AZ9RBAYCAN KIMYA JURNALI № 1 2018
45
UDC 547.544.424.678.6
SYNTHESIS OF POLYIMIDES OF POLYCHLORINATED CYCLIC DICARBOXYLIC ACIDS ON THE BASIS OF DIENE-DIENOPHILIC BISIMIDES ON THE DIELS-ALDER
REACTION
A.I.Alikhanova
Institute of Polymer Materials, NAS of Azerbaijan [email protected] Received 17.07.2017
The conditions for the synthesis of N-aminoimides of polychlorinated cyclic dicarboxylic acids has been studied and the possibility to obtain hinge-ladder polyimides by the Diels-Alder reaction has been demonstrated.
Keywords: Diels-Alder reaction, bisimides, polyimides, acylation, bisimidodienes.
There exist many methods of producing of polyimides (PI) synthesis [1], however they are based mainly on a two-stage procedure [2]. Besides the hinged polyimides obtained by the known methods do not possess 100% imidiza-tion due to an incomplete conversion of poly-amidoacidic links [1-3].
Polymerization by the Diels-Alder reaction is one of the promising and developing directions in the preparation of polyimides of various structures that promotes wide modification of their chemical composition and properties.
In this work the synthesis of polyimides with the using of N-aminoimides of mixed di-ene-dienophiles of 1,2,3,4-tetrachlorcyclohexa-1,3-diene-5,6- (V a, b, c) and 2,3,4,5-tetrachlorobi-cyclo[4.4.0]deca-2,4-diene-8,9-dicarboxylic acids (VI a, b, c) and maleic anhydride is described.
The acylation of N-alkyl(aryl)aminoimides of 1,4,5,6,7,7-hexachlorobicyclo[2.2.1]hept-5-ene-2,3-dicarboxylic acid (HCBCHDCA) (I a, b, c)
and 1,2,3,4,11,11 -hexachlorotricyclo[6.2.1.05,10]-undec-2-ene-7,8-dicarboxylic acid (HCTCUDCA) (II a, b, c) with maleic anhydride in the environment of DMF at 1500C leads to obtaining N,N'-maleinalkyl(aryl)substituted imides of 1,4,5,6,7,7-hexachlorobicyclo[2.2.1]hept-5-ene-2,3-dicarboxy-lic acid (III a, b, c) and endo, exo-1,2,3,4,11,11-hexachlorotricyclo[6.2.1.05,10]undec-2-ene-7,8-di-carboxylic acid (IV a, b, c).
The obtained bisimides (III a, b, c) and (IV a,b,c) were brought into the reaction with a mixture of pyridine and acetic anhydride in DMF solution aiming at the preparation of diene-die-nophile bisimides, N, N'-maleinalkyl(aryl)substi-tuted imides of 1,2,3,4-tetrachlorocyclohexa-1,3-diene-5,6-dicarboxylic acid (V a, b, c) and endo, exo-2,3,4,5-tetrachlorobicyclo[4.4.0]deca-2,4-di-ene-8,9-dicarboxylic acid (VI a, b, c). The reaction proceeded with heat evolution and temperature increase to 500C. Then the mixture was stirred again for 2 h at 110-1200C.
Ck/Cl
O
•nr-nh2
I a, b, c
CK Cl
II a, b, c R= -(CH2)2, -(CH2)6, -Ph.
■nh9
on_r_n0c ii
III a, b, c
^N-R-N^ ||
O
IV a, b, c
+
III a, b, c
Py, (CH3CO)2O DMF '
ci-a -r cO^.R^0C ,|
V a, b, c
IV a, b, c
R= -(CH2)2, -(CH2)6, -Ph
OC
VI a, b, c
The structure of bisimidodienes (V a, b, c) and (VI a, b, c) has been proved by IR and UV spectroscopy. In the IR spectrum of bisimidodienes (V a, b, c) and (VI a, b, c) there are observed the characteristic absorption bands in the field of 1710-1780 cm-1 for the imide cycles, 16001610 cm-1 for the C=C, 750 cm-1 corresponding for the C-Cl bonds vibrations (Figure 1).
The UV spectrum of bisimides (V a, b, c) and (VI a, b), c contained the absorption bands characteristic of a diene system in the region 285 nm. The presence of the diene system in bisimides of diene-dienophiles (V a, b, c) and (VI a, b, c) was confirmed by their polyconden-sation in the presence of hydroquinone for 4-6 h at 1500C.
In the process of polycondensation by the Diels-Alder the choice of the solvent in solution plays a decisive role [5, 6]. We have studied seve-
ral aprotic solvents (DMF, DMA and DMSO). The reaction was carried out at 1500C and a duration of 6-8 hours. It was found that with increasing in the solvent polarity the viscosity and the yield of polyimide is increased. The greatest yield of polymer is reared when using DMA as solvent. It reaches 90-95 %.
To determine the optimal conditions for the synthesis of polyimides, the influence of the concentration of the initial monomer, the temperature, and the duration of the reaction on the course of polycondensation of diene-dieno-philic bisimides (V a, b, c) and (VI a, b, c) has been studied.
In the IR spectra of polyimides VII and VIII there are the characteristic absorption bands the field of 1712, 1780 cm-1 for the C=O, 600-750 cm-1 corresponding for the C-Cl bonds vibrations (Figure 2).
I
§ £
^ÔCig^C11
3800 360C 3+00 32CC 3000 2800 2600 2400. 2200 ;000 1800 тест Wavenumber
Fig. 1. IR spectrum of bisdiene VI a.
01000 " 800 '
O
Q^ ci.
c O^ Cl
V b
Cl
O X O
—N
c ^ ^C
O y O
Cl o
C^GOX№k-N<P
Cl O VI b
' ^ OC.
>K>0
: — oC
VI c
O O
Cv- i?V
f T
N 1 M
c
O Z O
V-(CH2)-K ' t
O O
■Y
Vrk 1 /
c
O Cl O
>o-
VIII
16
\p 0s
oi -
0
1
E s
S :
Mr.....^
O T o
-w
a-
S3 £
:5cc 2::: :;cc Wavenumber
2500 2000 Wavenumber
Fig.2. IR spectrum of polyimides VII and VIII.
+
n
In the solutions of polyimides VII and VIII in determining [n] the polyelectrolyte effect is not observed (Figure 3). Therefore, the molecular mass (MM) of the polyimides was judged by the reduced viscosity nre of the reaction solution.
The investigations of the influence of the monomers concentration on nre showed that nre polyimides based on diene-dienophilic bisi-mides (V a, b, c) and (VI a, b, c) depends on the bi- and tricyclic fragment and is a curve with a maximum of the corresponding initial mono-
mers (Figure 3). The optimum monomer concentration is 20 mas %. Increasing the concentration above the optimum leads to a decrease in the MM polyimide.
The influence of the reaction temperature on the MM polyimide is shown in Figure 3, where nre increases with increasing temperature: at 1300C nre 0.10-0.15 dl/g, at 1400C 0.22-0.26 dl/g, at 1500C 0.36-0.38 dl/g, respectively, temperature increase to 1600C leads to a decrease in nre to 0.30-0.25 dl/g.
0.5 0.4 0.3 0.2 0.1
Hre, dl/g
Л re, dl/g
1 Г
2
1-^
8 C, mg/l
Fig. 3. Dependence of nre on the concentration of polyimides on the basis of the diene-dieno-philes: 1 - VII, 2 - VIII.
0.5 0.4 0.3 0.2 0.1
r~
10
-1-1-1-
20 30 mas %
Fig. 4. Dependence of nre of 0.5% solution of polyimides on the basis of the diene-dienophiles: 1 - VII, 2 - VIII.
0.5
0.4 0.3
0.2
0.1
Hre, dl/g
403
413
—I-1-*
423 433 Т, К
Fig. 5. Dependence of nre on temperature of polyimides on the basis of the diene-dienophiles: 1 - VII, 2 - VIII.
0.5 0.4 0.3 0.2 0.1
"Hre, dl/g
2
4
6
o— 2 1
8
10
t, h
Fig. 6. Dependence of nre on of duration of polyimides on the basis of the diene-dienophiles: 1 - VII, 2 - VIII.
2
1
Optimal duration of the reaction reacher at 1500C for 6-8 hours. Increase the duration leads to a decrease in nre.
Thus, the study of the formation of poly-imides VII and VIII on the basis of the diene-dienophilic bisimides (V b, c) and (VI b, c) in DMA showed that the greatest value of nre is achieved when the concentration of monomers in 20 mass % at 1500C for 6-8 hours (Figures 5, 6). The yield of polyimides under these conditions is 90-95%.
The obtained PI are well soluble in polar solvents (DMF, DMA, N-methylpyrrolidone, DMSO and pyridine). They are heat-resistant up to 300-3600C. The loss in mass PI of this temperature is 5-6%.
Hence our research demonstrated the possibility to obtain hinge-ladder polyimides with the desired spatial structure.
Experimental part
IR spectra of synthesized compounds were recorded on a spectrophotometer UR-20 from mulls in mineral oil [7]. UV spectrum were obtained on a spectrophotometer Specord UV-Vis from solutions in methanol, concentration 1.5*10-4mol l 1. As internal reference we used CCl4. Molecular mass was determined by the method [7] of melting with camphor.
The purity of compounds was checked by TLC on Silufol UV-254 plates, eluent benzene-dichloroethane-AcOH, 8:3:1, development under UV irradiation [8].
The reduced viscosity n was measured using Ubbelohde viscometer with extrapolation of the values nre/c (at 250C) of the polymer solution in DMF to the zero concentration [9].
Anhydride of 1,4,5,6,7,7-hexachlorobicyc-lo[2.2.1]hept-5-ene-2,3-dicarboxylic acid was prepared by the procedure [10].
Anhydride of endo, exo-1,2,3,4,11,11-hexa-chlorotricyclo[6.2.1.05,10]undec-2-ene-7,8-dicar-boxylic acid was prepared by the procedure [11].
N-Substituted cyclic imides of 1,4,5,6, 7,7-hexachlorobicyclo [2.2.1] hept-5-ene-2,3-dicarb-oxylic acid (I a, b, c). To a solution of 0.01 mol of 1,4,5,6,7,7-hexachlorobicyclo[2.2.1]hept-5-ene-2,3-dicarboxylic acid anhydride in 50 ml of
DMF was added at stirring 0.01 mol of an appropriate diamine in 10 ml of DMF, the mixture was stirred for 6 h at 1500C, cooled to room temperature, and poured in ice water. The precipitated crystals were filtered off, washed with water several times, dried, and analyzed.
N-(2-Aminoethyl)imide of 1,4,5,6,7,7-he-xachlorobicyclo[2.2.1]hept-5-ene-2,3-dicarb-oxylic acid (I a). Yield - 91%, m.p. - 1330C (benzene), Rf - 0.71. IR spectrum, v, cm-1: 3350 (NH2), 1720, 1780 (C=0), 1601 (C=C), 680750 (C-Cl). Found, %: C 31.61, H 1.98, Cl 36.58, N 7.70. M 413. CuH8Cl6N2O2. Calculated, %: C 47.48, H 2.96, Cl 34.80, N 4.58. M 413.09.
N-(6-Aminohexyl)imide of 1,4,5,6,7,7-he-xachlorobicyclo[2.2.1]hept-5-ene-2,3-dicarb-oxylic acid (I b). Yield - 94%, m.p. - 1430C (benzene), Rf - 0.68. IR spectrum, v, cm-1: 3420 (NH2), 1780 (C=0), 1606 (C=C), 650-680 (CCl). Found, %: C 37.92, H 3.09, Cl 44.88, N 5.41. M 468. C15H16CUN2O2. Calculated, %: C 38.41, H 3.43, Cl 45.35, N 5.97. M 468.99.
N-(2-Aminohenyl)imide of 1,4,5,6,7,7-he-xachlorobicyclo[2.2.1]hept-5-ene-2,3-dicarb-oxylic acid (I c). Yield - 92%, m.p. - 1450C (petroleum ether), Rf - 0.67. IR spectrum, v, cm-1: 3350 (NH2), 1780 (C=0), 1601 (C=C), 650710 (C-Cl). Found, %: C 40.82, H 1.81, Cl 49.06, N 5.41. M 460. C15H8CUN2O2. Calculated, %: C 39.04, H 1.76, Cl 44.05, N 6.07. M 480.92.
N-Substituted cyclic imides of endo, exo-1,2,3,4,11,11-hexachlorotricyclo- [6.2.1.05,10]un-dec-2-ene-7,8-dicarboxylic acid (II a, b, c). Similarly from 0.01 mol of endo, exo-1,2,3,4,11,11-he-xachlorotricyclo[6.2.1.05,10]undec-2-ene-7,8-di-carboxylic acid anhydride and 0.01 mol of an appropriate diamine aminoimide II a, b, c was prepared.
N-(2-Aminoethyl)imide of endo, exo-1,2, 3,4,11,11-hexachlorotricyclo-[6.2.1.0510]undec-2-ene-7,8-dicarboxylic acid (II a). Yield - 92%, m.p. - 1200C (benzene), Rf - 0.70. IR spectrum, v, cm-1: 3280 (NH2), 1720, 1780 (C=0), 1601 (C=C), 600-705 (C-Cl). Found, %: C 43.86, H 2.81, Cl 41.01, N 6.01. M 466. C15H14CUN2O2.
Calculated, %: C 39.58, H 3.00, Cl 47.30, N 6.00. M 467.
N-(6-Aminohexyl)imide of endo, exo-1,2, 3,4,11,11-hexachlorotricyclo[6.2.1.05'10]undec-2-ene-7,8-dicarboxylic acid (II b). Yield - 95%, m.p. 1530C (benzene), Rf - 0.69. IR spectrum, v, cm-1: 3280, 3420 (NH2), 1720, 1780 (C=0), 1601 (C=C), 602-710 (C-Cl). Found, %: C 42.88, H 3.96, Cl 40.21, N 5.01. M 522. C19H22CUN2O2. Calculated, %: C 43.62, H 4.23, Cl 40.66, N 5.35. M 523.07.
N-(2-Aminohenyl)imide of endo, exo-1,2, 3,4,11,11-hexachlorotricyclo[6.2.1.05,10]undec-2-ene-7,8-dicarboxylic acid (II c). Yield - 94%, m.p. - 1210C (benzene), Rf - 0.68. IR spectrum, v, cm-1: 3280 (NH2), 1720, 1780 (C=0), 1606 (C=C), 600-702 (C-Cl). Found, %: C 43.86, H 2.30, Cl 40.91, N 5.01. M 514. C19H14Cl6N2O2. Calculated, %: C 44.31, H 2.73, Cl 41.30, N 5.43. M 515.01.
Maleinimidoalkyl(aryl)substituted imi-des of 1'4'5'6'7'7-hexachlorobicycle[2.2.1] hept-5-ene-2,3-dicarboxylic acid (III a, b, c). To a solution of 0.05 mol of aminoimide (I a, b, c) in 50 ml of DMF was added 0.05 mol of maleic anhydride, the mixture was stirred for 6 h at 1500C, cooled, and poured in ice water. The precipitate was filtered off, washed with water, and dried.
N- [2-Maleimido)ethyl] imide of M^, 7, 7-hexachlorobicyclo[2.2.1]hept-5-ene-2,3-di-carboxylic acid III a. Yield - 85%, m.p. - 1330C (benzene-hexane), Rf-0.67. IR spectrum, v, cm-1: 1710, 1780 (C=0), 1600 (C=C), 680-800 (C-Cl). Found, %: C 38.35, H 1.28, Cl 42.91, N 5.01. M 462. C15H8Cl6N2O4. Calculated, %: C 44.10, H 1.63, Cl 41.10, N 5.60. M 463.93.
N-[6-Maleimido)hexyl]imide of 1,4,5,6, 7,7-hexachlorobicyclo[2.2.1]hept-5-ene-2,3-di-carboxylic acid III b. Yield - 99%, m.p. - 1230C (benzene-hexane), Rf - 0.46. IR spectrum, v, cm-1: 1840 (C=0), 1590-1600 (C=C), 650-720 (C-Cl). Found, %: C 48.91, H 2.14, Cl 33.41, N 4.21. M 640. C19H16Cl6N2O4. Calculated, %: C 49.32, H 2.53, Cl 33.59, N 4.42. M 641.06.
N-[4-Maleimido)phenyl]imide of 1,4,5,6, 7,7-hexachlorobicyclo[2.2.1]hept-5-ene-2,3-di-carboxylic acid (III c). Yield - 95%, m.p. -
1810C (benzene-hexane), Rf - 0.68. IR spectrum, v, cm-1: 1710, 1780 (C=0), 1600-1610 (C=C), 680-750 (C-Cl). Found, %: C 42.01, H 1.04, Cl 39.12, N 4.84. M 530. C19H8Cl6N2O4. Calculated, %: C 42.26, H 1.49, Cl 39.39, N 5.12. M 529.
Maleinimidoalkyl(aryl) substituted imi-des of endo, exo-1,2,3,4,11,11-hexachlorotri-cyclo-[6.2.1.05'10]undec-2-ene-7,8-dicarboxy-lic acid (IV a, b, c). In the same way as above from 0.05 mol of aminoimide of endo, exo-1,2, 3,4,11,11-hexachlorotricyclo[6.2.1.05,10]undec-2-ene-7,8-dicarboxylic acid II a, b, c and maleic anhydride were obtained bisimide IV a, b, c.
N-[2-Maleimido)ethyl]imide of endo, exo-1'2'3'4'11'11-hexachlorotricyclo[6.2.1.05'10]-un-dec-2-ene-7,8-dicarboxylic acid (IV a). Yield -92%, m.p. - 4000C (CHCl3), Rf - 0.68. IR spectrum, v, cm-1: 1710, 1780 (C=o), 1610 (C=C), 670-750 (C-Cl). Found, %: C 40.01, H 2.00, Cl 36.86, N 4.92. M 530. C19H14Cl6N2O4. Calculated, %: C 42.93, H 2.43, Cl 40.26, N 4.85. M 531.
N-[6-Maleimido)hexyl]imide of endo, exo-^ß^, 11,11-hexachlorotricyclo [6.2.1.05,10]-undec-2-ene-7,8-dicarboxylic acid (IV b). Yield
- 90%, m.p. - 2700C (CHCl3), Rf - 0.70. IR spectrum, v, cm-1: 1710, 1780 (C=0), 1610 (C=C), 670-750 (C-Cl). Found, %: C 50.67, H 4.10, Cl 24.89, N 5.02. M 581.60 C23H22Cl6N2O4. Calculated, %: C 47.01, H 3.74, Cl 26.4, N 5.25. M 582.21.
N-[4-Maleimido)phenyl]imide of endo, exo-1'2'3'4'11'11-hexachlorotricyclo [6.2.1.05,10]-undec-2-ene-7,8-dicarboxylic acid (IV c). Yield
- 91%, m.p. - 1200C (methanol), Rf - 0.68. IR spectrum, v, cm-1: 1710, 1780 (C=0), 1610 (C=C), 670-750 (C-Cl). Found, %: C 52.90, H 4.10, Cl 24.89, N 5.02. M 576.0. C23H14Cl6N2O4. Calculated, %: C 47.60, H 3.74, Cl 26.4, N 5.25. M 579.15.
Maleinimidoalkyl(aryl) substituted imi-des of 1,2,3,4-tetrachlorocyclohexa-1,3-diene-5,6-dicarboxylic acid (V a, b, c). 0.01 mol of 1,4,5,6,7,7-hexachlorobicyclo[2.2.1]hept-5-ene-2,3-dicarboxylic acid imide (III a, b, c) and 50 ml of pyridine was added while stirring at room temperature to 200 ml of DMF. The reaction
proceeded with heat evolution and self-heated to 500C. Then the mixture was stirred again for 2 h at 110-1200C. On cooling the mixture was poured in ice water. The precipitate was filtered off, washed with water, and recrystallized from methanol.
N-[2-Maleimido)ethyl]imide of 1,2,3,4-tetrachlorocyclohexa-1,3-diene-5,6-dicarboxy-lic acid (V a). Yield - 7 9%, m.p. - 146-1470C. Rf - 0.66. IR spectrum, v, cm-1: 1700, 1780 (C=0), 1605 (C=C), 670-760 (C-Cl). Found, %: C 40.51, H 1.90, Cl 31.09, N 6.72. M 410. C14H8G4N2O4. Calculated, %: C 40.97, H 1.93, Cl 34.50, N 6.81. M 411.01.
N-[6-Maleimido)hexyl]imide of 1,2,3,4-tetrachlorocyclohexa-1,3-diene-5,6-dicarboxy-lic acid (V b). Yield - 75%, m.p. - 134-135T, Rf - 0.58. IR spectrum, v, cm-1: 1710, 1780 (C=0), 1610 (C=C), 670-750 (C-Cl). Found, %: C 46.18, H 3.41, Cl 30.01, N 6.02. M 466. C18H16Cl4N2O4. Calculated, %: C 46.38, H 3.44, Cl 30.42, N 6.00. M 466.11.
N-[4-Maleimido)phenyl]imide of 1,2,3,4-tetrachlorocyclohexa-1,3-diene-5,6-dicarboxy-lic acid (V c). Yield - 90%, m.p. - 328-3300C, Rf - 0.66. IR spectrum, v, cm-1: 1715, 1780 (C=0), 1610 (C=C), 670-750 (C-Cl). Found, %: C 52.89, H 2.89, Cl 34.25, N 6.32. M 402. C18H14O4N2O4. Calculated, %: C 53.50, H 3.48, Cl 34.80, N 6.93. M 403.99.
Maleinimidoalkyl(aryl)substituted imi-des of endo, exo-2,3,4,5-tetrachlorobicyclo [4. 4.0]deca-2,4-diene-8,9-dicarboxylic acid (VI a, b,c) were similarly obtained from bisimide of endo, exo-1,2,3,4,11,11 -hexachlorotricyc-lo[6.2.1.05,10]undec-2 -ene-7,8-dicarboxylic acid (IV a, b, c).
N-[2-Maleimido)ethyl]imide of endo, exo-2,3,4,5-tetrachlorobicyclo[4.4.0]deca-2,4-diene-8,9-dicarboxylic acid (VI a). Yield -88%, m.p. - 1480C. Rf - 0.6. IR spectrum, v, cm-1: 1715, 1780 (C=0), 1605 (C=C), 670-760 (C-Cl). Found, %: C 46.11, H 2.88, Cl 30.02, N 5.92. M 464. C18H14O4N2O4. Calculated, %: C 46.78, H 3.03, Cl 30.55, N 6.03. M 464.09.
N-[6-Maleimido)hexyl]imide of endo, exo-2,3,4,5-tetrachlorobicyclo[4.4.0]deca-2,4-diene-8,9-dicarboxylic acid (VI b).Yield -90%, m.p. - 1520C, Rf - 0.58. IR spectrum, v,
cm-1: 1720, 1780 (C=0), 1610 (C=C), 670-750 (C-Cl). Found, %: C 50.43, H 3.91, Cl 26.89, N 4.88. M 519.28. C22H22C№O4. Calculated, %: C 50.78, H 4.24, Cl 27.26, N 5.38. M 520.20.
N-[4-Maleimido)phenyl]imide of endo, exo-2,3,4,5-tetrachlorobicyclo[4.4.0]deca-2,4-diene-8,9-dicarboxylic acid (VI c). Yield -92%, m.p. - 1660C, Rf - 0.62. IR spectrum, v, cm-1: 1720, 1780 (C=0), 1610 (C=C), 670-750 (C-Cl). Found, %: C 52.89, H 2.89, Cl 34.25, N 6.32. M 512. C22H14O4N2O4. Calculated, %: C 51.60, H 2.75, Cl 27.70, N 5.46. M 512.14.
Polyimides VII on the basis of N-[6-ma-leimido)hexyl]imide- (V b) and N-[4-maleimi-do)-phenyl]imide of 1,2,3,4-tetrachlorocyclo-hexa-1,3-diene-5,6-dicarboxylic acid (V c). A mixture of 0.05 mol of bisimide (V b), (V c) and 0.05 g of hydroquinonein 20 ml of anhydrous DMA was stirred for 6 h at 1400C. On cooling the reaction mixture was poured into ice water. The precipitated crystals were filtered off, washed with water, dried, and recrystallized from methanol. Yield - 92%, m.p. - 304-3150C, Rf - 0.71. Intrinsic viscosity (DMF, 250C) n 0.22 dl/g. IR spectrum, v, cm-1: 1710, 1780 (C=0), 1610 (C=C), 680-750 (C-Cl). Found, %: C 54.28, H 2.01, N 4.96, Cl 25.62. C25H14O4N2O4. Calculated, %: C 54.77, H 2.57, N 5.10, Cl 25.80.
Polyimides VIII on the basis of N-[6-maleimido)hexyl]imide- (VI b) and N-[4-male-imido)phenyl]imide of endo, exo-2,3,4,5-tetra-chlorobicyclo[4.4.0]deca-2,4-diene-8,9-dicarb-oxylic acid (VI c) was similarly obtained from bisimides (VI b, c). Yield - 94%, m.p. - 328-3300C, Rf - 0.75, n - 0.28 dl/g. IR spectrum, v, cm-1: 1712, 1780 (C=0), 1608 (C=C), 600-750 (C-Cl). Found, %: C 57.28, H 3.01, N 4.21, Cl 22.98. C29H20CL1N2O4. Calculated, %: C 57.83, H 3.34, N 4.65, Cl 23.54.
References
1. Bessonov M.N., Koton M.M., Kudriavtcev V.V., Laius L.A. Poliimidy - class termostoikikh po-limerov. M.: Nauka, 1983. 328 s.
2. Vinogradova S.V., Vasnev V.A. Polikondensatci-onnye protcessyi polimery. M.: Nauka, 2000. 250 s.
3. Korshak V.V., Rusanov A.L., Batirov I.G. Novoe v oblasti termostoikikh poliimidov. Dushanbe: Donish, 1986. 102 s.
4. Mamedov S.A., Kuliev A.B., Akhmedov T.G., Ze-firov N.S. Irratcionalnyi sintez 1,2,3,4-tetrakhlor-1,3-tciclogeksadien-5,6-dikarbonovoi kisloty // Zhum. org. himii. 1991. T. 27. № 10. S. 22282229.
5. Bublik L.S., Moiseev V.D., Chernova A.G., Pilia-eva V.F., Nekrasova L.N. Vliianie rastvoritelia na protcess termicheskoi imidizatcii poliamidokislot // Plastmassy. 1974. № 3. S. 10-13.
6. Arhipova I.A., Zhubanov B.A., Rafikov S.R. No-vye geterotciclicheskie polimery na osnove tcic-licheskikh imidov karbonovykh kislot // Uspehi himii. 1978. T. 47. № 4. S. 705-738.
7. Nakanisi K. Infrakrasnye spektryi stroenie orga-nicheskikh soedinenii. M.: Mir, 1965. 209 s.
8. Akhrem A.A., Kuznetcov A.I. Tonkosloinaia khromatografiia. M.: Nauka, 1964. 175 s.
9. Rafikov S.R., Pavlova S.A., Tverdokhlebova I.I. Metody opredeleniia molekuliarnykh vesov i poli-dispersnosti vysokomolekuliarnykh soedinenii. M.: Izd-vo AN SSSR, 1963. 334 s.
10. Simonov V.D., Antonov L.T., Nedelchenko B.M., Scliar S.Ia. Angidrid 1,4,5,6,7,7-geksakhlorbitcic-lo[2.2.1]gept-5-en-2,3-dikarbonovoikisloty. A.s. 363079 SSSR. B.I. 1973. № 8.
11. Salahov M.S., Guseinov M.M., Kiazimova T.G., Treivus E.M., Alekperov N.A. Sposob polucheni-ia angidrida 1,2,3,4,11,11-geksakhlortritciklo[2.4. 1.0]undetc-2-dikarbonovoi kisloty. A.s. 172757 SSSR. B.I. 1965. № 14.
DiEN-DiENOFiL FRAQMENTLi BiSiмiDLЭR ЭSASINDA DiLS-ALDER REAKSiYASI UZRЭ POLiXLORLU TSiKLiK DiKARBON TUR§ULARININ POLiiмiDLЭRlNiN SiNTEZi
A.i.Эlixanova
Polixlorlu tsiklik dikarbon Шг§и1аппш N-aminoimidlэrinin sintezi бугепЛт^ vэ оп1аг эsasmda Dils-Alder reaksiyasl uzrэ hэrэki-nэrdivan tip1i po1iimiid1эrin a1шmaslшn титкип1иуи gбstэri1mi§dir.
Адаг sдzlэr: Б1Ь-АШег геаЫуан, bismidbr, poШmidbr, а^'Шэдтэ, bisimidodienlэr.
СИНТЕЗ ПОЛИИМИДОВ ПОЛИХЛОРИРОВАННЫХ ЦИКЛИЧЕСКИХ ДИКАРБОНОВЫХ КИСЛОТ НА ОСНОВЕ ДИЕН-ДИЕНОФИЛЬНЫХ БИСИМИДОВ ПО РЕАКЦИИ ДИЛЬСА-АЛЬДЕРА
А.И.Алиханова
Изучены условия синтеза М-аминоимидов полихлорированн^1х циклических дикарбоновых кислот и показана возможность на их основе получения шарнирно-лестничных полиимидов по реакции Дильса-Альдера.
Ключевые слова: реакция Дильса-Альдера, бисимиды, полиимиды, ацилирование, бисимидодиены.