Научная статья на тему 'SYNTHESIS OF N-SUBSTITUTED CARBAZOLOCYANINES WITH ABSORPTION IN THE NEAR IR REGION'

SYNTHESIS OF N-SUBSTITUTED CARBAZOLOCYANINES WITH ABSORPTION IN THE NEAR IR REGION Текст научной статьи по специальности «Химические науки»

CC BY
23
8
i Надоели баннеры? Вы всегда можете отключить рекламу.
Журнал
Макрогетероциклы
WOS
Scopus
ВАК
Область наук
Ключевые слова
CARBAZOLES / CADOGAN SYNTHESIS / SUZUKI COUPLING / PORPHYRAZINES / NEAR IR ABSORPTION

Аннотация научной статьи по химическим наукам, автор научной работы — Belousov Mikhail S., Kosov Anton D., Borisova Nataliya E., Dubinina Tatiana V.

Novel carbazole-fused porphyrazine complexes of zinc and magnesium, as well as corresponding ligand, were obtained starting from 9-(2-ethylhexyl)-9H-carbazole-2,3-dicarbonitrile. The three-step synthetic strategy to N-substituted carbazole-2,3-dicarbonitrile was optimized. The intense absorption in the near IR region (750-780 nm) was found for target carbazolocyanines.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по химическим наукам , автор научной работы — Belousov Mikhail S., Kosov Anton D., Borisova Nataliya E., Dubinina Tatiana V.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «SYNTHESIS OF N-SUBSTITUTED CARBAZOLOCYANINES WITH ABSORPTION IN THE NEAR IR REGION»

Phthalocyanines Фталоцианины

JVJa крогетэроци vs\ ы

http://mhc-isuct.ru

Communication Сообщение

DOI: 10.6060/mhc224298d

Synthesis of N-Substituted Carbazolocyanines with Absorption in the Near IR Region

Mikhail S. Belousov,a Anton D. Kosov,a Nataliya E. Borisovaa,b and Tatiana V. Dubininaa,c@

aLomonosov Moscow State University, 119991 Moscow, Russian Federation

hA.N. Nesmeyanov Institute of Organoelement Compounds, 119334 Moscow, Russian Federation

cInstitute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Moscow Region, Russian Federation @Corresponding author E-mail: [email protected]

Novel carbazole-fused porphyrazine complexes of zinc and magnesium, as well as corresponding ligand, were obtained starting from 9-(2-ethylhexyl)-9H-carbazole-2,3-dicarbonitrile. The three-step synthetic strategy to N-substituted carbazole-2,3-dicarbonitrile was optimized. The intense absorption in the near IR region (750-780 nm) was found for target carbazolocyanines.

Keywords: Carbazoles, Cadogan synthesis, Suzuki coupling, porphyrazines, near IR absorption.

Синтез N-замещенных карбазолоцианинов c поглощением в ближней ИК области

М. С. Белоусов,a А. Д. Косова Н. Е. Борисова,a,b Т. В. Дубинина^@

Московский государственный университет имени М.В. Ломоносова, 119991 Москва, Российская Федерация ьИнститут элементоорганических соединений имени А.Н. Несмеянова РАН, 119334 Москва, Российская Федерация °Институт физиологически активных веществ ФГБУН Федерального исследовательского центра проблем химической физики и медицинской химии РАН, 142432 Черноголовка, Московская обл., Российская Федерация @E-mail: dubinina. t. vid@gmail. com

На основе 9-(2-этилгексил)-9Н-карбазол-2,3-дикарбонитрила получены новые карбазол-аннелированные пор-фиразиновые комплексы цинка и магния, а также соответствующий лиганд. Оптимизирован трехстадий-ный метод синтеза N-замещенного карбазол-2,3-дикарбонитрила. Для целевых карбазолоцианинов обнаружено интенсивное поглощение в ближней ИК-области (750 - 780 нм).

Ключевые слова: Карбазолы, синтез по Кадогану, кросс-сочетание по Сузуки, порфиразины, поглощение в ближней ИК области.

Phthalocyanines are tetrapyrrolic macroheterocycles related to porphyrins. The main possibilities for their structure modification are introduction of different peripheral groups (substituents), changing of central metal ion and extension of aromatic n-system. Benzo and naphthyl annu-lated phthalocyanines, namely naphthalo- and antracocya-nines, are well known and widely studied.[1-5] The extension of the aromatic n-system allows using of these compounds

in sensors[6] and optical limiters.[7,8] Near IR absorption of n-extended phthalocyanine analogs makes them promising compounds for optical-electronic devices, solar cells,[2,910] and photosensitizers for photodynamic therapy.[11]

Heteroannulation of phthalocyanine macrocycle causes additional centers of structural modification and opens new application areas.[12] For instance, pyrazine-fused phthalocyanines (zinc azanaphthalocyanines) in their quaternized

forms demonstrated high photodynamic activity.[13] Thio-phene-fused phthalocyanines showed interesting self-organization behavior[14] and can be used as donor material for solar cells.[15]

An interesting structural motif in the chemistry of het-eroaromatic compounds is the carbazole molecule. The main peculiarities of carbazole heterocycle are strong electron-releasing effect and a planar structure, which leads to its wide application in organic photoactive materials.[16-21] The most popular method for the introduction of carbazolyl groups is the formation of c-bonds between the phthalocya-nine core and the carbazole unit.[22-25] Carbazole-fused porphyrazines consist of a porphyrazine core with four fused carbazole moieties. They can be called carbazolocya-nines by analogy with the azulenocyanines described by Muranaka et al.[26] Carbazole-fused porphyrazines were reported only in the pioneer article of Kimura et al.[10] Thus, it was of interest to obtain the new carbazolocyanines for further development of this area.

The main purpose of the current work was to develop convenient synthetic approach towards free carbazolo-cyanine ligand. It is important building block towards mono and multi-decker sandwich-type complexes with different central ions.[27]

4-Bromo-5-nitrophthalonitrile is one of the most versatile precursors towards the synthesis of peripherally substituted and heteroannulated phthalocyanines. There are numerous examples concerning modification of 4-bromo-5-nitrophthalonitrile by aromatic nucleophilic substitution reactions.[28-36] In particular, only bromine or both bromine and nitro groups can be substituted by varying the reaction conditions.[28-30] The synthesis of benzisoxazole-,[36] ben-

zotriazole-,[37] benzofuran- [36] and dibenzofurane- [37] dicar-

bonitriles was also reported.

Kimura et al. for the first time described three-step approach to the N-substituted carbazole dicarbonitriles, including Suzuki cross-coupling reaction, Cadogan cycliza-tion of carbazole and protection of nitrogen atom.[10] The main disadvantage of Kimura's approach is the low yield of the Suzuki cross-coupling reaction. To start with, we chose Pd(PPh3)4 as a catalyst and K2CO3 as a base, instead of Pd(OAc)2/SPhos system and K3PO4, and boiling toluene as a reaction media. This catalyst/base system (Pd(PPh3)4/K2CO3) demonstrated high yield for introduction of phenyl group into 1-bromo-3-nitrobenzene and related substrates.[38-40] However, the low conversion of initial compound and formation of phthalocyanine byproduct was observed. The replacement of Pd(PPh3)4 with sterically hindered [1,1 '-£is(diphenylphosphino)ferrocene]dichloropalla-dium(II) (Pd(dppf)Cl2) and the conducting of reaction in 1,4-dioxane allowed to obtain 4-phenyl-5-nitro-phthalonitrile 1 with 76% yield instead of 46% reported in the literature*.

* Synthesis of 1. 1,4-Dioxane (50 mL) was added to the saturated aqueous solution of K2CO3 (2.970 g, 18 mmol in 5.5 mL H2O) and argon was bubbled through the mixture for 15 min. 4-Bromo-5-nitrophthalonitrile (1.500 g, 6 mmol), phenylboronic acid (1.464 g, 12 mmol) and Pd(dppf)Cl2 (0.132 g, 0.18 mmol) were then added and the resulting mixture was stirred for 3 h at 75 °C under argon. The reaction mixture was poured into water and extracted with EtOAc. The collected organic layer was dried over anhydrous CaCl2, and concentrated under reduced pressure. The residue was purified by flash chromatography (SiO2; EtOAc:n-hexane 1:4 V:V)

Scheme 1. Synthesis of 9-(2-ethylhexyl)-9H-carbazole-2,3-dicarbonitrile 3.

Further Cadogan cyclization was carried out in the presence of triphenylphosphine in refluxing o-DCB[41] to give 9H-carbazole-2,3-dicarbonitrile 2 in good yield (81%)t (Scheme 1). A branched 2-ethylhexyl chain was attached to the nitrogen atom to increase the solubility and suppress the aggregation of target carbazolocyanines. The stirring of compound 2 in the form of potassium salt with bromoal-kane gave the desired carbazole 3 i.

to give compound 1 (1.122 g, 76%). M.p.=159-161 °C. 'H NMR (400.13 MHz, [D6]DMSO, 298 K) Sh ppm: 8.90 (1H, s, Hat), 8.51 (1H, s, Hat), 7.43-7.45 and 7.53-7.55 (5H, m, Hph). 13C NMR (100.61 MHz, CDCl3) Sc ppm: 140.89, 136.94, 132.93, 130.14, 129.17, 128.48, 127.25, 118.64, 115.30, 113.39, 113.15. IR (diamond) Vmax cm-1: 2241 (CN st), 1537 (NO2 st as), 1356 (NO2 st sy), 707-907 (arC-H S).

t Synthesis of 2. A mixture of 1 (1.100 g, 4.44 mmol) and PPh3 (2.900 g, 11.1 mmol) was refluxed in o-dichlorobenzene (o-DCB) (10 mL) for 2 h under argon (TLC control: SiO2, EtOAc:n-hexane 1:4 V:V). After the reaction mixture was cooled to room temperature, the solvent was removed under reduced pressure to give dark-brown oil, which solidified on standing. The solid residue was purified by flash chromatography (SiO2; gradient elution - CH2Q2, then EtOAc: n-hexane 3:2 V:V). The EtOAc:n-hexane fraction was collected and the solvents were removed under reduced pressure to give compound 2 (0.782 g, 81%). The compound is decomposed under melting (289-291 °C). >H NMR ([D6]DMSO, 298 K) Sh ppm: 9.00 (1H, s, Hat), 8.34 (1H, d, J=7.40 Hz, Hat), 8.25 (1H, s, Hat), 7.60-7.67 (2H, m, Hat); 7.35 (1H, t, J=7.40 Hz, Hat). 13C NMR ([D6]DMSO, 298K) Sc ppm: 141.42, 139.93, 128.76, 127.30, 125.25, 121.82, 120.95, 117.67, 117.51, 117.24, 112.26, 109.30, 102.55. IR (diamond) Vmax cm-1: 3349 (N-H st), 2227 (CN st), 14481630 (arC-C y), 728-897 (arC-H S).

i Synthesis of 3. Potassium hydroxide (0.206 g, 3.69 mmol) was added to the suspension of 2 (0.400 g, 1.84 mmol) in DMF (8 mL), and stirred for 30 min at 45 °C. Then 2-ethylhexyl bromide (0.652 mL, 3.69 mmol) was added and the resulting mixture was stirred for 24 h at 45 °C (TLC control: SiO2, EtOAc:n-hexane 3:2 V:V). The reaction mixture was poured into water and 5% HCl solution was added dropwise until pH = 7. The product was collected by extraction with EtOAc. The organic layer was dried over anhydrous CaCl2, and concentrated under reduced pressure. The residue was dissolved in minimal amount of ethyl acetate and n-hexane was added. The resulting solid was filtered off, washed with n-hexane and dried at room temperature to give compound 3 (0.462 g, 76%). M.p.=139-140°C. !H NMR ([D6]DMSO, 298K) Sh ppm: 9.02 (1H, s, Hat), 8.53 (1H, s, Hat), 8.37 (1H, d, J=7.76 Hz, Hat), 7.65-7.74 (2H, m, Hat), 7.40 (1H, t, J=7.52 Hz, Hat), 4.38 (2H, d, CH2), 1.98 (1H, br.s, Halkyl), 1.13-1.30 (8H, m, Hakyl), 0.73-0.83 (6H, m, Hakyl). 13C NMR ([D6]DMSO, 298K) Sc ppm: 141.91, 140.64, 128.85, 127.22,

86

Макрогетероцикnbl /Macroheterocycles 2022 15(2) 85-89

Scheme 2. Synthesis of carbazolocyanines. Only one of potential isomers is shown.

Figure 1. MALDI TOF mass spectrum (positive ion mode) of magnesium complex 4, isotopic pattern (inset A) and simulated MS pattern (inset B).

9-(2-Ethylhexyl)-9H-carbazole-2,3-dicarbonitrile 3 was introduced into template synthesis with magnesium and zinc acetates

These central ions were chosen because of the possibility of easy removal from the macrocycle. For template cyclization, we have chosen the standard protocol described elsewhere.[42]

The reaction was carried out in boiling isoamyl alcohol in a presence of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) as a base (Scheme 2). It was found that an additional amount of DBU should be added to speed up the reaction, as electron-rich nitriles are known to be less reactive in this process. Target carbazolocyanines can exist as a mixture of structural isomers (C4h, Cs, D2h and C2v), which cannot be separated using conventional chromatographic techniques.

Then the magnesium complex 4 was stirred in concentrated sulfuric acid, subsequent neutralization by water led to the carbazolocyanine ligand 6 (Scheme 2) **.

All carbazolocyanines were identified using MALDI TOF mass-spectrometry, NMR, and IR spectroscopy. In mass spectra of metal complexes, the intense molecular ions ([M+H]+) were detected. Experimental isotopic patterns for molecular ions are in agreement with theoretically calculated ones (Figure 1). An additional cleavage of ethyl and butyl groups was observed under laser ionization. The carbazolocyanine ligand 6 possesses a high tendency to aggregation and better solubility can be achieved using DMF and pyridine as solvents. Due to this reason, we found in its mass spectrum adducts with pyridine, which was used as a solvent for the preparation of the sample for MALDI.

124.71, 121.97, 121.20, 120.73, 117.55, 117.25, 116.40, 110.95, 109.46, 102.58, 47.08, 38.41, 29.81, 27.72, 23.38, 22.47, 13.76, 10.55. IR (diamond) Vmax cm-1: 2861-2961 (C-H st), 2223 (CN st), 1218-1626 (overlapping of signals of arC-C y; CH3 5; CH2 5), 727-903 (arC-H 5). §General procedure for complexes 4 and 5. A mixture of 3 (200 mg, 0.608 mmol) and M(OAc)2*n№O (0.304 mmol) was refluxed in isoamyl alcohol (2.5 mL) in the presence of DBU (0.4 mL) for 5 h under argon. The reaction mixture was cooled to room temperature and a MeOH:H2O (10:1 V:V) mixture was added. The precipitate was filtered off and washed with water and MeOH to give target complexes. Yield of 4: 175 mg, 86%. UV-Vis (DMF) Uax (lge) nm: 333 (4.79), 346 (4.80), 665 (4.48), 746 (5.14). IR (diamond) Vmax cm1: 2858-3056 (arC-H st); 1323-1645 (arC-C y; CH3 5; CH2 5 - overlapping); 1069-1092 (arC-H 5). MS (MALDI-TOF): m/z 1342 ([M+H]+, 100%), 1257 ([M+H-C4H9-C2H5]+, 22%). 'H NMR ([D7]DMF, 298K) 5h ppm: 10.15-10.18 (1H, br.s, H1), 9.37-9.51 (1H, br.d, H2), 8.56-8.76 (1H, br.d, Hi), 7.44-7.84 (3H, m, H3-H5), 4.66 (2H, br, -CH2-N-), 2.44 (1H, br.s, CH), 0.89-1.59 (14H, m, Halkyl). Yield of 5: 183 mg, 87%. UV-Vis (DMF) W (lge) nm: 334 (4.83); 343 (4.83); 665 (4.47); 747 (5.13). IR (diamond) Vmax cm-1: 2858-3057 (arC-H st); 1329-1624 (arC-C y; CH3 ô; CH2 8 - overlapping); 10701097 (arC-H 5). MS (MALDI-TOF/TOF): m/z 1382 ([M+H]+, 100%), 1297 ([M+H-C4H9-C2H5]+, 27%). >H NMR ([D7]DMF, 298K) 5h

Figure 2. 1H NMR spectrum of magnesium complex 4 measured in [D7]DMF.

ppm: 9.67-9.84 (1H, br, Ha), 8.62-8.97 (2H, br, Ha), 7.57-7.83 (3H, m, Hat), 4.42-4.53 (2H, br, CH2), 2.36 (1H, br.s, Hakyl), 1.08-1.57 (14H, m, Halkyl).

Synthesis of carbazolocyanine ligand 6. Powder of complex 4 (164.00 mg, 0.11 mmol) was gradually added to concentrated sulfuric acid (10 mL). The mixture was stirred for 20 min at room temperature and sonicated for 5 min. The resulting viscous solution was poured onto ice and a greenish-brown precipitate immediately formed. The precipitate was filtered off and washed with water until neutral pH and then washed with MeOH to give compound 6 (122 mg, 76%). UV-Vis (DMF) W nm (lge): 329 (4.66); 341 (4.65); 417(4.39); 685(4.17); 775(4.78). IR (diamond) Vmax cm-1: 3205-3289 (N-H st); 2858-3057 (arC-H st); 1327-1600 (arC-C y; CH3 8; CH2 8 - overlapping); 1023-1086 (arC-H S). MS (MALDI-TOF): m/z 1634 ([M+4Py]+, 100%), 1555([M+3Py]+, 28%), 1476 ([M+2Py]+, 10%), 1397 ([M+Py]+, 5%) 1318 ([M]+, 20%).

Figure 3. UV-Vis spectra of carbazolocyanines in DMF (B,C) and comparison with unsubstituted zinc phthalocyanine (A). The absorbance of Q band vs. concentration for magnesium complex 4 (D) and zinc complex 5 (E) (dashed lines demonstrate Beer's law calibration curves).

1H NMR spectra were measured in [D7]DMF since signals of pyridine protons may overlap with those of the carbazole heterocycle. In NMR spectra there are three main groups of signals: aromatic proton signals of carbazole unit, proton signals of the alkyl chain, and broad signal of -CH2-N- group in the range of 4-5 ppm (Figure 2). All signals are broad probably because of the presence of isomers of the target carbazolocyanines.

UV-Vis spectra of target compounds demonstrate a few regularities. About 80 nm shift of the Q band to near IR region was observed going from unsubstituted zinc phthalocyanine to zinc carbazolocyanine 4 (Figure 3A). Broad band in the range of 400-500 nm can be assigned to charge transfer band from heterocyclic periphery to prophyrazine core. Similar peculiarity was observed for thiophene-fused porphyrazines.[43,44] This band is the most pronounced for ligand 6 (Figure 3C).

The changing of central metal ion from Mg to Zn did not affect the position of the Q band (Figure 3B), what is following previous data for porphyrazine complexes.[45] The higher affinity between Zn ion and the nitrogen atom of DMF results in slightly more effective suppression of aggregation for zinc complex 5 than it was found for magnesium complex 4. For the solution of magnesium complex 4 in DMF the Beer's law is not obeyed above CW = 2.410-5 M vs Clim = 2.710-5 M for zinc complex 5 (Figures 3D and 3E).

UV-Vis spectrum of ligand 6 was measured in DMF because of the poor solubility of this compound in other solvents. For instance, UV-Vis spectra in chloroform showed a very broad Q band of low intensity. A bathochromic shift of the Q band was observed going from the magnesium complex 4 to ligand 6. In contrast to phthalocyanine ligand, Q band of carbazolocyanine ligand 6 do not show splitting.

Q bands of other n-extended phthalocyanine derivatives (naphthalocyanines and anthracocyanines) also do not split due to the slight splitting of LUMO orbital.[1] At the same time, Kimura et al. presented an almost complete degeneration of LUMO and LUMO+1 levels for carbazolocyanine.[10]

It can be concluded that near IR absorbing carbazolocy-anine complexes and carbazolocyanine ligand were obtained and identified. Novel carbazolocyanines demonstrated about 80 nm bathochromic shift of Q band in comparison with phthalocyanine analogs. In addition we optimised the synthetic strategy to initial N-substituted carbazole-2,3-dicarbonitrile. Replacing the Pd(OAc)2 / SPhos catalytic system with Pd(dppf)Cl2 at the Suzuki cross-coupling stage allowed to obtain 4-phenyl-5-nitrophthalonitrile in 76 % yield instead of 46 % reported in the literature.

Acknowledgements. Present work was supported by Russian Science Foundation Grant No. 21-73-00162.

References

1. Kobayashi N., Nakajima S.-i., Ogata H., Fukuda T. Chem.-Eur. J. 2004, 10, 6294 - 6312.

2. Dubinina T.V., Maklakov S.S., Petrusevich E.F., Borisova N.E., Trashin S.A., De Wael K., Tomilova L.G. New J. Chem. 2021, 45, 14815 - 14821.

3. Freyer W., Minh L.Q. Monatsh. Chem. 1986, 117, 475-489.

4. Trashin S.A., Dubinina T.V., Fionov A.V., Tomilova L.G. J. Porphyrins Phthalocyanines 2011, 15, 1195 - 1201.

5. Dubinina T.V., Tomilova L.G., Zefirov N.S. Russ. Chem. Rev. 2013, 82, 865 - 895.

6. Polyakova M.S., Basova T.V. Macroheterocycles 2017, 10, 31 - 36.

7. Ye H., Chang Q., Wu Y., He C., Zuo X., Zhou J., Wang Y., Song Y. Mater. Lett. 2003, 57, 3302 - 3304.

88

Макрогетероциmbl /Macroheterocycles 2022 15(2) 85-89

8. Xu J., Chen J., Chen L., Hu R., Wang S., Li S., Ma J.S., Yang G. Dyes Pigm. 2014, 109, 144 - 150.

9. Feng Y., Zhang X., Feng W. Org. Electron. 2010, 11, 1016 - 1019.

10. Kimura M., Suzuki H., Tohata Y., Ikeuchi T., Yamamoto S., Kobayashi N. Asian J. Org. Chem. 2017, 6, 544 - 550.

11. Makarov S.G., Schnurpfeil G., Rychagova E.A., Ketkov S.Y., Suvorova O.N., Wöhrle D. J. Porphyrins Phthalocyanines 2017, 21, 844 - 849.

12. Novakova V., Donzello M.P., Ercolani C., Zimcik P., Stuzhin P.A. Coord. Chem. Rev. 2018, 361, 1 - 73.

13. Zimcik P., Miletin M., Radilova H., Novakova V., Kopecky K., Svec J., Rudolf E. Photochem. Photobiol. 2010, 86, 168 - 175.

14. Suzuki H., Yamada N., Nakayama K.-I., Kimura M. J. Porphyrins Phthalocyanines 2014, 18, 259 - 266.

15. Yan X., Fan H., Gu H., Zhang J., Huang X., Zhang R., Zhan X. Dyes Pigm. 2015, 114, 124 - 128.

16. Uoyama H., Goushi K., Shizu K., Nomura H., Adachi C. Nature 2012, 492, 234 - 238.

17. Blouin N., Michaud A., Gendron D., Wakim S., Blair E., Neagu-Plesu R., Belletête M., Durocher G., Tao Y., Leclerc M. J. Am. Chem. Soc. 2008, 130, 732 - 742.

18. Wang K., Liu W., Zheng C.-J., Shi Y.-Z., Liang K., Zhang M., Ou X.-M., Zhang X.-H. J. Mater. Chem. C 2017, 5, 4797 - 4803.

19. Albrecht K., Yamamoto K. J. Am. Chem. Soc. 2009, 131, 2244 - 2251.

20. Li L., Wang P., Hu Y., Lin G., Wu Y., Huang W., Zhao Q. Spectrochim. Acta A 2015, 139, 243 - 252.

21. Mi D., Kim J.-H., Yoon S. C., Lee C., Lee J.-K. and Hwang D.-H., Synthetic Metals, 2011, 161, 1330 - 1335.

22. Majeed S.A., Ghazal B., Nevonen D.E., Goff P.C., Blank D.A., Nemykin V.N., Makhseed S. Inorg. Chem. 2017, 56, 11640 - 11653.

23. Göksel M., Sengul I. F., Kandemir H., Durmuç M. J. Porphyrins Phthalocyanines 2016, 20, 708 - 718.

24. Bhattacharya S., Biswas C., Raavi S.S.K., Krishna J.V.S., Krishna N.V., Giribabu L., Soma V.R. J. Phys. Chem. C 2019, 123, 11118 - 11133.

25. Majeed S.A., Nwaji N., Mack J., Nyokong T., Makhseed S. J. Lumin. 2019, 213, 88 - 97.

26. Muranaka A., Yonehara M., Uchiyama M. J. Am. Chem. Soc. 2010, 132, 7844 - 7845.

27. Pushkarev V.E., Tomilova L.G., Nemykin V.N. Coord. Chem. Rev. 2016, 319, 110 - 179.

28. Znoiko S.A., Petlina A.I., Shaposhnikov G.P., Smirnov N.N. Russ. J. Gen. Chem. 2018, 88, 1148 - 1153.

29. Morozova A.P., Znoiko S.A., Vashurin A.S., Zav'yalov A.V., Maizlish V.E., Shaposhnikov G.P. Russ. J. Gen. Chem. 2017, 87, 3063 - 3070.

30. Vashurin A., Maizlish V., Kuzmin I., Znoyko S., Morozova A., Razumov M., Koifman O. J. Porphyrins Phthalocyanines 2017, 21, 37 - 47.

31. Tikhomirova T., Nalimova K., Kerner A., Vashurin A., Znoyko S. J. Porphyrins Phthalocyanines 2019, 23, 575-583.

32. Filippova A., Vashurin A., Znoyko S., Kuzmin I., Razumov M., Chernova A., Shaposhnikov G., Koifman O. J. Mol. Struct. 2017, 1149, 17 - 26.

33. Znoyko S.A., Savinova A.I., Maizlish V.E., Shaposhnikov G.P., Abramov I.G. Russ. J. Gen. Chem. 2016, 86, 1345 - 1352.

34. Dolotova O., Konarev A., Volkov K., Negrimovsky V., Kaliya O.L. J. Porphyrins Phthalocyanines 2012, 16, 946 - 957.

35. Znoiko S.A., Tolstykh N.A., Mikhailova A.I., Novikov I.V., Vashurin A.S., Maizlish V.E. Russ. J. Gen. Chem. 2020, 90, 2289-2295.

36. Filimonov S.I., Chirkova Z.V., Abramov I.G., Firgang S.I., Stashina G.A., Strelenko Y.A., Khakimov D.V., Pivina T.S., Samet A.V., Suponitsky K.Y. Tetrahedron 2012, 68, 5991 - 5997.

37. Abramov I.G., Smirnov A.V., Abramova M.B., Begunov R.S., Kalandadze L.S., Smirnova O.V., Plakhtinskii V.V. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.] 2001, 44(6), 134 - 139.

38. Dubinina T.V., Trashin S.A., Borisova N.E., Boginskaya I.A., Tomilova L.G., Zefirov N.S. Dyes Pigm. 2012, 93, 1471 - 1480.

39. Xiang S., Lv X., Sun S., Zhang Q., Huang Z., Guo R., Gu H., Liu S., Wang L. J. Mater. Chem. C 2018, 6, 5812 - 5820.

40. Wu W.-C., Liu Y.-M., Lin M.-H., Liao Y.-H., Lai M.-J., Chuang H.-Y., Hung T.-Y., Chen C.-H., Liou J.-P. Eur. J. Med. Chem. 2020, 192, 112158.

41. Freeman A.W., Urvoy M., Criswell M.E. J. Org. Chem. 2005, 70, 5014 - 5019.

42. Kuzmina E.A., Dubinina T.V., Borisova N.E., Tomilova L.G. Macroheterocycles 2017, 10, 520 - 525.

43. Dubinina T.V., Dyumaeva D.V., Trashin S.A., Sedova M.V., Karpo A.B., Krasovskii V.I., Tomilova L.G. Macroheterocycles 2012, 5, 149 - 156.

44. Dubinina T.V., Dyumaeva D.V., Trashin S.A., Sedova M.V., Dudnik A.S., Borisova N.E., Tomilova L.G., Zefirov N.S. Dyes Pigm. 2013, 96, 699 - 704.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

45. Kosov A.D., Dubinina T.V., Seliverstov M.Y., Tomilova L.G., Zefirov N.S. Macroheterocycles 2016, 9, 201 - 205.

Received 27.03.2022 Accepted 22.04.2022

i Надоели баннеры? Вы всегда можете отключить рекламу.