CHEMICAL PROBLEMS 2023 no. 3 (21) ISSN 2221-8688
269
UDC 541.49+546.562
SYNTHESIS OF COMPLEXES OF Cu(II) AND VO(IV) WITH HYDRAZIDE OF MALEIC
AND HYDRAZINEDIACETIC ACID
E.A. Guliyeva1, P.A. Fatullayeva1, F.F. Jalaladdinov1, T.Ya. Askerova1,
1 12 2 T.M. Akhverdiyeva1, M.V. Mammedova1, R.D. Kasumov2, M.A. Bayramov2
1Acad. M. Naghiyev Institute of Catalysis and Inorganic Chemistry of the Ministry of Science and Education
of Azerbaijan H.Javid ave., 113, AZH43 Baku 2Institute of Radiation Problems of the Ministry of Science and Education ofAzerbaijan B. Vahabzade str., 9 AZ1143, Baku; e-mail: esmira.quliyeva68@,mail.ru
Received 05.05.2023 Accepted 18.07.2023
Abstract: The work demonstrated that hydrazide of maleic and hydrazine diacetic acid(L-2,2'-(2-(3-carboxyacryloyl)hydrazine-1,1-diil)diacetic acid) forms mononuclear complexes [CuL(H2O)2] and [VOL(H2O)2]. The structure and physical properties of these complex compounds have been studied by IR, UV spectroscopy and thermogravimetric methods of analysis. On the basis of the data obtained, the structure of the complexes was proposed, in which the metal ion is coordinated by two oxygen atoms and one nitrogen atom of the aminodiacetic fragment. In the electronic spectra of the copper complex, there are absorption bands of the transition at ~240 nm (related to charge transfer) and one d-d transition 740 nm. In the electronic spectra of the vanadyl complex, several absorption bands are observed at 300 nm (inflection), ~625 nm (inflection), and 780 nm, which can be attributed to d-d transitions of the VO2+in the low symmetry ligand environment. The five-coordinated structure of the complex is carried out by two oxygen atoms of two water molecules. The EPR spectrum of the polycrystalline [CuL(H2O)2] complex at room temperature indicates a low symmetry of the complex and has three g -factor values: g1=2.30, g2=2.22; g3=2.11. Additionally, a hyperfine structure is observed due to 63'64Cu nuclei (nuclear spin 3/2) with a splitting constant of 80 G.
Keywords: hydrazide, maleic acid, mononuclear complexes, Cu(II), VO(II) ions DOI: 10.32737/2221-8688-2023-3-269-2 78
Introduction
The previously described 3d metal maleates and their mixed-ligand complexes are of interest from both practical and theoretical points of view. These compounds can be used in the field of nonlinear optics [1-4]. Thermolysis of maleates can be used to obtain small metal or metal oxide nanoparticles stabilized in a polymer matrix. An example is the M(OOCCH=CHCOO)n.mH2O (M = Fe(III), Co(II)) complex, which upon thermolysis forms both individual particles of metal oxides and aggregates of three to ten such types, embedded in a polymer matrix [5].
Cobalt bis (hydromaleate) tetrahydrate
exhibits luminescent properties. The theoretical interest in maleate complexes is due to the fact that maleic acid can bind to a metal ion in mono- and dianion form as a mono-, bi-, tri-, or tetradentate ligand to form various structures [610]. The maleate ion can be monodentate, bidentate, tridentate, tetradentate, bridged, and chelated [11-14]. We have obtained for the first time a hydrazide of maleic and hydrazine diacetic acid(L-2, 2'-(2-(3-
carboxyacryloyl)hydrazine-1,1-diyl)diacetic acid), by reacting which with salts of transition metals (Cu(II) and VO(II)) mononuclear complexes [CuL(H2O)2] and [VOL(H2O)2].
www.chemprob.org
CHEMICAL PROBLEMS 2023 no. 3 (21)
Experimental part
All chemicals that took part in the synthesis were used without further purification. Maleic acid was used analytically pure, from Sigma-Aldrich. IR spectra of samples in vaseline were recorded in the range of 4000400 cm-1 using a NicoletIS10 spectrophotometer. Electronic absorption spectra were recorded on a UV-VISE 60S spectrophotometer in ethanol solutions in the range of 200-400 nm. Hydrazine diacetic acid was obtained according to a known method [15].
Preparation of maleic acid hydrazide with hydrazine diacetic acid (L-2,2'-(2-(3-carboxyacryloyl)hydrazine-1,1-diyl)diacetic
acid. Maleic acid hydrazide was obtained by reacting maleic anhydride with N,N-hydrazine diacetic acid. To 1 mmol of N,N hydrazine diacetic acid dissolved in 8 ml of water was added 1 mmol of maleic anhydride. The mixture was stirred for 2 hours. A day later, white transparent crystals fell out of the solution.T = 202°C. Yield 0.80 g (85%).For C8H10O7N2
calculated %: C 39.03 H4.09 N 11.38. Found %: C 39.09 H 4.03 N11.40
Synthesis of [CuL(H2O)i](L-2,2'-(2-(3-carboxyacryloyl)hydrazine-1,1-diyl)diacetic acid).To 0.004 mol (120 mg) of maleic acid hydrazide dissolved in ethanol solution, taken in a ratio of 1:1, was added 0.005 mol (100 mg) of copper acetate Cu(CH3C00)2-H20 dissolved in 5 ml of methyl alcohol. The solutions were mixed and stirred on a magnetic stirrer at a temperature of 30-40 C. After 2 days, blue crystals are formed, which are separated and dried in air Tm>250 C. The crystals are soluble in alcohol. Yield 0.70 g (75%).For Cu(CsH10O7N2)(H20)2 calculated %: C27.90 H 2.90 N 8.13 Cu 18.49 Found %: C 27.88 H 2.94 N 8.18 Cu 18.45
The complex [VOL(H2O)2] was obtained by the method described above. For VO(C8H10O7N2)(H20)2 calculated %: C 27.66 H 2.88 N 8.06 V 14.61; found %: C 27.70 H 2.96 N 8.02 V 14.66. Tm>250°C. Yield 0.68 g (72%).
Discussion of the results
For the first time, by reacting maleic hydrazide of maleic and hydrazine diacetic acid anhydride with N,N-hydrazine diacetic acid, a was obtained (Scheme 1).
O
XH2CHOOH NH,-NH< 2 +
CH2CHOOH
HO .O
^^ 0
o
OH
/
N,
0
OH(1)
Scheme 1. L-2,2'-(2-(3-carboxyacryloyl)hydrazine-1,1-diyl)diacetic acid
The obtained ligand 2,2'-(2-(3-carboxyacryloyl)hydrazine-1,1-diyl) diacetic acid) in alcohol solutions forms stable complex compounds with Cu(II) and VO(IV) ions with the metal ion: ligand ratio 1:1, having the following compositions: [CuL (H2O)2] and
[VOL(H2O)2] (Scheme 2).
The structure and physical properties of these complex compounds have been studied by infrared spectroscopy, UV spectroscopy, EPR, and thermogravimetric analysis.
o
o
+Cu(CH3COO)2
</N)H
(2)
o
HCL .0
o
O^OH
Scheme 2
o 0H2
\
OH,
0
(3)
In the IR spectrum of the ligand (2,2'-(2-(3 -carboxyacryloyl)hydrazine-1,1 -diyl)dioacetic acid), a wide absorption band related to O-H stretching vibrations is located in the region of 3390 cm-1, in the copper complex is in the region of 3462 cm-1, and in the vanadyl complex in the region of 3582 cm-1 (Fig.1). The absorption band in the region of 3116 cm-1 related to the N-H group of the ligand is shifted, in the copper complex, to the region of 3296 cm-1 (Fig.2). The carboxyl group, located in the 1746 cm-1 region of the ligand, in the copper
complex is shifted to a lower frequency region of 1662 cm-1, and in the vanadyl complex to the 1644 cm-1 region. The band at 2349 cm-1, which belongs to the O=C=O group of the ligand in the copper complex, is shifted to the region of 2359 cm-1, and in the vanadyl complex to the region of 2341 cm-1 (Fig.3). The shift of the bands in the complexes suggests that the metal ion is coordinated by two oxygen atoms and one nitrogen atom of the aminodiacetic fragment [16-17].
Fig.1. IR spectrum of 2,2'-(2-(3-carboxyacryloyl)hydrazine-1,1-diyl) diaceticacid in vaseline oil.
-WW) 15110 «000 2500 »100 1500 1000 500
mvc numhcricm t
Fig. 2. IR spectrum of the [CuL(H2O)2] complex in vaseline oil
Fig. 3. IR spectrum of the [VOL(H2O)2] complex in vaseline oil
Fig. 4. Electronic spectrum of 2,2'-(2-(3-carboxyacryloyl)hydrazine-1,1-diyl) diacetic acid in ethyl alcohol
There is a band at 210 nm in the copper complex there are absorption bands at
electronic spectrum of the ligand (Fig.4). The ~240 nm (related to charge transfer) and one d-d
electronic spectrum of the copper complex is transition 740 nm [18]. shown in Figure 5. In the electronic spectra of
a) b)
Fig. 5. Electronic spectra of [CuL(H2O)2] complex in ethyl alcohol: a) in the UV region;
b) in the visible region.
In the electronic spectra of the vanadyl and 780 nm, which can be attributed to d-d complex, several absorption bands are observed transitions of the VO2+ ion in the low at 300 nm (inflection), ~625 nm (inflection), symmetry ligand environment (Fig.6) [19-22].
a) b)
Fig. 6. Electronic spectra of the [VOL(H2O)2]complexin ethyl alcohol: a) in UV region;
b) in the visible region.
The thermogravimetric analysis of the[CuL(H2O)2] complex occurred in 4 stages. In the range of 157-230°C, weight loss is observed due to the removal of water (loss of two molecules of coordinated water per formula unit is 9.15% (calculation) and 8.10% (experiment) (Fig. 7). At the next stages in the
temperature range 330- 797.1°C, a weight loss of 24.59% is observed, probably due to the decomposition of carboxylate ligands (loss of carboxylate ligands per formula unit is 24.75% (calculation) 24.59%, (experiment) and the presence of a precipitate in the form of metal oxide indicated the end of the process.
Fig. 7. Derivatogram of the [CuL(H2O)2]complex
In the vanadyl complex [VOL(H2O)2], 7.51% (calculation) and 6.13% (experiment)
the decomposition also occurs in four stages. At (Fig. 8). In the next two stages, in the
the first and second stages, in the range of 110- temperature range of 468-618.4°C, the
355°C, a mass loss is also observed due to the decomposition of carboxylate ligands also takes
elimination of water molecules (loss of two place, with the formation of vanadium oxide as
coordinated water molecules per formula unit is a result.
Fig. 8. Derivatogram of the [VOL(H2O)2]complex
The EPR spectrum of the polycrystalline g1=2.30, g2=2.22; g3=2.11. Besides, a hyperfine
complex (Fig.9) [CuL(H2O)2] at room structure is observed due to 63 64Cu nuclei
temperature indicates a low symmetry of the (nuclear spin 3/2) with a splitting constant of 80
complex and has three values of the g-factor: G.
Fig. 9. EPR spectrum of the [CuL(H2O)2] complex
Conclusion
Thus, a hydrazide of maleic and hydrazine diacetic acid was obtained, which forms with Cu(II) and VO(IV) ions the mononuclear complexes [CuL(H2O)2] and [VOL(H2O)2](L-2,2'-(2- (3-
carboxyacryloyl)hydrazine-1,1-diyl)diacetic acid). On the basis of the data obtained, the structure of the obtained complexes was proposed, in which the metal ion is coordinated by two oxygen atoms and one nitrogen atom of the aminodiacetic fragment. The five-
coordinated structure of the complex is due to the additional binding of two oxygen atoms of two water molecules. The binding spectrum of the polycrystalline [CuL(H2O)2] complex at room temperature shows a low symmetry of the complex and has three g -factor values: g1=2.30, g2=2.22; g3=2.11. Aside from this, a hyperfine
structure is observed due to 63.64Cu nuclei
(nuclear spin 3/2) with a splitting constant of 80 G.
References
1. Mahalakshmi V., Lincy A., Thomas J., and Saban K. V. Growth, structure and optical properties of an efficient NLO crystal-aqua maleatocopper(II). Optik. 2014, vol.125, pp. 191-195.
doi.org/10.1016/j.ijleo.2013.06.081
2. Chandran Senthilkumar; Jagan R.; Paulraj Rajesh; Ramasamy P. Spectral, mechanical, thermal, optical and solid state parameters, of metal-organic bis(hydrogenmaleate)-CO(II) tetrahydrate crystal. Journal of Solid State Chemistry. 2015, vol. 230, pp.135142. doi:10.1016/j.jssc.2015.06.035
3. Karuna S.; Balu, A. R.; Shyamala D.; Delci Z. Growth, vibrational, optical, dielectric, thermal and third order NLO single crystal of manganese(II) hydrogen maleate tetrahydrate. Materials Research Innovations. 2017. pp.1 -5. doi:10.1080/14328917.2017.1324378
4. Yudanova L.I., Logvinenko V.A., Yudanov N.F. Preparation of metal-polymer composites through the thermolysis of Fe(II), Co(II), and Ni(II) maleates. Inorganic Materials. 2013. vol. 49, no.10, p.1138. (In Russian).
5. Sergienko V.S.; Koksharova T.V.; Surazhskaya M.D.; Mandzii T.V.; Churakov A.V. Synthesis, Crystal Structure, and Molecular Structure of Maleate Tris(Benzohydrazide) Cobalt(II) Tetrahydrate [Co(Li)s](Mal)-4H2O and Maleate Tris(Phenylacethydrazide) Nikel(II) Monohydrate [Ni(L2)3](Mal) • H2O. Russian Journal of Inorganic Chemistry. 2019, vol. 64(11), ' pp. 1396-1404. doi:10.1134/S0036023619110172
6. Barman R.K., Chakrabarty R. and Das B.K. Structure and properties of tetraaquabis(hydrogenmaleato)iron(II). Polyhedron. 2002, vol. 21, p. 1189.
7. Shennara Khaled A.; Butcher Ray J.; Greenaway Frederick T. Co(II), Cu(II), Mn(II) and Ni(II) complexes of maleic hydrazide. Inorganica Chimica Acta, 2015, vol. 425, pp. 247-254. doi:10.1016/j.ica.2014.09.030
8. Li Sheng-Li, Anwar Usman, A Ibrahim. Razak, Hoong-Kun Fun, Jie-Ying Wu, Yu-PengTian, Min-HuaJiange and Zu-Yao Chena. trans-Diaquabis(thiosemicarbazido-k2 N,S)nickel(II) dimaleate dehydrate. ActaCryst. 2003, vol. 59, pp.181-183.
DOI: 10.1107/S0108270103006425
9. Zheligovskaya N.N.; Shchelokova L.R.; Popov L.V.; Grevtsev A.M.; Spitsyn V. I. Synthesis and study of platinum(II) and palladium(II) hydrazine-N,N-diacetates. Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya. - Russian Chemical Bulletin. 1982, vol. 4, pp. 780-783. (In Russian).
10. Khramov V.P.; Aliev G.A. Rare-earth element 1,1-hydrazinediacetates. Zhurnal Neorganicheskoi Khimii - Russian Journal of Inorganic Chemistry. 1971, vol.16 (4), pp. 972-975.
11. Khramov V.P.; Dvornikova L.M.; Aliev G.A. Rare-earth element 1,1-hydrazine diacetates. Zhurnal Neorganicheskoi Khimii - Russian Journal of Inorganic Chemistry. 1971, vol. 16(1), pp. 106-109.
12. Khramov V.P.; Dvornikova L.M.; Aliev G.A. Thermographic and x-ray diffraction studies of some 1,1-hydrazinediacetates of rare-earth elements. Zhurnal Neorganicheskoi Khimii - Russian Journal of Inorganic Chemistry. 1970, vol. 15(7),
pp. 1791-1794.
13. Lis T. Structure of manganese(II) maleate trihydrate and reinvestigation of the structure of manganese(II) hydrogen maleate tetrahydrate. Acta Crystallographica. 1983, vol. 39, pp. 3940.
14. Rajagopal B, Sarma A.V., Ramana M.V. Electric and FTIR studies on magnesium hydrogen maleate hexa hydrate single crystals. Arch ApplSci Res. 2011, vol. 3, pp. 321-326.
15. Lastovsky R.P., Bozhevolnov E.A., Bromberg A.V., Brudz V.G., Lukin A.M., Reshetnikov Yu.P., Stepin B.D., Temkina V.Ya. Methods for obtaining chemical reagents and preparations. Issue 26. Moscow. 1974. 352 р. irea-26.djvu
16. Fatullayeva P.A. Complexes of metals with hydrazone hydrazide salicylic acid. Chemical Problems. 2021, no. 2 (19). pp. 79-83.
17. Fatullayeva P.A. Complexes of metals with dihydrazones of succinic acid dihydrazide. Chemical Problems. 2019, no. 4. pp. 558565.
18. Guliyeva E.A., Fatullayeva P.A., Haqverdiyeva T.M. Synthesis and studies of Cu(II), Ni(II), Co(II) complexes with bis(salicilidenhydrazon). Azerb. chem. jurnal. 2023, no. 2, pp. 116-122.
19. Fatullayeva P.A. Sinthesis, structure and properties of complexes Cu(II), Co(II), Ni(II),VO(II) with (3,5ditretbutil-2-hidroksibenzil)-2-hidroksibenziloyl-hydrazide. Chemical Problems. 2018, no. 4 (16). pp. 519-523.
20. Karmakar A., Baruah J.B. Metal carboxylate complexes of L-3-phenyl-2-(3-phenyl-ureido)-propionic acid. Inorganic Chemistry Communications. 2009, vol. 12, pp. 140-144. doi: 10.1016/j .inoche.2008.11.025
21. Sgarbossa Speranza; Diana Eliano; Marabello Domenica; Deagostino Annamaria; Cadamuro Silvano; Barge Alessandro; Laurenti Enzo; Gallicchio Margherita; Boscaro Valentina; Ghibaudi Elena. Synthesis, characterization and cell viability test of six vanadyl complexes with acetylacetonate derivatives. Journal of
Inorganic Biochemistry, 2013, vol. 128, pp. 26-37.
doi:10.1016/j.jinorgbio.2013.07.015 22. Ballhausen C.J., Gray Harry B. The
Electronic Structure of the Vanadyl Ion. Journal of Inorganic Chemistry. 1962, vol. 1(1), pp. 111-122. doi:10.1021/ic50001a022
MALEiN HiDRAZiD VO HiDRAZiNDiASETAT TUR§USU iL9 Cu(II) VO VO(IV)
KOMPLEKSLORiNiN SiNTEZi
E.A. Quliyeva1, P.A. Fatullayeva1, F.F. Calaladdinov1, T.Y. Osgarova1, T.M. Haqverdiyeva1,
12 2 M.V. Mammadova , R.D. Kasumov , M.A. Bayramov
1Azsrbaycan Respublikasi Elm vs Tshsil Nazirliyi Akad. M. Nagiyev adina Kataliz vs Qeyri-üzvi Kimya institutu, H. Cavidpr., 113, AZ1143 2 Azsrbaycan Respublikasi Elm vs Tshsil Nazirliyi Radiasiya Problemlsri institutu
B.Vahabzads küg., 9 AZ1143
Xülasa: Bu i§da göstarilmi§dir ki, malein tur§usunun hidrazidi va hidrazin diasetat tur§usu (L-2,2'-(2-(3-karboksiakriloil)hidrazin-1,1-diil)diasetat tur§usu) mononüvali komplekslar amala gatirir [CuL(H2O)2] va [VOL(H2O)2]. Bu kompleks birla§malarin strukturu va fiziki xassalari iQ, UB spektroskopiyasi va termogravimetrik analiz üsullari ila öyranilmi§dir. Alinan malumatlar asasinda metal ionunun iki oksigen atomu va aminodiasetat fraqmentinin bir azot atomu ila alaqalandirildiyi alda edilmi§ komplekslarin strukturu taklif edilmi§dir. Mis kompleksinin elektron spektrlarinda ~240 nm-da (yük ötürülmasi ila bagli) ke9idin udma zolaqlari va bir d-d ke9idi var 740 nm. Vanadil kompleksinin elektron spektrlarinda bir ne9a udma zolaqlari: 300 nm (ayilma), ~625 nm (ayilma) va 780 nm-da mü§ahida olunur ki, bu da VO2+a§agi simmetriyali liqand mühitinda d-d ke9idlarina aid edila bilar. Kompleksin be§ koordinasiyali qurulu§u iki su molekulunun iki oksigen atomu tarafindan hayata ke?irilir. Otaq temperaturunda polikristal [CuL(H2O)2] kompleksinin EPR spektri kompleksin a§agi simmetriyasini göstarir va Ü9 g-faktorlu qiymata malikdir: gi=2.30, g2=2.22; g3=2.11. Bundan alava, 80 G par9alanma sabiti olan 63,64Cu nüvalar (nüva spini 3/2) hesabina hiperinca struktur mü§ahida olunur.
A?ar sözlar: hidrazid, malein tur§usu, mononüvali komplekslar, Cu(II), VO(II) ionlari
СИНТЕЗ КОМПЛЕКСОВ Cu(II) И VO(IV) С ГИДРАЗИДОМ МАЛЕИНОВОЙ И
ГИДРАЗИНДИУКСУСНОЙ КИСЛОТЫ
Э.А. Гулиева1, П.А. Фатуллаева1, Ф.Ф. Джалаладдинов1 , Т.Я. Аскерова1, Т.М.
1 12 2 Ахвердиева , М.В. Маммедова ,Р.Д. Касумов , М.А. Байрамов
1 Институт Катализа и Неорганической химии им. акад. М. Нагиева Министерства Науки и Образования Азербайджанской Республики AZ1143 Баку, пр. Г. Джавида, 113;Баку e-mail: esmira. quliyeva68@mail. ru,
2Институт Радиационных Проблем Министерства Науки и Образования Азербайджанской Республики ул. Б. Вахабзаде, 9, AZ1143, Баку
Аннотация: Показано, что гидразид малеиновой кислоты и гидразиндиуксусной кислоты образует с ионами Cu(II) и VO(IV) моноядерные комплексы [CuL(H2O)2] и [УОЬ(И20)2] (L-2,2'-(2-(3-карбоксиакрилоил)гидразин-1,1-диил)диуксуснаякислота). Строение и физические свойства этих комплексных соединений изучены ИК-, УФ-спектроскопией и термогравиметрическим методами анализа. На основе полученных данных предложено строение полученных комплексов, в котором координация иона металла осуществляется двумя атомами кислорода и одним атомом азота аминодиуксусного фрагмента. В электронных спектрах комплекса меди присутствуют полосы поглощения перехода при ~240 нм (относящиеся к переносу заряда) и один d-d переход 740 нм. В электронных спектрах ванадильного комплекса наблюдается несколько полос поглощения при 300 нм (перегиб), ~625 нм (перегиб) и 780 нм, которые можно отнести к d-d переходам иона V02+ c лигандным окружением с низкой симметрией. Пятикоординированное строение комплекса осуществляется за счет двух атомов кислорода двух молекул воды. Спектр ЭПР поликристаллического комплекса [CuL(H20)2] при комнатной температуре указывает на низкую симметрию комплекса и имеет три значения g-фактора: g1=2.30, g2=2.22; g3=2.11. Дополнительно наблюдается сверхтонкая структура за счет ядер 63 64Cu (ядерный спин 3/2)с константой расщепления 80 Гс.
Ключевые слова: гидразид, малеиновая кислота, моноядерные комплексы, ионы Cu(II), VO(II)