ISSN 2522-1841 (Online) AZERBAIJAN CHEMICAL JOURNAL No 2 2020 ISSN 0005-2531 (Print)
UDC 547.97+535.37
SYNTHESIS OF NEW PYRANE AND CYCLOHEXANONE DERIVATIVES ON THE BASE OF SOME KNOEVENAGEL ADDUCTS
F.N.Naghiyev
Baku State University [email protected]
Received 21.06.2019 Accepted 10.09.2019
The formation of cyclohexanone and 3,4-dihydro-2H-pyran derivatives by using of Michael addition reaction between the 3-(4-tolyl)-, 3-(4-methoxyphenyl)-, 3-phenyl-, 3-pyridinyl-2-(thiophene-2-carbo-nyl)acrylonitriles or 3-(4-tolyl)-, 3-(thiophen-2-yl), and 2-(4-bromobenzoyl)-3-(4-fluorophenyl)acrylo-nitriles to the acetoasetanilid were observed. Structures of all synthesized compounds confirmed by nuclear magnetic resonance spectroscopy and X-Ray analysis.
Keywords: thiophene, acrylonitriles, acetoacetanilide, cyclohexanone, dihydropyran, nuclear magnetic reso-
nance.
doi.org/10.32737/0005-2531-2020-2-39-47
Dihydropyrane, cyclohexanone derivatives have high biologically activity and widely extended in nature. In the literatures there are a lot of information on synthesis and various transformation of this type compounds [1-15]. Also, the Michael addition is the fundamental reaction of formation of C-C bond in organic synthesis and we discussed it in early investigations [16-29].
In article [8] was presented Michael addition of acetoacetanilide to Knoevenagel ad-ducts. So, it was estabilished that by Michael interaction of 2-(thiophene-2-carbonyl)-3-(p-to-
lyl)-acrylonitrile and 3-(4-methoxyphenyl)-2-(thiophene-2-carbonyl)acrylonitrile with aceto-acetanilide in methanol at room temperature as dihydropyrane so cyclohexanone [8] derivatives were formed. Reaction schemes presented in below. As seen from the scheme, for obtaining of cyclohexanone derivatives, the methylene-active compound (3) transferred to anion (4) by the action of base at first stage and at next stage obtained anion attacks to carbonyl group and occurs closing cycle by formation of cyclohex-anone derivatives (5 a,b).
K>
o o
XX
C=N
H3C CH2 NHPh -kSoh
2
metilpiperazin >
R = a) CH3, b) OCH3
OH
R = a) CH3 72%, b) OCH3 85%
O^/CH
C=N
-CH CP
CH,
PhHN O
/
/
,C=N
CH-CH
O^/CH
I 4 n
PhHN O
yo
CH2
Also, it was established, that for obtain- enol-form (6). Further, as result of interaction of
ing pyrane derivative by the same reaction, electron pair of oxygen of hydroxyl to carbon of
formed methyleneactive compound (or cor- keton group taken place cycle formation by
responding Michael adduct) (3) transferred to formation of dihydropyrane derivatives (7 a,b).
R = a) CH3 20%, b) OCH3 12%
By the Michael addition of 3-phenyl-2-(thio-phene-2-carbonyl)acrylonitrile and 3-(pyridine-4-yl)-2-(thiophene-2-carbonyl)acrylonitrile with acetoacetanilide at the same conditions (by the same mechanism) the dihydropyrane deriva-
tives with high yield and cyclohexanone derivatives with low yield are synthesized. The X-Ray molecular structure of dihydropyrane derivative (9b) is given in below (Figure).
x
x
ch=c
o /-1
/ s
\
W /
c=n
X = a) H, b) N 8
oo
A. A.
+ h3c ch2 nhph metjlPiPerazin
MeOH
h3c / o^
ho s
X = a) H 75%, b) N 79% 9
n \
oh s"
X = a) H 18%, b) N 15%
2
X-Ray structure of 5-cyano-2-hydroxy-2-methyl-N-phenyl-4-(pyridin-4-yl)-6-(thiophen-2-yl)-3,4-dihydro-2H-pyran-3-carboxamide (9b).
By the Michael addition of 2-(4-bromo- 2-(4-bromobenzoyl)-3-(p-tolyl)acrylonitrile with benzoyl)-3-(4-fluorophenyl)acrylonitrile, 2-(4-bro- acetoacetanilide the similar products (12 a,b,c mobenzoyl)-3-(thiophene-2-yl)acrylonitrile and and 13 a,b,c) were synthesized.
O
II
C
Br
R—CH=C + H3
11 C=N
R = a) 4-F-C6H4, b) THO$eH, c) 4-CH3-C6H4
OO
metilpiperazin
MeOH
O R
■nh'
H3C'J "O
-i^Br
R = a) 4-F-C6H 73%, b) Thiophen. 79%, c) 4-CH3-C6H4 15% OR
OH
13 "Br
R = a) 4-F-C6H 17%, b) Thiophen. 15%, c) 4-CH3-C6H4 75%
2
2
Experimental part. General remarks
All commercially available chemicals were obtained from Merck and Fluka (sigmaal-drich) companies and used without further purification. Melting points were measured on an Stuart SMP30 apparatus without correction. 1H,
13
13C NMR spectra were recorded on BrukerAv-ance 300-MHz spectrometer at 300 and 75 MHz, respectively. X-Ray analyses were performed on Bruker APEX X-Ray equipment. Thin-layer chromatography (TLC) on commercial aluminum-backed plates of silica gel (60
F254) was used to monitor the progress of reactions.
General experimental procedure
3-Cyano-4-hydroxy-6-oxo-N-phenyl-4-(thiophen-2-yl)-2-(p-tolyl)cyclohexane-1-car-boxamide (5a). Mixture of 2-(thiophene-2-carbonyl)-3-(p-tolyl)acrylonitrile (2.9 mmol) and acetoacetanilide (3 mmol) dissolved in 35 ml of methanol was stirrered 5-7 minutes and 2-3 drop methylpiperazine was added and stirring was continued. Reaction progress was tracked by TLC (EtOAc/n-hexane, 2:1). Reaction mixture was kept quietly for 24-48 hours. By
evaporating of solvent crystals were precipitated. Crystals were separated by filter paper and recrystalliized from ethanol (95%) - water mixture. Yield - 0.89 g, 71.77%. 7melt=2100C.
1H NMR (300 MHz, DMSO-^), S, m.h.: 2.23 (s, 3H, CH3); 2.79 (d, 1H, CH, Vr-h = 14.1); 3.50 (d, 1H, CH, Vr-h = 13.8); 4.01 (s, 1H, OH); 4.06 (s, 2H, CH2); 4.28 (d, 1H, CH, 3Vh-h = 9.9); 6.97-7.48 (m, 12H, 9Ar-H+3CHthioph); 9.94 (s, 1H, NH). 13C NMR spektr (DMSO-^), S, m.h.: 21.14 (CH3-Ar), 44.26 (CH), 47.40 (CH), 54.07 (CH2), 62.64 (CH), 75.29 (Cquat.), 119.02 (CN), 119.49 (2CHarom), 123.87 (CHthioph.), 124.45 (CH^m), 125.71 (CHthioph.), 127.63 (CHthioph.), 128.75 (2CHarom), 129.14 (2CHarom),129.54 (2CHarom), 137.06 (Car.), 137.17 (Car.), 139.14 (Car.), 150.57 (Cthioph), 165.85 (O=C-NH), 203.12 (C=O).
Found, %: 69.71 C, 5.07 H, 6.56 N. C25H22N2O3S. Calculated, %: 69.77 C, 5.12 H, 6.51 N.
3-Cyano-4-hydroxy-2-(4-methoxyphe-nyl)-6-oxo-N-phenyl-4-(thiophen-2-yl)-cyclo-hexane-1-carboxamide (5b) was synthesized in the same conditions by using of 3-(4-meth-oxyphenyl)-2-(thiophene-2-carbonyl)acrylonitrile (yield 1.1 g, 85.27%). Tmdt=2000C.
1H NMR (300 MHz, DMSO-^6), S, m.h.: 2.77 (d, 1H, CH, 3Vr-h = 14.1); 3.48 (d, 1H, CH, 3Vh-h = 14); 3.56 (s, 1H, OH); 3.69 (s, 3H, CH3O); 4.00 (s, 1H, OH); 4.03 (s, 2H, CH2);
4.27 (d, 1H, CH, 3Vr-h = 9.6); 6.89-7.47 (m, 12H, 9Ar-H+3CHthioph); 9.93 (s, 1H, NH). 13C NMR spektr (DMSO-^), S, m.h.: 43.88 (CH), 47.51 (CH), 54.06 (CH2), 55.37 (CH3O), 62.79 (CH), 75.22 (Cquat.), 114.23 ^CRrom), 119.07 (CN), 119.52 (2CHarom), 123.87 (CHthioph.), 124.42 (CHarom), 125.70 (CHthioph.), 127.62 (CHthioph.), 129.14 (2CHarom), 129.98 (2CHarom), 131.96 (Car.), 139.13 (Car.), 150.59 (Cthioph), 158.90 (O-Car.), 165.90 (O=C-NH), 203.14 (C=O).
Found, %: 67.31 C, 4.99 H, 6.23 N. C25H22N2O4S. Calculated, %: 67.26 C, 4.93 H,
6.28 N.
5-Cyano-2-hydroxy-2-methyl-N-phe-nyl-6-(thiophen-2-yl)-4-(p-tolyl)-3,4-dihydro-2H-pyran-3-carboxamide (7a) was synthesized in the same conditions by using of 2-
(thiophene-2-carbonyl)-3-(p-tolyl)acrylonitrile (yield 0.25 g, 20.16%). Tmelt.=1880C.
1H NMR (300 MHz, DMSO-d6), 5, m.h.: 1.76 (s, 3H, CH3); 2.26 (s, 3H, CH3); 3.03 (d,
IH, CH, Vh-h = 11.5); 3.46 (s, 1H, OH); 4.39 (d, 1H, CH, 3Vh-h = 11.5); 6.94-7.51 (m, 12H, 9Ar-H + 3CHthioph); 9.84 (s, 1H, NH). 13C NMR spektr (DMSO-d6), 5, m.h.: 21.00 (cH3), 26.26 (CH3), 39.67 (CH), 54.96 (CH), 84.14 (=Cquat.), 95.28 (O-Cquat.), 119.62 (2CHarom), 120.12 (CN), 124.11 (CHarom), 124.67 (2CH arom ), 127.72 (CHthioph.), 128.78 (CHthioph.), 129.39 (2CHarom), 129.86 (2CHarom), 129.54 (CHthioph), 138.31 (CH3-Cr), 139.23 (Car), 140.16 (Car), 141.85 (Cthioph), 165.98 (O-Cgua^), 166.64 (CONH).
Found, %: 69.82 C; 5.18 H; 6.46 N. C25H22N2O3S. Calculated, %: 69.77 C; 5.12 H; 6.51 N.
5-Cyano-2-hydroxy-4-(4-methoxyphe-nyl)-2-methyl-N-phenyl-6-(thiophen-2-yl)-3,4-dihydro-2H-pyran-3-carboxamide (7b) was
synthesized in the same conditions by using of 3-(4-methoxyphenyl)-2-(thiophene-2-carbonyl)-acrylonitrile(yield 0.16 g, 12.40%). Tmelt.=1810C.
1H NMR (300 MHz, DMSO-d6), 5, m.h.:
I.79 (s, 3H, CH3); 3.05 (d, 1H, CH, Vh-h =
II.3); 3.42 (s, 1H, OH); 4.41 (d, 1H, CH, 3Vh-h =
II.3); 6.98-7.59 (m, 12H, 9Ar-H + 3CHthioph); 9.87 (s, 1H, NH). 13C NMR spektr (DMSO^), 5, m.h.: 26.32 (CH3), 39.81 (CH), 55.05 (Ch), 55.93 (OCH), 84.85 (=Cquat.), 96.02 (O-Cquat.), 115.77 (2CHarom), 121.58 (2CHarom), 119.86 (CN), 124.92 (CHarom), 127.80 (CHthioph.), 128.82 (CHthioph.), 129.71 (CHthioph.), 130.05 (2CHarom), 131.17 (2CHarom), 137.34 (Car), 140.08 (Car), 142.26 (Cthioph.), 159.71 (O-Car), 165.62 (O-Cquat.=), 166.68 (CONH).
Found, %: 67.32 C, 4.98 H, 6.24 N. C25H22N2O4S. Calculated, %: 67.26 C, 4.93 H, 6.28 N.
5-Cyano-2-hydroxy-2-methyl-N,4-di-phenyl-6-(thiophen-2-yl)-3,4-dihydro-2H-py-ran-3-carboxamide (9a). Mixture of 3-phenyl-2-(thiophene-2-carbonyl)acrylonitrile (2.9 mmol) and acetoacetanilide (3 mmol) dissolved in 35 ml of methanol was stirrered 5-7 min and 2-3
drop methylpiperazine was added and stirring was continued. Reaction progress was tracked by TLC (EtOAc/«-hexane, 2:1). Reaction mixture was kept quietly for 24-48 hours. By evaporating of solvent crystals were precipitated. Crystals were separated by filter paper and recrystalliized from ethanol (95%) - water mixture. Yield - 0.9 g, 75%. 7melt=1860C.
1H NMR (300 MHz, DMSO-^), 5, m.h.:
1.72 (s, 3H, CH3); 3.07 (d, 1H, CH, 3Jh-h = 11.7); 3.57 (s, 1H, OH); 4.38 (d, 1H, CH, 3Jh-h = 11.7); 7.00-7.89 (m, 13H, 10Ar-H+ 3CHthioph); 9.86 (s, 1H, NH). 13C NMR spektr (DMSO-d6), 5, m.h.: 26.38 (CH3), 40.62 (CH), 55.87 (CH), 86.25 (=Cquat.), 99.73 (O-Cquat.), 119.58 (CN), 119.66 (2CHarom), 124.15 (CHarom), 128.03 (CHarom), 128.47(CHthioph.), 128.60 (CHarom), 128.87 (2CHarom), 129.05 (3CHarom), 129.78 (CHthioph.), 130.63 (CHthioph.), 135.99 (Car.), 138.87 (C^opi,), 140.12 (Car.), 166.77 (O-Cquat=), 167.63 (O=C-NH).
Found, %: 69.28 C, 4.75 H, 6.78 N. C24H20N2O3S. Calculated, %: 69.23 C, 4.81 H,
6.73 N.
5-Cyano-2-hydroxy-2-methyl-N-phenyl-4-(pyridin-4-yl)-6-(thiophen-2-yl)-3,4-dihydro-2H-pyran-3-carboxamide (96). Mixture 4-py-ridinecarboxaldehyde or (2.9 mmol) and 2-the-noylacetonitrile (3 mmol) dissolved in 50 ml of ethanol-water (4:1) was stirrered 5 minutes, reaction mixture was kept quietly for 36 hours. Then, added acetoacetanilide (3 mmol) to reaction mixture, stirring for 5 min and 2-3 drop methylpiperazine was added. Reaction mixture was kept quietly for 24 hours. Reaction progress was tracked by TLC (EtOAc/n-hexane, 2:1). By evaporating of solvent crystals were precipitated. Crystals were separated by filter paper and recrystalliized from ethanol (95%) -water mixture. Yield 0.97 g, 79.51%. 7melt.= 1650C.
1H NMR (300 MHz, DMSO-^6), 5, m.h.:
I.70 (s, 3H, CH3); 3.05 (d, 1H, CH, 3Jh-h =
II.4); 3.88 (s, 1H, OH); 4.39 (d, 1H, CH, 3Jh-h = 11.4); 7.03-8.56 (m, 12H, 9Ar-H+3CHthioph.); 9.88 (s, 1H, NH). 13C NMR spektr (DMSO-^), 5, m.h.: 26.31 (CH3), 40.21 (CH), 55.04 (CH), 84.45 (=Cquat.), 99.72 (O-Cquat.), 119.71 (CN),
120.02 (2CHarom), 124.29 (CHarom), 124.44 (CHarom), 128.52(CHthioph.), 129.21 (3CHarom), 130.11 (CHthioph.), 130.97 (CHthioph.), 135.67 (Car.), 138.68 (Cthioph), 149.17 (Car.), 150.38 (2CHarom), 166.68 (O-Cquat.=), 167.23 (O=C-NH).
Found, %: 66.14 C; 4.51 H; 10.13 N. C23H19N3O3S. Calculated, %: 66.19 C; 4.56 H; 10.07 N.
3-Cyano-4-hydroxy-6-oxo-N,2-diphe-nyl-4-(thiophen-2-yl)cyclohexane-1-carbox-amide (10a) was synthesized in the same conditions by using of 3-phenyl-2-(thiophene-2-carbonyl)acrylonitrile(yield 0.22 g, 18.33%). ^melt=206°C.
1H NMR (300 MHz, DMSO-^6), ô, m.h.: 1H NMR spektr (DMSO-J6), ô, m.h.: 2.72 (d, 1H, CH, Jh-h = 14); 3.47 (d, 1H, CH, 3Jh-h = 13.5); 3.97 (s, 1H, OH); 4.01 (s, 2H, CH2); 4.25 (d, 1H, CH, 3Jh-h = 9.4); 7.05-7.85 (m, 13H, 10Ar-H+3CHthioph.); 9.91 (s, 1H, NH). 13C NMR spektr (DMSO-J6), ô, m.h.: 44.46 (CH), 47.65 (CH), 54.18 (CH2), 62.83 (CH), 75.28 (O-Cquat), 116.27 (2CHarom), 119.10 (CN), 123.11 (CHthioph.), 124.55 (CHarom.), 125.77 (CHthioph.), 127.68 (CHarom.), 127.82 (CHthioph.), 128.91 (2CHarom), 129.33 (2CHarom.), 129.79 (2CHarom), 137.68 (Car), 139.30 (Car), 150.52 (Cthioph), 165.72 (O=C-NH), 203.08 (C=O).
Found, %: 69.17 C; 4.86 H; 6.68 N. C24H20N2O3S. Calculated, %: 69.23 C; 4.81 H; 6.73 N.
3-Cyano-4-hydroxy-6-oxo-N-phenyl-2-(pyridin-4-yl)-4-(thiophen-2-yl)cyclohexane-1-carboxamide (10b) was synthesized in the same conditions by using of 3-(pyridin-4-yl)-2-(thiophene-2-carbonyl)acrylonitrile(yield 0.19 g, 15.70%). Tmelt.=1940C.
1H NMR (300 MHz, DMSO-^6), ô, m.h.: 1H NMR spektr (DMSO-^), ô, m.h.: 2.76 (d, 1H, CH, 3Jh-h = 14); 3.50 (d, 1H, CH, 3Jh-h = 13.5); 3.99 (s, 1H, OH); 4.05 (s, 2H, CH2); 4.29 (d, 1H, CH, 3Jh-h = 9.4); 7.07-8.62 (m, 12H, 9Ar-H+3CHthioph.); 9.96 (s, 1H, NH). ÙC NMR spektr (DMSO-^6), ô, m.h.: 43.79 (CH), 47.48 (CH), 53.99 (CH2), 62.76 (CH), 75.32 (O-Cquat), 118.24 (2CHarom.), 119.15 (CN), 123.24 (CHthioph.), 124.59 (CHarom.), 125.81 (CHthioph.), 126.14 (2CHarom), 127.87 (CHthioph), 129.86
(2CHarom), 139.36 (Car), 149.31 (Car), 149.78 (2CHarom), 150.56 (Cthioph), 165.88 (O=C-NH), 203.12 (C=O).
Found, %: 66.24 C; 4.62 H; 10.02 N. C23H19N3O3S. Calculated, %: 66.19 C; 4.56 H; 10.07 N.
6-(4-Bromophenyl)-5-cyano-4-(4-fluo-rophenyl)-2-hydroxy-2-methyl-N-phenyl-3,4-dihydro-2H-pyran-3-carboxamide (12a). Mixture of 2-(4-bromobenzoyl)-3-(4-fluorophenyl)ac-rylonitrile (2.9 mmol) and acetoacetanilide (3 mmol) dissolved in 35 ml of methanol was stirrered 5-7 min and 2-3 drop methylpipe-razine was added and stirring was continued. Reaction progress was tracked by TLC (EtOAc/n-hexane, 2:1). Reaction mixture was kept quietly for 24-48 hours. By evaporating of solvent crystals were precipitated. Crystals were separated by filter paper and recrystalliized from ethanol (95%) - water mixture. Yield 1.08 g, 73.47%. Tmelt=1350C.
1H NMR (300 MHz, DMSO-d6), 5, m.h.:
I.71 (s, 3H, CH3); 3.02 (d, 1H, CH, Vh-h =
II.7); 3.52 (s, 1H, OH); 4.35 (d, 1H, CH, Vh-h = 11.7); 7.00-7.97 (m, 13H, 13Ar-H); 9.85 (s,
IH, NH). 13C NMR spektr (DMSO-d6), 5, m.h.: 26.37 (CH3), 39.88 (CH), 55.94 (CH), 89.19 (=Cquat), 99.65 (O-Cquat), 115.79-116.07 (CHarom), 119.70 (CN), 120.00 (2CHarom), 124.19-124.87 (CHarom), 129.17 (3 CHarom), 130.70 (3CHarom), 131.08 (CHarom), 131.99 (2CHarom), 132.85 (Br-Car), 136.13-136.16 (Car), 138.81 (2Car), 160.32-167.71 (F-Car), 161.51 (=Cquat.-O), 166.75 (HN-C=O).
Found, %: 61.60 C; 3.99 H; 5.47 N. C26H20N2O3FBr. Calculated, %: 61.54 C; 3.94 H; 5.52 N.
6-(4-Bromophenyl)-5-cyano-2-hydroxy-2-methyl-N-phenyl-4-(thiophen-2-yl)-3,4-dihydro-2H-pyran-3-carboxamide (12b) was synthesized in the same conditions by using of 2-(4-bro-mobenzoyl)-3-(thiophen-2-yl)acrylonitrile (yield 0.95 g, 79.17%). Tmelt=1170C.
1H NMR (300 MHz, DMSO-d6), 5, m.h.: 1.70 (s, 3H, CH3); 3.06 (d, 1H, CH, 3Vh-h =
II.7); 3.58 (s, 1H, OH); 4.63 (d, 1H, CH, Vh-h = 11.7); 6.99-7.88 (m, 12H, 9Ar-H+ 3CHthiophen); 10.01 (s, 1H, NH). 13C NMR
spektr (DMSO-d6), 5, m.h.: 26.27 (CH3), 35.95 (CH), 56.42 (CH), 89.56 (=Cquat), 99.85 (O-Cquat.), 119.69 (CN), 119.90 (2CHarom), 124.24 (Br-Car.), 126.06 (CHthiophen.), 127.34 (CHthiophen.), 127.51 (CHthiophen.), 129.23 (2CHarom), 130.68 (3 CHarom), 132.09 (2CHarom), 132.14 (Car), 138.86 (Cthioph.), 142.63 (Car.), 161.02 (=Cquat-O), 166.56 (HN-C=O).
Found, %: 69.35 C; 4.64 H; 6.70 N. C24H19N2O3S. Calculated, %: 69.40 C; 4.58 H; 6.75 N.
6-(4-Bromophenyl)-5-cyano-2-hydroxy-2-methyl-N-phenyl-4-(p-tolyl)-3,4-dihydro-2H-pyran-3-carboxamide (12c) was synthesized in the same conditions by using of 2-(4-bromoben-zoyl)-3-(p-tolyl)acrylonitrile (yield 0.21 g, 14.48%). Tmelt =2070C.
1H NMR (300 MHz, DMSO-d6), 5, m.h.: 1.74 (s, 3H, CH3); 2.30 (s, 3H, Ar-CHQ; 3.03 (d, 1H, CH, 3Vh-h = 11.7); 3.57 (s, 1H, OH); 4.45 (d, 1H, CH, 3Vh-h = 11.7); 7.05-7.92 (m, 13H, 13Ar-H); 9.90 (s, 1H, NH). 13C NMR spektr (DMSO-d6), 5, m.h.: 21.14 (CHa-Ar), 26.32 (CH3), 40.47 (CH), 55.57 (CH), 86.36 (=Cquat), 99.33 (O-Cquat), 119.61 (CN), 119.73 (2CHarom), 124.18 (CHarom), 125.06 (2CHarom), 125.13 (Br-Car.), 128.49(2CHarom), 130.51 (2CHarom), 130.87 (2CH arom ), 133.15 (2CHarom), 135.28 (Car.), 139.78 (Car), 140.65 (Car), 141.27 (Car), 161.35 (O-Cquat=), 166.64 (O=C-NH).
Found, %: 64.46 C; 4.63 H; 5.52 N. C27H23N2O3Br. Calculated, %: 64.41 C; 4.57 H; 5.57 N.
4-(4-Bromophenyl)-3-cyano-2-(4-fluo-rophenyl)-4-hydroxy-6-oxo-N-phenylcyclohe-xane-1-carboxamide (13a) was synthesized in the same conditions by using of 2-(4-bromo-benzoyl)-3-(4-fluorophenyl)acrylonitrile (yield 0.28 g, 17.69%). Tmelt=1640C.
1H NMR (300 MHz, DMSO-d6), 5, m.h.: 2.84 (d, 1H, CH, 3Vh-h = 14.1); 3.58 (d, 1H, CH, 3Vh-h = 13.8); 4.08 (s, 1H, OH); 4.11 (s, 2H, CH2); 4.35 (d, 1H, CH, 3Vh-h = 9.9); 7.037.62 (m, 12H, 9Ar-H+3CHthioph); 9.97 (s, 1H, NH). 13C NMR spektr (DMSO-d6), 5, m.h.: 45.18 (CH), 47.89 (CH), 54.21 (CH2), 62.72 (CH), 75.31 (0-Cquat.),115.92-116.20 (CHarom), 119.12 (CN), 119.34 (2CHarom), 123.21-123.49
(CHarom), 125.56 (CHarom), 129.23 (3CHarom), 130.45 (2CHarom), 130.98 (CHarom), 131.82 (2CHarom), 132.85 (Br-Car), 135.92-135.95 (Car), 138.22 (Car.), 138.26 (Car.), 160.46-166.96 (Car), 165.93 (o=C-NH), 203.05 (C=O).
Found, %: 61.49 C; 3.88 H; 5.57 N. C2eH20N2OsFBr. Calculated, %: 61.54 C; 3.94 H; 5.52 N
4-(4-Bromophenyl)-3-cyano-4-hydroxy-6-oxo-N-phenyl-2-(thiophen-2-yl)cyclohexane-1-carboxamide (13b) was synthesized in the same conditions by using of 2-(4-bromo-benzoyl)-3-(thiophen-2-yl)acrylonitrile (yield 0.18 g, 15%). Tmelt=1430C.
1H NMR (300 MHz, DMSO-J6), S, m.h.:
2.74 (d, 1H, CH, Vh-h = 14.2); 3.55 (d, 1H, CH, Vh-h = 13.8); 3.96 (s, 1H, OH); 4.09 (s, 2H, CH2); 4.24 (d, 1H, CH, Vh-h = 9.9); 7.027.54 (m, 12H, 9Ar-H+3CHthioph.); 9.91 (s, 1H, NH). 13C NMR spektr (DMSO-J6), S, m.h.:44.18 (CH), 47.36 (CH), 54.11 (CH2), 62.57 (CH), 75.42 (O-Çguat), 119.08 (CN), 119.38 (2CHarom), 123.07 (Br-Car.), 125.14 (CHarom.), 125.39 (CHthioph.), 128.08 (CHthioph.), 128.48 (2CHarom), 128.62 (CHthioph), 129.44 (2CHarom), 131.28 (2CHarom), 136.67 (Car.), 139.14 (Car), 149.98 (Cthioph), 165.69 (O=C-NH), 203.02 (C=O).
Found, %: 69.45 C; 4.53 H; 6.81 N. C24H19N2O3S. Calculated, %: 69.40 C; 4.58 H;
6.75 N.
4-(4-Bromophenyl)-3-cyano-4-hydroxy-6-oxo-N-phenyl-2-(p-tolyl)cyclohexane-1-car-boxamide (13c) was synthesized in the same conditions by using of 2-(4-bromobenzoyl)-3-(p-tolyl)acrylonitrile (yield 1.10 g, 75.86%).
Tmelt=238 C.
1H NMR (300 MHz, DMSO-J6), S, m.h.: 2.28 (s, 3H, CH3); 2.85 (d, 1H, CH, Vh-h = 13.7); 3.54 (s, 1H, OH); 3.67 (d, 1H, CH, Vh-h = 13.7); 4.12 (s, 2H, CH2); 4.30 (d, 1H, CH, Vh-h = 10.0); 7.14-7.65 (m, 13H, 13Ar-H); 9.97 (s, 1H, NH). 13C NMR spektr (DMSO-^), S, m.h.: 21.18 (CH-Ar), 44.36 (CH), 47.51 (CH), 54.19 (CH2), 62.71 (CH), 76.04 (O-Cauat), 119.15 (CN), 119.44 (2CHarom), 123.14 (Br-Car), 125.37 (CHarom.), 128.45 (2CHarom), 129.17 (2CHarom.), 129.26 (2CHarom), 130.23 (2CHflrom.), 131.97
(2CHarom), 137.46 (Car.), 137.77 (Car.), 139.70 (Car), 142.11 (Car), 165.92 (O=C-NH), 202.92 (C=O).
Found, %: 64.35 C; 4.52 H; 5.62 N. C2?H23N2O3Br. Calculated, %: 64.41 C; 4.57 H; 5.57 N.
References
1. Niu Zh., He X., Shang Y. The efficient enantioselective synthesis of dihydropyrans via or-ganocatalytic Michael addition reactions. Tetrahedron: Asymmetry. 2014. V. 25. Iss. 10-11. P. 796-801.
2. Wu B., Gao X., Yan Zh., Hung W.-X., Zhou Y.-G. Enantioselective synthesis of functionalized 2-amino-4H-chromenes via the o-quinone methides generated from 2-(1-tosylalkyl)phenols. Tetrahedron Letters. 2015. V. 56. Iss. 29. P. 4334-4338.
3. Duan C., Ye L., Xu W., Li X., Chen F., Zhao Zh., Li X. Organocatalytic cascade 1,6-conjugate addi-tion/annulation/tautomerization of functionalized para-quinone methides: Access to chiral 2-amino-4-aryl-4H-chromenes. Chinese Chemical Letters. 2018. V. 29. Iss. 8. P. 1273-1276.
4. Feng J., Fu X., Chen Zh., Lin L., Liu X., and Feng X. Efficient Enantioselective Synthesis of Dihydropyrans Using a Chiral N,N'-Dioxide as Organocatalyst. Org. Lett. 2013. V. 15. Iss. 11. P. 2640-2643.
5. Desimoni G., Faita G., and Quadrelli P. Forty Years after "Heterodiene Syntheses with ^-Unsaturated Carbonyl Compounds": Enantioselective Syntheses of 3,4-Dihydropyran Derivatives. Chem. Rev. 2018. V. 118. Iss. 4. P. 2080-2248.
6. Feng J., Yuan X., Luo W., Lin L., Liu X., Feng X. Chiral N,N'-Dioxide-Organocatalyzed Regio-, Diastereo- and Enantioselective Michael Addition-Alkylation Reaction. Chem. A Europ. J. 2016. V. 22. Iss. 44. P. 15650-15653.
7. Xie J., Xing W.-L., Sha F., Wu X.-Y. Enantioselective Cascade Reaction of a-Cyano Ketones and Isatylidene Malononitriles: Asymmetric Construction of Spiro[4H-pyran-oxindoles]. Europ. J. Organic Chem. 2016. No 23. P. 3983-3992.
8. Naghiyev F.N., Maharramov A.M., Asgarova A.R., Rahimova A.G., Akhundova M.A., Mamedov I.G. investigation of reaction of various thiophene basedknoevenagel adducts with acetoacetanilide. Chemical Problems. 2018. No 3. P. 337-342.
9. Li Ch., Cai L.-Zh., Liu X.-D., Zhu Sh.-Zh., Xing Ch.-H., Lu L. Highly efficient synthesis of tetrasubstituted 2,3-dihydropyrans by three-component 'one-pot' reaction. Tetrahedron Letters. 2016. V. 57. Iss. 20. P. 2171-2174.
10. Palasz A. Synthesis of 3,4-dihydro-2H-pyrans by hetero-Diels-Alder reactions of functionalized al-pha,beta-unsaturated carbonyl compounds with N-
vinyl-2-oxazolidinone. Org. Biomol. Chem. 2005. V. 3. Iss. 17. P. 3207-3212.
11. Kendre D.B., Toche R.B., Jachak M.N. Michael addition of dimedone with a,P-unsaturated ketones: Synthesis of quinoline and chromene derivatives. Journal of Heterocyclic Compounds. 2008. V. 45. Iss. 3. P. 667-671.
12. Liu W., Zhou J., Zheng Ch., Chen X., Xiao H., Yang Y., Guo Y., Zhao G. Tandem cross-Rauhut-Currier/cyclization reactions of activated alkenes to give densely functionalized 3,4-dihydropyrans. Tetrahedron. 2011. V. 67. Iss. 10. P. 1768-1773.
13. Zhang Q., Fang T., Tong X. Facile synthesis of highly functionalized six-membered heterocycles via PPh3-catalyzed [4+2] annulations of activated terminal alkynes and hetero-dienes: scope, mechanism, and application.Tetrahedron. 2010. V. 66. Iss. 40. P. 8095-8100.
14. Ni H., Yao W., Waheed A., Ullah N., and Lu Y. Enantioselective [4+2]-Annulation of Oxadienes and Allenones Catalyzed by an Amino Acid Derived Phosphine: Synthesis of Functionalized Dihydropyrans. Org. Lett.2016. V. 18. Iss. 9. P. 2138-2141.
15. Hu Zh.-P., Wang W.-J., Yin X.-G., Zhang X.-J., Yan M. Enantioselective synthesis of 2-amino-4H-pyrans via the organocatalytic cascade reaction of malononitrile and a-substituted chalcones. Tetrahedron: Asymmetry. 2012. V. 23. Iss. 6-7. P. 461-467.
16. Maharramov A.M, Sadikhova N.D., Mammadov I.G., Allakhverdiev M.A. Alkylation of B-Dicarbo-nyl Compounds as a Method for the Production of Functionally Substituted Dihydrofurans. Chem. Het-erocyc. Comp. 2009. V. 45. No 4. P. 400-404.
17. Mamedov I.G, Eichhoff U, Maharramov A.M, Bayramov M.R, Mamedova Y.V. Molecular Dynamics of Alkenylphenol Derivatives in Solution as Studied by NMR Spectroscopy. Appl. Magn. Reson. 2010. V. 38. Iss. 3. P. 257-269.
18. Mamedov I.G, Bayramov M.R, Mamedova Y.V, Maharramov A.M. Molecular dynamics of cis-1-(2-hydroxy-5-methylphenyl)ethanoneoxime and N-(2-hydroxy-4-methylphenyl)acetamide in solution studied by NMR spectroscopy. Magn. Reson. Chem. 2010. V. 48. Iss. 9. P. 671-677.
19. Mamedov I.G, Eichhoff U, Maharramov A.M, Bayramov M.R, Mamedova Y.V. Molecular dynamics of (Z)-1-(2-hydroxy-5-methyl-3-nitrophe-nyl)ethanoneoxime and (E)-2-hydroxy-5-me-thylacetophenone thiosemicarbazone in solution studied by NMR spectroscopy. Cent. Eur. J. Chem. 2012. V. 10. Iss. 1. P. 241-247.
20. Mamedov I.G, Bayramov M.R, Mamedova Y.V. Maharramov A.M. Molecular dynamics of (E)-6-
acetyl-3-(2-hydroxy-5-methylphenyl)-5-styrylcyc-lohex-2-en-1-one and (E)-6-ethylcarboxylate-3-(2-hydroxy-5-methylphenyl)-5-styryl cyclohex-2-en-1-one in a solution studied by NMR spectroscopy. Magn. Reson. Chem. 2013. V. 51. Iss. 9. P. 600604.
21. Mamedov I.G, Bayramov M.R, Mamedova Y.V, Maharramov A.M. New synthesis on the basis 2-allyloxy chalcone and NMR studies its some derivatives. Magn. Reson. Chem. 2015. V. 53. Iss. 2. P. 147-153.
22. Mamedov I.G, Bayramov M.R, Salamova A.E, Ma-harramov A.M. NMR studies of some 4-hydroxy-2-methylacetophenone thiosemicarbazones in solutions. Ind. Jour. Chem. 2015. 54 B. P. 1518-1527.
23. Mamedov I.G, Abbasoglu R, Bayramov M.R, Maharramov A.M. Synthesis of a new 1,2,3,4,5-penta-substituted cyclohexanol and determining its stereochemistry by NMR spectroscopy and quantum-chemical calculations. Magn. Reson. Chem. 2016. V. 54. Iss. 4. P. 315-319.
24. Mamedov I.G, Mamedova Y.V, Khrustalev V.N, Bayramov M.R, Maharramov A.M. Dependence of biological activities of some chalcone derivatives from the molecular structure. Ind. Jour. Chem. 2017. 56 B. P. 192-196.
25. Mamedov I.G, Farzaliyeva A.E, Mamedova Y.V, Hasanova N.N, Bayramov M.R, Maharramov A.M. Antibacterial; Antifungal; Anticancer; Acetophenone; NMR spectroscopy. ind. Jour. Chem. 2018. 57 B. P. 1310-1314.
26. Maharramov A.M., Mamedova Y.V., Bayramov M.R., Mamedov I.G. Chalcone Derivatives As Corrosion Inhibitors for Mild Steel in Brine-Kerosene Solution. Russ. Jour. Phys. Chem. 2018. 92. P. 2154-2158.
27. Mamedov i.G, Khrustalev V.N, Dorovatovskii P.V, Naghiev F.N, Maharramov A.M. Efficient synthesis of new tricyclic pyrano[3,2-c]pyridine derivatives. Mendeleev Communications. 2019. V. 29. Iss. 2. P. 232-233.
28. Naghiyev F.N, Mamedov i.G, Khrustalev V.N, Shikhaliev N.G, MaharramovA.M. A new direction in the alkylation of 5-acetyl-2-amino-6-methyl-4-phenyl-4H-pyran-3-carbonitrile with active methylene reagents. Journal of the Chinese Chemical Society. 2019. V. 66. Iss. 3. P. 253-256.
29. Maharramov A.M, Naghiyev F.N, Mamedova G.Z, Asadov Kh.A. Synthesis of Spiroindolines on the Basis of Isatylidene Malononitrile. Russian Journal of Organic Chemistry. 2018. V. 54. Iss. 11. P. 1731-1734.
BЭZi KNOEVENAGEL ADDUKTLARI ЭSASINDA YENi PiRAN УЭ TSiKLOHEKSANON
TбRЭMЭLЭRlNiN SiNTEZi
F.N.Naglyev
3-(4-ТоШ)-, З-^-тйокзИепЛ)-, 3-fenil-, 3-piridinil-2-(tiofen-2-karbonil)akrilonitrШэrin, е1эсэ dэ 3-(4-ТоШ)-, 3-(1Ь1о-рИеп-2-у1) vэ 2-(4-bшmbenzoil)-3-(4-fluorfeшl)akrilonitrilin asetoasetanilid Пэ Mixael ЬЫэ^э reaksiyasiyasmdan hэm эvэzlэnmi§ tsikloheksanon, hэm dэ 3,4-dihidro-2H-piran tбrэmэlэri ahnml§dlr. Sintez edilmi§ ЫгЬ^тэЬгт qurulu§laп nuvэ maqnit rezonansl spektroskopiyasl vэ X-Ray analizinin kбmэyi Пэ tэsdiq edilmi§dir.
Адаг sozlэr: tю/вп, akrilonitrillэr,asetoasetanilid, tsikloheksanon,dihidropiran, nuvэ maqnit rezonansl spektros-kopiyasl.
СИНТЕЗ НОВЫХ ПРОИЗВОДНЫХ ПИРАНА И ЦИКЛОГЕКСАНОНА НА ОСНОВЕ НЕКОТОРЫХ
АДДУКТОВ КНОВЕНАГЕЛЯ
Ф.Н.Нагиев
Присоединением по Михаэлю ацетоацетанилида к 3-(4-толил)-, 3-(4-метоксифенил)-, 3-фенил-, 3-пиридинил-2-(тиофен-2-карбонил)акрилонитрилам или 3-(4-толил)-, 3-(тиофен-2-ил) и 2-(4-бромбензоил)-3-(4-фторфенил)ак-рилонитрилам получены производные циклогексанона и 3,4-дигидро-2Н-пирана. Структуры всех синтезированных соединений подтверждены данными спектроскопией ядерно-магнитного резонанса и рентгенографии.
Ключевые слова: тиофен, акрилонитрилы, ацетоацетанилид, циклогексанон, дигидропиран, спектроскопия ядерно-магнитного резонанса.