CHEMICAL PROBLEMS 2023 no. 2 (21) ISSN 2221-8688
161
UDC 547.452 + 620.197
SYNTHESIS OF p-KETOSULFIDES BASED ON BENZALACETONE AND RESEARCH
INTO THEIR INHIBITORY PROPERTIES
V.M. Kyazimov, G.Z. Guseynov, N.S. Madji, M.A. Mirzoyeva, O.G. Nabiyev, G.S. Kyazimova, L.K. Vahid-zadeh
Acad. A.M. Kuliyev Institute of Chemistry of Additives under the Ministry of Science and Education of Azerbaijan Republic, Boyukshor highway, quarter 2062, AZ1029, Baku, Azerbaijan e-mail: valikazimov1955@gmail. com
Received 06.12.2022 Accepted 26.04.2023
Abstract: The interaction of benzalacetone with mercaptoacetic acid and its alkyl esters was used to synthesize and characterize new representatives of fi-ketosulfides, the structure of which was proved by 1H and 13C NMR- spectroscopy. The gravimetric method was used to study the influence of the synthesized compounds on the corrosion rate of St-3 in various aggressive medium. It was established that the studied compounds inhibit the corrosion process both in single-phase acidic (0.1NHCl u 0.1NH2SO4), and in two-phase (electrolyte-hydrocarbon) media. In the latter case, they are more effective - the corrosion rate of St-3 decreases from 2.1 to 0.06-0.35 g/m 2 hour, while the degree ofprotection against corrosion is 83.3-97.1 %. The studied compounds exhibit a greater protective effect in hydrochloric acid solution (97.1-92.45%), than in sulfuric acid (76.9-87.1%). Among the tested compounds, fi-ketosulfide obtained on the basis of mercaptoacetic acid showed the highest inhibitory efficiency in both mediums.
Keywords: benzalacetone, mercaptoacetic acid, alkyl esters of mercaptoacetic acid, fi- ketosulfide, inhibitors of corrosion, single-phase medium, two-phase medium, gravimetric method. DOI: 10.32737/2221-8688-2023-2-161-167
Introduction
Ketosulfides are of interest as corrosion inhibitors [1, 2], growth stimulators of agricultural crops [3], and synthesis of biologically active compounds [4, 5]. One of the convenient ways to obtain ketosulfides is the addition of thiols to unsaturated ketones by the Michael reaction. A number of P-ketosulfides were synthesized and characterized by conjugate addition of thiols to
a-, P-unsaturated carbonyl compounds in the presence of various catalysts [6-14]. Obtaining new representatives of ketosulfides and studying their useful properties is relevant. For this purpose, we carried out reactions of benzalacetone with mercaptoacetic acid and its alkyl esters. The synthesized P-ketosulfides were studied as steel corrosion inhibitors in various aggressive media.
Experimental part
NMR spectra were taken on a Bruker instrument with an operating frequency of 300 MHz (1H) and 75 MHz (13C) in C6D6 solvent. TMS was used as an internal standard.
Alkyl esters of mercaptoacetic acid were synthesized by the reaction of mercaptoacetic acid with the corresponding alcohols in an acidic medium [15]. The physicochemical constants of the synthesized esters comply with
the literature data.
The reagents used - benzalacetone, mercaptoacetic acid, and triethylamine - were purified by distillation.
4-Methoxycarbonylmethylthio-4-phenylbutan-2-one (I). To a mixture of 10.6 g (0.1 mol) of methyl ester of mercaptic acid and 3 ml of triemidylamine in 50 ml of benzene when mixing , are added 14.6 g (0.1 mol) of
www.chemprob.org
CHEMICAL PROBLEMS 2023 no. 2 (21)
benzalacetone in 50 ml of benzene. While an increase in the temperature of the reaction mixture by 6-8°C is observed. Stirring is continued for 2 hours at room temperature. Then the temperature is raised to 60-65°C and the reaction is continued for another 3 hours.
The benzene solution was washed with water until neutral, dried over sodium sulfate, and then filtered. After distilling off the solvent, the target product was isolated by vacuum distillation. Yield of 18.82 g (74.5 %), Tb. 115-116°C/1.5 mm, n™ 1.5403. NMR spectra 1H, 5, M.fl.: 7.13-7.26 m (5H, C6H5), 4.41-4.46 t (1H, PhCHS); 3.55 s (3H, OCH3); 3.02 s (2H, SCH2); 2.61-2.80 m (2H, CCH2C); 2.02 s (3H, O=C-CH3). NMR spectra 13C, 5, M.g.: 205.2 (C=O); 173.4 (O=C-O); 14.1 (C1, Ph); 128.6 (C2, C3, C5 h C6, Ph); 127.3 (C4, Ph); 51.2 (CH2); 50.6 (OCH3); 38.9 (SCH2); 37.7 (CH); 29.2 (CH3). Found, %: C 33.81; H 5.72; S 29.99. C3H6O2S. Calculated, %: C 33.96; H 5.66; S 30.19.
Other P-ketosulfides (II-IV) were synthesized by a similar procedure.
Other p-ketosulfides (II-IV) were synthesized by a similar procedure (II). Yield: 73.2 %, Tb.123-125°C/1.5 mm, nzD° 1.5321. NMR spectra 1H, 5, ppm.: 7.10-7.23 m (5H, C6H5), 4.31-4.36 m (2H, OCH2); 4.10-4.15 t (1H, PhCHS); 3.12 s (2H, SCH2); 2.65-2.84 m (2H, CCH2C); 2.01 s (3H, O=C-CHs); 1.27-1.32 t (3H, O-C-CH3). NMR spectra 13C 5, ppm.:
205.2 (C=0); 168.2 (O=C-O); 139.5 (C1, Ph);
128.3 (C2, C3, C5 and C6, Ph); 127.4 (C4, Ph); 60.2 (OCH2); 52.1 (CH2); 39.8 (SCH2); 37.2 (CHS); 28.9 (O=C-CH3); 14.3 (O CH2CH3). Found, %: C 39.83; H 6.52; S 26.59. C4H8O2S. Calculated, %: C 40.00; H 6.67; S 26.67. 4-i-Propoxycarbonylmethylthio-4-phenylbutan-2-one (III). Yield: 70.1%, Tb 131-133°C/1.5 mm, nf 1.5300. NMR spectra 1H, 5, ppm.: 7.11-7.24 m (5H, C6H5), 4.86-5.00 m (1 H, OCH); 4.31-4.38 t (1H, Ph CH S); 3.31 s (2H, SCH2); 2.52-2.77 m (2H, C-CH2-C); 1.95 c
(3Н, 0=С-СНз); 1.29 d (6H, CH3-C- CH3). NMR spectra 13С, 5, ppm.:205.7 (C=0); 168.9 (0=C-0); 139.3 (C1, Ph); 128.5(C2, C3, C5 и C6, Ph); 127.2 (C4, Ph); 69.1 (OCH); 38.5 (SCH2); 37.5 (CHS); 29.2 (0=C-CH3); 21.3 (CH3-C-CH3). Found, %: C 44.68; H 7.26; S 23.69. C5H1002S. Calculated, %: C 44.78; H 7.46; S 23.88.
4-Carboxymethylthio-4-phenylbutan-2-one (IV). Yield: 67.5%, Tb.128-130°/1.0 mm, n2D° 1.5690. NMR spectra (fig.l), 5, ppm.: 10.29 s (1Н, СООН): 7.02-7.13 m (5H, C6H5); 4.594.64 m (1H, PhCHS); 2.79 c (2H, SCH2); 2.582.64 m (2Н, С-СН2-С); 1.58 s (3Н, СН3). NMR spectra 13С (fig.2), 5, ppm.: 204.5 (c=0); 175.4 (СООН); 140.8 (C1, Ph); 128.5 (С2, С3, C5 and C6, Ph); 127.2 (C4, Ph); 48.8 (CH2); 44.23 (SCH2); 32.3 (CH); 29.5 (CH3). Found,% : С 26.15; H 4.19; S 34.53. C2H402S. Calculated,% : С 26.09; H 4.35; S 34.78. The inhibitory properties of the synthesized compounds were studied gravimetrically according to the State Standard (ГОСТ) 9.50282 n single-phase acidic media and in two-phase electrolyte-hydrocarbon media (3% NaCl+0.02% СН3СООН + kerosene 5:1), saturated with carbon dioxide.
Before testing, the plates were ground on a grinding machine, polished, washed with distilled water, alcohol, hexane, and then with acetone.
The plates (40 x 20 x 5) were placed in a beaker with 200 ml of an acid solution so that they did not come into contact with each other. After 3 hours, the plates were removed from the solution and washed with running water, dried and a thin coating was removed from the surface of the plates with an elastic band, washed with hexane, and dried with acetone. Then the plates were weighed on an analytical balance with an accuracy of 0.0001 g.
The corrosion rate (p) was determined in g/m2-h using the following formula:
in 1 — ÎH
mi - mass of plates before testing, g m2 - mass of plates after testing, g S - plate area, m2 t - test time, hour.
The degree of protection (Z, %) was determined by the following formula:
p foil
p fon - plate corrosion rate without inhibitor, g/m h. p - plate corrosion rate with inhibitor, g/m2 h.
Fiq. 1. 1H NMR spectra of 4-carboxymethylthio-4-phenylbutan-2-one
Fiq. 2. 13C NMR spectra of 4-carboxymethylthio-4-phenylbutan-2-one
Results and their discussion
The reaction of benzalacetone with benzene solution in equimolar ratios of reagents mercaptoacetic acid and its esters proceeded in a in the presence of triethylamine. Reaction scheme:
// v ^ ^o + hsch2coor o
n(c2h5)3 ■
R= CH3 (I), C2H5 (II), i-C3H7 (III), H (IV) sch2coor
i-iv
Synthesized P-ketosulfides (I-IV) are light yellow liquids, soluble in organic solvents, stable during storage. Their structure and composition were confirmed by *H, 13C NMR spectroscopy and elemental analysis.
The reaction mechanism is presented as follows. Benzalacetone belongs to a, B-unsaturated ketones, in the molecule of which, by conjugation of n-bonds of the double carbon-
carbon and carbonyl groups, four p-electrons are delocalized on three carbon atoms and an oxygen atom. The influence of -I and -M -effects of carbonyl oxygen leads to the polarization of the conjugated system, as a result of which the B-carbon atom acquires a partially positive charge, and carbonyl oxygen acquires a partially negative charge:
Such a distribution of electron density in which, after subsequent protonation, turns into
the conjugated system leads to the addition of enol. Further, the unstable enol formed as a
nucleophilic thiolate ion to carbon at the P- result of conjugated addition is isomerized into
position of the ketone, forming an enolate ion, a more stable keto form:
hsch2coor + n(c2h5)3—^[hn(c2h5)3]++ sch2coor
SCH2COOR + Ph-C=C-C=O-- Ph-CH-CH=C-O
H H CH3 sch2coor
CH3 ' - +H
CH CH Ph-CH-CH=C-OH-^ Ph-CH-CH2-C=O
SCH2COOR sch2coor
Thus, the final product corresponds to a formal addition at carbon-carbon double bonds without affecting the carbonyl group.
The molecules of P-ketosulfides we synthesized contain various functional groups, including ester and carbonyl groups, as well as a sulfur heteroatom havingan unshared electron pair, which can be used to interact with the
metal surface. In this regard, it was of interest to study their inhibitory properties.
The inhibitory properties of P-ketosulfides were studied in a single-phase acid medium (0.1N HCI and 0.1 N H2SO4) and in a two-phase system: electrolyte-hydrocarbon saturated with carbon dioxide. The gravimetric test results are presented in Table 1.
Table 1. Inhibitory properties of ß-ketosu
0.1N HCl t= 20°C 0.1N H2SO4 t= 20°C 3% NaCl+0.02% CHsCOOH+kerosene 5:1, CO2, t= 20°C
№№ Formula and name of the compound Conc., mg/l P> g/m2 h Z, % P> g/m2 h Z, % P> g/m2 h Z, %
fides
I 0-ch-ch2-c(o 1 ch, sch2cooch3 3 4-Methoxycarbonylmethyl-thio-4-phenylbutan-2-one 50 100 0.71 0.55 79.1 83.8 0.97 0.87 76.9 79.3 0.35 0.27 83.3 87.1
II O"C^CH2"<0 1 ch, sch2c00c2h5 3 4-Ethoxycarbonylmethyl-thio-4-phenylbutan-2-one 50 100 0.66 0.52 80.6 84.7 0.92 0.84 78.1 80.2 0.31 0.23 85.2 89.0
III 0"CH-CH2-<0 1 CH SCH2C00C3H7-i 3 i-Propoxycarbonylmethyl-thio-4-phenylbutan-2-one 50 100 0.60 0.50 82.4 85.3 0.87 0.79 79.3 81.2 0.29 0.20 86.2 90.5
IV 0"C^CH2"<0 1 ch, sch2c00h 3 4-Carboxymethylthio-4-phenylbutan-2-one 50 100 0.37 0.26 89.1 92.4 0.66 0.54 84.3 87.1 0.17 0.06 91.9 97.1
V Without the inhibitor - 3.40 - 4.20 - 2.10 -
As can be seen from the data in Table 1, the studied compounds effectively inhibit the corrosion of steel in a two-phase system: electrolyte-hydrocarbon saturated with carbon dioxide. At that, the corrosion rate decreases from 2.1 to 0.06-0.35 g/m2 h, while the degree of protection is 83.3-97.1%. These compounds have inhibitory properties in acidic medium in 0.1N HCI and 0.1 N H2SO4, solutions, but exhibit less inhibitory activity than in a two-
phase system.
The studied compounds exhibit a greater protective effect in a solution of hydrochloric acid (79.1-92.4%) than in sulfuric acid (76.987.1%).
It should be noted that among the studied compounds, P-ketosulfide, obtained on the basis of mercaptoacetic acid itself, turned out to be the most effective.
References
1. Gafarov N.A., Kushnarenko V.M., Bugay D.E. and others. Corrosion inhibitors. M., Chemistry Publ. 2002, vol.2, p. 266. (in Russian).
2. Solop G.R., Shavshukova S.Yu., Bugay
D.E., Zlotskiy S.S. Inhibitors of mechanical corrosion of oil equipment. Oil and gas business. 2016, vol.14, no. 2, pp.188-193.(in Russian).
3. Bayeva L.A., Ulendeyeva A.D., Galkin
E.G., Yerastov A.S., Filimenov S.N., Lyapina L.K. t- Ketosulfides from thiols of the Orenburg gas condensate. Bashkir
chemical journal. 2009, vol. 16, no. 4, pp. 32-35. (in Russian).
4. Fujita E., Nagao Y. Tumor inhibitors having potential for interaction with mercapto enzymes and/or coenzymes: A review, Bioorganic Chem., 1977, no. 6, pp. 287-309.
5. Ulendeyeva A.D., Nikitina T.S., Bayeva L.A., Spirikhin L.V., Karachurina L.T., Hisamutdinova R.Yu., Makara N.S., Zarudiy F.S., Lyapina N.K. Synthesis and pharmacological properties of 4-methyl-1-(methylsulfinylmethyl)-7-thiabicyclo-
[3.3.1]HOH-3 -en-2-one-7-oxide. Chemicopharmaceutical Journal. 2004, vol. 38, no.12, pp. 15-17. (in Russian).
6. Saito M., Nakajima M., Hashimoto S. Enantioselective conjugate addition of thiols to cyclic enones and enals catalyzed by chiral N,N1 - dioxide - cadmium iodide complex. Tetrahedron. 2000, vol. 56, pp. 9589 - 9594.
7. Bandini M., Cozzi P.G., Giacomini M., Melchiorre P., Selva S., Umani - Ronchi, Sequential one - pot InBr 3 - catalyzed 1,4
- then 1,2 - nucleophilic addition to enones. J. Org. Chem. 2002, vol. 67, pp. 3700-3704.
8. Garg S.K., Kumar R., Chakraborti A.K. Zinc Perchlorate Hexahydrate catalyzed conjugate addition of thiols to a,ß -unsaturated ketones. Synlett, 2005, pp. 1370
- 1374.
9. Khan A.T., Ghosh S., Choudhury L.H. Perchloric Acid impregnated on silica gel (HClO4/SiO2): a versatile catalyst for Michael addition of thiols to the electron -deficient alkenes. Eur. J. Org. Chem. 2006, pp. 2226 - 2231.
10. Banerjee S., Das J., Alvareza R.P., Santra S. Silica nanoparticles as a reusable catalyst a straight forward route for the synthesis of thioethers, thioesters, vinil thioethers and thio - Michael adducts under neutral reaction conditions. New J. Chem. 2010, vol. 34, pp. 302 - 306.
11. Yadav J.S., Reddy B.V.S., Baishya G. Green protocol for conjugate addition of thiols to a,P - unsaturated ketones using a [Bmim]PF6/H2O system. J. Org. Chem. 2003, vol. 68, pp. 7098 - 7100.
12. Ranu B.C., Dey S.S., Hajra A. Catalysis by an ionic liquid: efficient conjugate addition of thiols to electron deficient alkenes catalyzed by molten tetrabutyl ammonium bromide under solvent - free conditions. Tetrahedron. 2003, vol. 59, pp. 2417 -2421.
13. Nenaydenko V.G., Sanin A.V., Churakov A.V., Howard J.A.K., Balenkova E.S. Interaction of trifluoromethyl-containing enones with thiophenol derivatives. Chemistry of heterocyclic compounds. 1999, no. 5, pp. 618 - 626. (in Russian)
14. Sandeep T. Atkore, Giribala M. Bondle, Vinond T. Kamble, Ravi Varala, Syed Tarooq Adil, Mohammad Rafe Hatshan, Baji Shaik. Synthesis, characheriration and catalytic evaluation of ZrCl4: Mg(ClO4)2 for the synthesis of 1,3 - diaryl - 3 -(phenylthio)propan - 1 - one. J. Saudi Chem. Society, 2021, vol. 25, 101359.
15. Huseynov K.Z., Gambarav D.G., Mirzoyeva M.A., Mammadov F.N., Fatizadeh R.F. Synthesis of thioglycolic acid esters and their application in analytical chemistry. Azerb.chem.j. 1977, no. 6, pp.103-107.
BENZALASETON 9SASINDA ß-KETOSULFiDL9RiN SiNTEZi V9 iNHiBiTOR
XASSaLORiNiN T9DQiQi
V.M. Kazimov, Q.Z. Hüseynov, N.S. Macdi, M.9. Mirzayeva, O.Q. Nabiyev, G.S. Kazimova, L.K. Vahidzada
Azdrbaycan Respublikasi Elm vd Tdhsil Nazirliyi akad. d.M.Quliyev adina A^qarlar Kimyasi institutu
AZ1029 Baki, Böyük^or §osesi, 2062-ci mdhdlld, e-mail: valikazimov1955@gmail com
Xülasa: Benzalasetonun merkaptosirka tur§usu va onun alkil efirlari ila qar§iliqli tasirindan ß-ketosulfidlarin yeni nümayandalari sintez edilmi§ va xarakteriza olunmu§dur. Onlarin qurulu§u 1H va 13C-spektroskopiya ila tasdiq edilmi§dir. Sintez olunmu§ birla§malarin qravimetrik üsulla müxtalif aqressiv mühitlarda CT-3-ün korroziya süratina tasiri öyranilmi§dir. Malum olmu§dur ki, onlar ham birfazali elektrolit (0.1N HCl va 0.1N H2SO4 mahlullari), ham da ikifazali elektrolit-
karbohidrogen mühitinda poladin korroziyasini langidirlar. Sonuncu halda onlar daha effektlidirlar - korroziyanin süreti 2.1 -dan 0.06-0.35 q/m2-saat-dak azalir, mühafiza effekti 83.3-97.1% ta§kil edir. Tadqiq olunan birla§malar sulfat tur§usu mahlulu (76.9-87.1%) ila müqayisada xlorid tur§usu mahlulunda (79.1-92.4%) daha yüksak mühafiza effekti nümayi§ etdirirlar. Ham elektrolit, ham da elektrolit-karbohidrogen mühitinda an yüksak effektivlik merkaptosika tur§usu asasinda alinmi§ ß-ketosulfida maxsusdur.
A?ar sözlar: benzalaseton, merkaptosirka tur§usu, merkaptosirka tur§usunun alkil efirlari, ß-ketosulfidlar, korroziya inhibitorlari, mühafiza effekti, birfazali mühit, ikifazali mühit, qravimetrik üsu
СИНТЕЗ ß-КЕТОСУЛЬФИДОВ НА ОСНОВЕ БЕНЗАЛЬАЦЕТОНА И ИССЛЕДОВАНИЕ ИХ ИНГИБИРУЮЩИХ СВОЙСТВ
В.М. Кязимов, Г.З. Гусейнов, Н.С.Маджди, М.А. Мирзоева, О.Г. Набиев, Г.С. Кязимова, Л.К. Вахид-заде
Институт химии присадок им.акад. А.М. Кулиева Министерства науки и образования
Азербайджанской республики АZ1029 Баку, Беюкшорское шоссе, 2062-й квартал; e-mail: valikazimov1955@gmail. com
Аннотация: Взаимодействием бензальацетона с меркаптоуксусной кислотой и ее алкильными эфирами синтезированы и охарактеризованы новые представители ß-кетосульфидов, строение которых доказано и 13С ЯМР-спектроскопией. Методом гравиметрии изучено влияние синтезированных соединений на скорость коррозии Ст-3 в различных агрессивных средах. Установлено, что исследуемые соединения ингибируют процесс коррозии как в однофазной кислотной (0.1N HCl и 0.1N H2SO4), так и в двухфазной (электролит-углеводород) средах. В последнем случае они более эффективны - скорость коррозии Ст-3 уменьшается от 2.1 до 0.06-0.35 г/м 2 час, при этом степень защиты от коррозии составляет 83.3-97.1 %. Исследуемые соединения проявляют большее защитное действие в растворе соляной кислоты (97.1-92.45%), чем в серной кислоте (76.9-87.1%). Среди испытанных соединений наибольшую ингибирующую эффективность в обеих средах проявил ß-кетосульфид, полученный на основе меркаптоуксусной кислоты. Ключевые слова: бензальацетон, меркаптоуксусная кислота, алкильные эфиры меркаптоуксусной кислоты, ß-кетосульфиды, ингибиторы коррозии, однофазная среда, двухфазная среда, гравиметрический метод.