-37
Представлены результаты работ по разработке технологии изготовления конструкции типа «блиск» с использованием неразъемного соединения методом высокотемпературной диффузионной пайки. Разработан припой для пайки никелевых жаропрочных сплавов в разноименном сочетании, обеспечивающий длительную прочность паяного соединения на уровне 0,8-0,9 от прочности наименее прочного из соединяемых материалов. Исследовано влияние режимов термической обработки на микроструктуру и прочность паяного шва. Разработана технология пайки разноименных никелевых жаропрочных сплавов, применительно к конструкции типа «блиск». Приведены результаты натурных испытаний биметаллического образца-демонстратора конструкции типа «блиск».
Ключевые слова: пайка, высокотемпературная пайка, жаропрочные сплавы, биметаллическая конструкция типа «блиск»
O.G. Ospennikova1, V.I. Lukin1, A.N. Afanasev-Khodykin1,1.A. Galushka1
TECHNOLOGY OF THE HIGH TEMPERATURE DIFFUSIVE BRAZING OF A BIMETALLIC «BLISK» DESIGN
The article presents the results of the development a manufacturing technology for the construction type «blisk» design constructed with a permanent joint with the method of a high-temperature diffusion brazing. The brazing alloy for brazing nickel-based superalloys in bimetallic combinations, that provide a long-term strength of the brazing joint at the level of strength 0,8-0,9 from the least durable of the materials was developed. The influence of heat treatment on microstructure and strength of the brazing joint was investigated. The technology of brazing bimetallic nickel-based superalloys for «blisk» design was developed. Test of a bimetallic specimen of a «blisk» design demonstrator was carried out.
Keywords: brazing, a high-temperature diffusion brazing, nickel-based superalloys, bimetallic «blisk» design.
"'Федеральное государственное унитарное предприятие «Всероссийский научно-исследовательский институт авиационных материалов» Государственный научный центр Российской Федерации [Federal State Unitary Enterprise «All-Russian Scientific Research Institute of Aviation Materials» State Research Center of the Russian Federation]; e-mail: [email protected]
Введение
Одной из основных тенденций в современном газотурбостроении является повышение весовой эффективности газотурбинного двигателя. Для этого, наряду с применением новых материалов с высокими удельными характеристиками, разрабатываются и внедряются новые эффективные конструкционные решения, направленные на снижение массогабаритных показателей узлов ГТД. Одним из таких решений является применение ротора рабочего колеса турбины конструкции типа «блиск» без использования разъемного соединения диска с лопатками [1-4].
При проектировании рабочего колеса турбины следует учитывать, что наиболее нагруженной частью изделия является соединение диска с лопатками, которое работает при наиболее неблагоприятных условиях. Традиционно соединение лопаток с диском
выполняется с применением разъемного соединения типа «елочка». Использование особой клиновидной формы в замковой части лопаток и диска позволяет равномерно распределить возникающие в процессе работы напряжения. Подобное соединение обеспечивает минимальный уровень контактных напряжений, однако требует значительного увеличения сечения лопаток и обода диска в местах соединения. Кроме того, из-за особенностей конструкции соединения, требуется применять специальные стопорные элементы, исключающие перемещение лопатки в осевом (относительно диска) направлении. Как результат, это приводит к значительному повышению массогабарит-ных показателей изделия [5].
Одним из способов решения данной проблемы является замена разъемного механического соединения диска с лопатками на неразъемный тип соединения. Данное решение позволяет обеспечить равномерное распределение нагрузки, возникающей в зоне контакта, а также исключить применение дополнительных стопорных крепежных элементов. Как результат, сечение диска и лопаток в месте контакта может быть уменьшено, что приводит к значительному снижению массы рабочего колеса (по теоретическим расчетам - до 30%) без снижения надежности изделия в целом [6-8].
Традиционная конструкция типа «блиск» предполагает изготовление диска и лопаток из одного материала как одно целое. Однако применение одного сплава при изготовлении лопаток и диска существенно ограничивает характеристики конечного изделия. В связи с этим наиболее перспективным вариантом конструктивного оформления является конструкция типа «блиск», выполненная из разноименных материалов, выбранных исходя из условий работы каждого элемента рабочего колеса. В процессе работы в области пера лопаток температуры достигают 1100-1150°С и основными параметрами при выборе применяемого материала являются высокая жаропрочность и длительная прочность, в то время как температуры на массивном диске не поднимаются свыше 800-850°С и важнейшими характеристиками для выбранного материала являются повышенная длительная прочность и сопротивление усталости [9]. Рассматривая перспективные сочетания сплавов при изготовлении биметаллической конструкции типа «блиск», можно выделить группу жаропрочных никелевых сплавов, в которой литейный монокристаллический сплав ВКНА-25 будет применим как материал лопаток, а жаропрочный деформируемый сплав ЭП975 - как материал диска [10-15].
Рассматривая методы получения неразъемного соединения, следует учесть ограничения, накладываемые соединяемыми материалами. Так, высокая склонность никелевых жаропрочных сплавов к образованию горячих трещин из-за высокого содержания в них у'-фазы затрудняет применение традиционных методов сварки плавлением [16]. Как следствие, для изготовления биметаллической конструкции типа «блиск» возникает необходимость в разработке технологии получения высокопрочного неразъемного соединения, выполненного из разноименных никелевых жаропрочных сплавов, с учетом как технологических особенностей работы изделия, так и выбранного сочетания материалов.
Среди методов получения неразъемного соединения можно выделить следующие технологии: горячее изостатическое прессование (ГИП) порошкового диска совместно с лопатками, линейная сварка трением, диффузионная сварка и высокотемпературная диффузионная пайка. Каждая из представленных технологий обладает своими особенностями при реализации [17-19].
В данной работе в качестве метода получения биметаллической конструкции типа «блиск» выбран метод высокотемпературной пайки. Данная технология обеспечивает ряд преимуществ перед остальными технологиями, в частности:
- реализация технологии не требует применения сложного дорогостоящего оборудования и может быть применена на вакуумных печах сопротивления, имеющихся на большинстве предприятий авиационной отрасли;
- позиционирование лопаток может быть реализовано за счет пазов в диске, что исключает необходимость применения сложной оснастки;
- при реализации технологии применительно к существующему технологическому процессу изготовления рабочих колес вносимые изменения будут минимальны и в основном связаны с упрощением технологических процессов и снижением трудоемкости.
Однако для успешной реализации выбранной технологии необходимо разработать припой и технологию пайки разноименного сочетания жаропрочных никелевых сплавов, которые обеспечат высокие прочностные свойства паяных соединений на уровне соединяемых материалов.
Работа выполнена в рамках реализации комплексной научной проблемы 10.9. «Припои и технологии высокотемпературной диффузионной пайки с компьютерным управлением технологическими параметрами для формирования оптимальной структуры паяного соединения» («Стратегические направления развития материалов и технологий их переработки на период до 2030 года») [1, 20].
Материалы и методы
Контроль химического состава никелевых жаропрочных сплавов осуществляли в условиях ФГУП «ВИАМ» методами атомно-эмиссионной спектрометрии и атомно-эмиссионного спектрального анализа. Для определения химического состава образцов использовали оптический спектрометр ARL 4460. Содержание углерода определяли на анализаторе Leco CS600, а содержание газов (кислорода и азота) - на анализаторах Leco ТС-436 и Leco ТСН600.
Монокристаллические образцы и лопатки из сплава ВКНА-25 изготавливали на установке направленной кристаллизации с жидкометаллическим охладителем УВНК-9А. Заготовки из жаропрочного деформируемого сплава ЭП975 получали методом индукционной выплавки с последующим вакуумно-дуговым переплавом и высокотемпературной деформацией. Выплавку опытных композиций припоя производили в атмосфере аргона в электродуговой печи с нерасходуемым электродом.
При выборе припоя и отработке режимов термической обработки паяных соединений использовали два типа образцов: плоский образец-шайба и образец с клиновым зазором. На плоских образцах-шайбах определяли угол смачивания по ГОСТ 23904-79 и оценивали величину эрозионной активности припоев по отношению к соединяемым сплавам марок ВКНА-25 и ЭП975. На образцах с клиновым зазором определяли ширину зоны диффузионного влияния припоя на основной материал и величину изотермически отвердевшего зазора, т. е. зазора в паяном соединении, при котором сплошные эвтектические прослойки отсутствуют.
Микроструктуру паяного соединения исследовали методами оптической и растровой электронной микроскопии. Величину эрозионного взаимодействия припоев с основным материалом, угол смачивания и величину изотермически отвердевшего зазора определяли на оптическом микроскопе OlympusGx51 при увеличении х(50-500). Исследование основных характеристик микроструктуры (морфологию и распределение структурных составляющих) проводили на растровом электронном микроскопе JSM-6490LV. Кроме того, проведен микрорентгеноспектральный анализ, благодаря которому получена информация о химическом составе отдельных фаз и участков микроструктуры паяных соединений и соединяемых материалов.
Для механических испытаний использовали стыковые образцы шифра Н03-025, изготовленные из цилиндрических заготовок.
Испытания образца-демонстратора конструкции типа «блиск» проводили на разгонной установке, состоящей из герметичной разгонной камеры и воздушной турбины, обеспечивающей максимальную скорость вращения ротора 45000 об/мин.
Результаты и обсуждение
Выбор припоя для пайки сплавов ЭП975 и ВКНА-25 проводили с учетом особенностей соединяемых материалов и режимов их термических обработок. В процессе выбора температуры пайки учитывали, что:
- деформируемый сплав ЭП975 требует проведения специальной термической обработки при температуре 1190-1220°С [21] для обеспечения высокого уровня прочностных свойств;
- интерметаллидный сплав ВКНА-25 не требует проведения закалки и старения, но в процессе пайки на механически обработанных поверхностях при температуре выше температуры рекристаллизации могут протекать рекристаллизационные процессы, снижающие механическую прочность отливок.
Для определения температуры рекристаллизации сплава ВКНА-25 (температуры нагрева, свыше которой происходит рекристаллизация механически обработанных поверхностей) шлифованные шайбы из сплава ВКНА-25 подвергали вакуумной термической обработке (ВТО) при различных температурах в интервале 1200-1260°С. После чего поперечные шлифы шайб исследовали с помощью растровой электронной микроскопии. Характерные микроструктуры образцов приведены на рис. 1. Видно, что ВТО при температуре не более 1220°С (рис. 1, а, б) не приводит к рекристаллизации отливок из сплава ВКНА-25, поэтому температура пайки сплава ВКНА-25 должна быть не более 1220°С для исключения процессов рекристаллизации.
Рис. 1. Микроструктура приповерхностной зоны и основного материала образца из сплава ВКНА-25 (образцы а-г расположены по увеличению температуры нагрева)
Для пайки сплавов ЭП975 и ВКНА-25 опробованы серийные припои марок ВПр50, ВПр42, ВПр48, ВПр47, ВПр24. Выбранные припои предназначены для пайки никелевых жаропрочных сплавов, обеспечивают температуру пайки в необходимом
интервале температур и благодаря сложному многокомпонентному составу обеспечивают высокие значения прочности паяных соединений. При опробовании серийных припоев оценивали такие технологические характеристики припоев, как площадь растекания, эрозионная активность по отношению к соединяемым материалам и величина изотермически отвердевшего зазора. Площадь растекания и эрозионная активность припоев определяют их технологичность, а величина изотермически отвердевшего зазора, с одной стороны, характеризует склонность припоя к упрочнению паяного соединения в процессе изотермичекой выдержки, а с другой - величину сборочных зазоров, которую необходимо обеспечить для получения высокой прочности паяных соединений [21-24]. Результаты проведенных исследований приведены в табл. 1.
Таблица 1
Технологические характеристики припоев для пайки сочетания сплавов ЭП975 и ВКНА-25
Припой
ВПр24
ВПр47
ВПр48
ВПр42
ВПр50
ВПр56
Эрозионная активность, мкм
ВКНА-25 ЭП975
118
70
115
252
212
80
45
86
183
137
259
20
Площадь
растекания,
2
мм
130
91,5
132
304
231
115,70
Величина изотермически отвердевшего зазора, мкм
30
50
50
75
95
106
Внешний вид пробы на растекаемость
Из приведенных результатов исследований видно, что:
- припои марок ВПр42 и ВПр50 обладают избыточной растекаемостью и большой эрозионной активностью по отношению к обоим соединяемым материалам. Это обусловлено значительным перегревом при пайке (1220°С) относительно их температур полного расплавления (1090 и 1120°С соответственно). Избыточная растекаемость делает данные припои нетехнологичными при данных условиях пайки и сильно затрудняет отработку технологии пайки на изделии;
- припой ВПр24 при значительной эрозионной активности по отношению к сплаву ВКНА-25 не склонен к диффузионному отверждению. Для обеспечения высокой прочности паяных соединений при пайке необходимо будет обеспечить сборочные зазоры не более 30 мкм, что, с одной стороны, затруднительно технологически, с другой - будет способствовать формированию пористости в протяженных паяных соединениях;
- припой ВПр47 при относительно небольшой эрозионной активности по отношению к обоим соединяемым материалам обладает малой площадью растекания и невысокой склонностью к диффузионному отверждению. Из-за малой площади растекания достаточно сложно будет сформировать качественное (бездефектное) паяное соединение с большой протяженностью, необходимое для соединения лопаток с диском;
- припой ВПр48 при высокой эрозионной активности по отношению к сплаву ЭП975 также обладает невысокой склонностью к диффузионному отверждению.
Таким образом, все опробованные припои имеют существенные недостатки, которые не позволят получить качественные высокопрочные паяные соединения применительно к данным условиям пайки. Поэтому проведена работа по разработке нового припоя для пайки сплавов ЭП975 и ВКНА-25 применительно к конструкции типа «блиск», обладающего оптимальным комплексом технологических характеристик для данных условий пайки. Разработку припоя вели с использованием математического моделирования. В качестве системы легирования принята система Ni-Co-Cr-Al-Ti-Nb-B. Такой сложный многокомпонентный состав припоя близок к составам соединяемых материалов и должен обеспечить высокую жаропрочность паяного шва. В качестве основных элементов, подвергаемых варьированию, выбраны Т^ № и В, оказывающие наиболее существенное влияние на технологические характеристики припоя данной системы легирования. В качестве функций отклика исследовали площадь растекания, эрозионную активность по отношению к соединяемым материалам и величину изотермически отвердевшего зазора. По результатам проведенных исследований разработан припой марки ВПр56, обеспечивающий:
- минимальную эрозию основных материалов;
- высокие технологические характеристики припоя (смачиваемость, растекаемость) при температуре пайки, оптимальной для данного сочетания материалов;
- высокую склонность к диффузионному отверждению.
Технологические характеристики нового припоя в сравнении с серийными приведены в табл. 1.
При кристаллизации припоя в паяном соединении, как правило, возникает неоднородность состава. Микроструктура паяного шва при пайке никелевыми сложнолеги-рованными припоями обычно представлена зернами у-твердого раствора, выделениями упрочняющей у'-фазы и большим количеством боридной эвтектики, образующей сплошные прослойки между зернами. Обычно эвтектические прослойки обладают высокой хрупкостью и в результате сплошного характера выделения снижают прочность паяных соединений. Для уменьшения количества эвтектических выделений и смены их характера со сплошного на точечный применяется гомогенизирующая термическая
обработка (ГТО), при которой содержание бора и других элементов, формирующих эвтектическую фазу, уменьшается в паяном шве вследствие их диффузии в основной материал. Как результат, применение ГТО позволяет значительно повысить прочность паяных соединений.
Для установления оптимальной длительности выдержки при гомогенизирующем отжиге исследовали структурные изменения в паяном шве: определяли величину изотермически отвердевшего зазора и ширину зоны диффузионного взаимодействия сплавов ЭП975 и ВКНА-25 с припоем ВПр56 в зависимости от продолжительности выдержки, которую определяли исходя из условий совместимости с режимом термической обработки сплава ЭП975. Результаты оценки представлены в табл. 2. Характерные микроструктуры паяных соединений сплавов ЭП975 и ВКНА-25 после ГТО по различным режимам приведены на рис. 2.
Таблица 2
Влияние режима гомогенизирующей термической обработки (ГТО) _на микроструктуру паяного шва_
Условный номер Величина изотермически Ширина зоны диффузионного
режима ГТО отвердевшего зазора, мкм взаимодействия, мкм, сплава
ВКНА-25 ЭП975
1 120 30 100
2 180 40 110
3 210 55 155
Режим 1 Режим 2
Рис. 2. Микроструктура клиновидных паяных соединений сплавов ЭП975 и ВКНА-25 после гомогенизирующей термической обработки, проведенной по различным режимам
Из приведенных данных видно, что с увеличением длительности выдержки при ГТО увеличивается величина изотермически отвердевшего зазора. Характер выделения эвтектических включений сменяется со сплошного непрерывного слоя в середине зазора на точечный в виде отдельных включений между зернами у-твердого раствора. Полученные данные показали, что диффузионный взаимообмен легирующими элементами между паяным швом и сплавом ЭП975 значительно более интенсивный (зона диффузионного влияния 100-155 мкм), чем со сплавом ВКНА-25 (30-55 мкм). Исследования микроструктуры диффузионных зон в основном материале вблизи паяного соединения,
выполненного припоем ВПр56, показали, что в сплаве ВКНА-25 выделения избыточных фаз практически отсутствуют, а в сплаве ЭП975 они выделяются в основном по границам зерен. Микрорентгеноспектральный анализ показал, что выделениями по границам зерен в околошовной зоне сплава ЭП975 являются карбиды, бориды и сложные карбобориды, по-видимому образовавшиеся в результате диффузии бора в основной материал из паяного шва. При этом характер их выделения является точечным и не должен приводить к существенному снижению прочности сплава ЭП975.
После ГТО по режиму 3 паяный шов с величиной сборочных зазоров характеризуется изотермически отвердевшей микроструктурой и представляет собой зерна у-твердого раствора с мелкодисперсными частицами у'-фазы (рис. 3).
г. Сплав ЭП975
Сплав ВКНА-25
Рис. 3. Микроструктура паяного соединения сплавов ЭП975 и ВКНА-25 после термической обработки по режиму 3
В процессе исследований проводили оценку влияния режима термической обработки на химический состав паяного шва и околошовной зоны. Для проведения оценки выбрали величину зазора в 140 мкм, которая характеризуется уменьшением ширины изотермически твердого раствора (вплоть до его полного исчезновения) с увеличением времени ГТО. Подобные изменения могут происходить вследствие диффузионного взаимообмена элементов в паяном шве и диффузионной зоне.
Для режимов 1 и 3 определяли содержание алюминия, титана, хрома, кобальта, ниобия, молибдена, вольфрама и рения перпендикулярно плоскости соединения на расстояниях 100, 200, 300, 400, 500, 600 и 700 мкм от центра паяного шва в сторону соединяемых основных материалов. Полученные значения распределения химических элементов в зоне паяного шва и приграничных диффузионных зонах паяного соединения приведены на рис. 4. Данные графики строили из расчета, что положительные значения по оси абсцисс - для сплава ЭП975, а отрицательные - для сплава ВКНА-25.
На графиках распределения легирующих элементов в паяном соединении после ГТО по режиму 1 видны резкие переходы от соединяемых материалов к твердому раствору припоя. После ГТО по режиму 3 переходы между соединяемыми материалами приобретают более пологий характер, величина пиков в центре паяного шва уменьшается, в то время как ширина зоны диффузионного влияния увеличивается. Следует отметить, что наиболее интенсивно диффузионные процессы обмена легирующими элементами происходят на границе «припой-сплав ЭП975». Полученные результаты подтверждают предыдущие опыты по измерению ширины зоны диффузионного взаимодействия.
Приведенные графики показывают, что при ГТО по режиму 3, благодаря процессам диффузии легирующих элементов в сторону меньших концентраций, происходит выравнивание химического состава паяного шва и околошовных зон, что способствует повышению прочности паяного соединения за счет смягчения градиента структурных составляющих и, соответственно, физико-механических характеристик отдельных участков паяного шва.
Рис. 4. Сравнение распределения легирующих элементов в зоне паяного шва и диффузионных зонах сплавов ВКНА-25 и ЭП975 при температуре 1210-1220°С и режимах термической обработки 1 (—) и 3 (—)
На основании проведенного комплекса исследований выбран режим 3 для проведения механических испытаний паяных соединений. Оценка 100-часовой прочности паяных соединений сплавов ЭП975 и ВКНА-25 при температуре 975 °С показала, что прочность паяных соединений находится в пределах 313-352 МПа, что соответствует прочности 0,8-0,9 от прочности материала ЭП975.
По разработанной технологии изготовлен образец-демонстратор конструкции типа «блиск» (рис. 5). Испытания образца-демонстратора проводили в два этапа по специально разработанной программе с выполнением контрольных замеров давления и температуры в разгонной камере.
Рис. 5. Образец-демонстратор конструкции типа «блиск»
На первом этапе образец-демонстратор конструкции типа «блиск» плавно последовательно разгоняли до различных частот вращения (23000, 30000, 37000 и 45000 об/мин), выдерживали при заданных оборотах в течение 5 мин и плавно останавливали. По завершении первого этапа испытаний образец-демонстратор демонтировали и измеряли его основные геометрические размеры для обнаружения отклонений и подвергали люминесцентному контролю для выявления трещин. Результаты исследований показали, что отклонение контрольных размеров составляло <1%, а трещины на образце-демонстраторе не обнаружены.
На втором этапе испытаний образец-демонстратор подвергали динамическим испытаниям, аналогичным принятым для серийных рабочих колес турбины компрессора вертолетного двигателя. Скорость вращения образца-демонстратора составляла 105% от рабочей частоты. Превышения допустимого уровня вибрации опор в ходе испытаний не обнаружено, что свидетельствует об успешном прохождении образца-демонстратора конструкции типа «блиск» испытаний и подтверждает его соответствие требованиям, предъявляемым к рабочему колесу турбины компрессора вертолетного двигателя.
Заключения
В результате проведенных исследований установлено, что серийные никелевые жаропрочные припои не обеспечивают приемлемого комплекса технологических характеристик и не могут использоваться для пайки литейного сплава ВКНА-25 и деформируемого сплава ЭП975 в разноименном сочетании. Разработанный в рамках проведенных работ припой ВПр56 на базе системы легирования сплава ЭП975 обладает рядом преимуществ перед серийными припоями, обеспечивает оптимальный комплекс технологических характеристик для сочетания сплавов ЭП975 и ВКНА-25 и способствует формированию качественного паяного соединения.
В процессе исследований паяных соединений сплавов ЭП975 и ВКНА-25, выполненных припоем ВПр56, установлено, что после пайки микроструктура паяного шва представляет собой сложную многокомпонентную структуру, состоящую из:
- зерен у-твердого раствора, кристаллизующихся в первую очередь на соединяемых поверхностях;
- сложной эвтектической прослойки в центре паяного шва, состоящей из твердого раствора, обогащенного ниобием, кобальтом и титаном, и боридной эвтектики.
Исследование влияния ГТО на микроструктуру паяного шва показало, что в результате диффузионного обмена между структурными составляющими паяного шва и соединяемыми материалами происходит выравнивание химического состава паяного шва и соединяемых материалов. В паяном шве сначала исчезает боридная эвтектика за счет диффузии атомов бора в паяемые материалы, при этом диффузия бора идет преимущественно в сплав ЭП975, формируя бориды на границах зерен сплава, в отличие от монокристаллического сплава ВКНА-25, где боридные выделения в виде мелких отдельных включений распределяются равномерно в околошовной (диффузионной) зоне. Дальнейшее увеличение длительности выдержки при ГТО приводит к растворению прослойки твердого раствора, обогащенного ниобием, кобальтом и титаном. В результате чего химический состав паяного шва представляет собой плавный градиент концентраций легирующих элементов соединяемых материалов без формирования избыточных и неравновесных фаз.
Определение прочности паяных соединений сплавов ЭП975 и ВКНА-25 в разноименном сочетании показало, что при оптимальной продолжительности ГТО длительная прочность паяных соединений при температуре 975 °С находится в пределах 313-352 МПа, что соответствует прочности 0,8-0,9 от прочности сплава ЭП975. Столь высокие показатели прочности достигаются при оптимальном химическом составе припоя, который разработан специально для данного сочетания сплавов, а также подобранным режимом ГТО паяного соединения, что позволяет использовать данную технологию пайки для такой ответственной детали ГТД, как рабочее колесо турбины.
По результатам проведенных работ изготовлен образец-демонстратор рабочего колеса турбины вертолетного двигателя конструкции типа «блиск» из сплавов ЭП975 и ВКНА-25. Результаты динамических испытаний образца-демонстратора показали работоспособность конструкции на уровне серийных изделий. Необходимо отметить, что даже небольшая оптимизация конструкции замкового соединения диска с лопатками позволила снизить массу обода рабочего колеса на 7%, а также снизить напряжения, возникающие в ступице диска, на 14% и исключить применение крепежных фиксирующих элементов лопаток. Оптимизация конструкции рабочего колеса в целом при использовании паяных соединений диска с лопатками позволит еще больше снизить массу рабочего колеса турбины - вплоть до теоретически возможных 30%.
ЛИТЕРАТУРА
1. Каблов Е.Н. Инновационные разработки ФГУП «ВИАМ» ГНЦ РФ по реализации «Стратегических направлений развития материалов и технологий их переработки на период до 2030 года» // Авиационные материалы и технологии. 2015. №1 (34). С. 3-33. DOI: 10.18577/20719140-2015-0-1-3-33.
2. Иноземцев А.А., Нихамкин М.А., Сандрацкий В.Л. Газотурбинные двигатели. Основы конструирования авиационных двигателей и энергетических установок. М.: Машиностроение, 2007. Т. 1: Общие сведения. Основные параметры и требования. Конструктивные и силовые схемы. С. 7-17.
3. Бабкин В.И., Цховребов М.М., Солонин В.И., Ланшин А.И. Развитие авиационных ГТД и создание уникальных технологий // Двигатель. 2013. №2 (86). С. 2-7.
4. Каблов Е.Н. Материалы нового поколения - основа инноваций, технологического лидерства и национальной безопасности России // Интеллект и технологии. 2016. №2 (14). С. 16-21.
5. Иноземцев А.А., Нихамкин М.А., Сандрацкий В.Л. Газотурбинные двигатели. Основы конструирования авиационных двигателей и энергетических установок. М.: Машиностроение, 2007. Т. 2: Компрессоры. Камеры сгорания. Форсажные камеры. Турбины. Выходные устройства. С. 259-272.
6. Лунев А.Н., Курылев Д.В. Обзор прогрессивных методов изготовления осевых моноколес авиационных газотурбинных двигателей // Фундаментальные исследования. 2016. №6-1. С. 78-82. URL: http://www.fundamental-research.m/m/artide/view?id=40375 (дата обращения: 18.06.2019).
7. Магеррамова Л.А., Васильев Б.Е. Биметаллические блиски турбин с бандажированными лопатками для газотурбинных двигателей // Наука и образование: научное издание МГТУ им. Н.Э. Баумана. 2015. №6. С. 143-156.
8. Yuan J., Scarpa F., Titurus B. et al. Efficient computational techniques for mistuning analysis of bladed discs: a review // Mechanical Systems and Signal Processing. 2017. Vol. 87. Part A. P. 71-90.
9. Магеррамова Л., Захарова Т., Громов М., Самаров В. Турбины: с «блиск»ом и без [Электронный ресурс]. URL: http://engine.aviaport.ru/02page32.html (дата обращения: 05.09.2019).
10. Каблов Е.Н., Петрушин Н.В., Елютин Е.С. Монокристаллические жаропрочные сплавы для газотурбинных двигателей // Вестник МГТУ им. Н.Э. Баумана. 2011. Спецвыпуск: Перспективные конструкционные материалы и технологии. С. 38-52.
11. Поварова К.Б., Валитов В.А., Овсепян С.В., Дроздов А.А., Базылева О.А., Валитова Э.В. Изучение свойств и выбор сплавов для дисков с лопатками («блисков») и способа их соединения // Металлы. 2014. №35. С. 61-70.
12. Каблов Е.Н., Петрушин Н.В., Светлов И.Л., Демонис И.М. Никелевые литейные жаропрочные сплавы нового поколения // Авиационные материалы и технологии. 2012. №S. С. 36-52.
13. Ночовная Н.А., Базылева О.А., Каблов Д.Е., Панин П.В. Интерметаллидные сплавы на основе титана и никеля / под общ. ред. Е.Н. Каблова. М.: ВИАМ, 2018. 308 с.
14. Каблов Е.Н., Петрушин Н.В., Светлов И.Л., Демонис И.М. Литейные жаропрочные сплавы нового поколения // 75 лет. Авиационные материалы. М.: ВИАМ, 2007. С. 27-44.
15. Ломберг Б.С., Овсепян С.В., Баркдазе М.М., Летников М.Н., Мазалов И.С. Применение новых деформируемых никелевых сплавов для перспективных газотурбинных двигателей // Авиационные материалы и технологии. 2017. №S. С. 116-129. DOI: 10.18577/2071-9140-2017-0-S-116-129.
16. Лукин В.И., Ковальчук В.Г., Иода Е.Н. Сварка плавлением - основа сварочного производства // Авиационные материалы и технологии. 2017. №S. С. 130-143. DOI: 10.18577/2071-9140-2017-0-S-130-143.
17. Оспенникова О.Г., Лукин В.И., Афанасьев-Ходыкин А.Н., Галушка И.А. Изготовление конструкции типа «блиск» из разноименного сочетания материалов (обзор) // Труды ВИАМ: электрон. науч.-технич. журн. 2018. №10 (70). Ст. 02. URL: http://www.viam-works.ru (дата обращения: 16.07.2019). DOI: 10.18577/2307-6046-2018-0-10-10-16.
18. Magerramova L.A. The advantages of bimetallic blisks manufactured by HIP from powder and cast Ni-base super alloys application to gas turbine with high speed // Proceedings of International Conference on Hot Isostatic Pressing, (HIP02). International Academic Publishers, 2002. Р. 59-67.
19. Оспенникова О.Г., Лукин В.И., Афанасьев-Ходыкин А.Н., Галушка И.А., Шевченко О.В. Перспективные разработки в области высокотемпературной пайки жаропрочных сплавов // Авиационные материалы и технологии. 2017. №S. С. 144-158. DOI: 10.18577/2071-9140-2017-0-S-144-158.
20. Каблов Е.Н. Стратегические направления развития материалов и технологий их переработки на период до 2030 года // Авиационные материалы и технологии. 2012. №S. С. 7-17.
21. Кишкин С.Т., Качанов Е.Б., Булыгин И.П. Авиационные материалы: справочник в 9 т. / под ред. Р.Е. Шалина. 6-е изд., перераб. и доп. М.: ВИАМ, 1989. Т. 3: Жаропрочные стали и сплавы. Сплавы на основе тугоплавких металлов. Ч. 1 Деформируемые жаропрочные стали и сплавы. С. 448-452.
22. Петрунин И.Е., Березников Ю.И., Бунькина Р.Р. и др. Справочник по пайке. 3-е изд. перераб. и доп. М.: Машиностроение-1, 2003. 480 с.
23. Петрунин И.Е., Маркова И.Ю., Екатова А.С. Металловедение пайки. М.: Металлургия, 1976. 264 с.
24. Хорунов В.Ф., Максимова С.В. Пайка жаропрочных сплавов на современном этапе // Сварочное производство. 2010. №10. С. 24-27.