Научная статья на тему 'Synthesis and structure of 4-(9-hydroxy-1,4,7-trioxynonyl)phthalonitrile'

Synthesis and structure of 4-(9-hydroxy-1,4,7-trioxynonyl)phthalonitrile Текст научной статьи по специальности «Химические науки»

CC BY
40
7
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
4-NITROPHTHALONITRILE / TRIETHYLENE GLYCOL / X-RAY DIFFRACTION / DFT METHOD

Аннотация научной статьи по химическим наукам, автор научной работы — Kuznetsova Alexandra S., Dmitriev Maksim V., Zav'Yalov Alexander V., Koifman Oscar I., Islyaikin Mikhail K.

4-(9-Hydroxy-1,4,7-trioxynonyl)phthalonitrile was prepared by reaction of 4-nitrophthalonitrile with triethylene glycol in dry DMSO in the presence of fresh-calcined fine milled K2CO3 at 60 °C for 12 hours. The reaction mixture was poured into cold distilled water and extracted by CH2Cl2. Then the crude product obtained after solvent evaporation was purified by column chromatography on silica gel using elution mixture of ethyl acetate : hexane (1:3) and after that end product was dried at reduced pressure at 80 oC for 4 h. The product was characterized by IR and 1Н NMR spectroscopies, mass-spectrometry, elemental analysis and X-ray diffraction data. In MALDI-TOF spectrum, two signals located at 299 [M+Na]+ and 315 [M+К]+ Da were detected. Conformity between the calculated isotopic distributions and those derived from experimental data proves these assignments. A colorless monocrystal suitable for X-Ray measurements was grown up by low temperature solvent evaporation from a solution of 4-(9-hydroxy-1,4,7-trioxynonyl)phthalonitrile in ethyl acetate. X-ray studying showed that this compound is a monohydrate of 4-(9-hydroxy-1,4,7-trioxynonil)phthalonitrile with a water molecule located in lateral chain. Four molecules of 4-(9-hydroxy-1,4,7-trioxynonil)phthalonitrile and four water molecules were founded to be located in one unit cell with formatting eight intermolecular hydrogen bonds. Hence triethylene glycol fragment forms a chelate-like cavity which is able to hold a water molecule or a cation of alkali metal. It was found that its structure is very similar to that optimized at DFT/B3LYP/6-31G(d,p) level. The some bond lengths of theoretical calculations are found to be greater than experiment data because of close intermolecular interactions in solid state.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «Synthesis and structure of 4-(9-hydroxy-1,4,7-trioxynonyl)phthalonitrile»

DOI: 10.6060/tcct.2017603.5494 УДК: 547.525.3:54.057

СИНТЕЗ И СТРОЕНИЕ 4-(9-ГИДРОКСИ-1,4,7-ТРИОКСИНОНИЛ)ФТАЛОНИТРИЛА А.С. Кузнецова, М.В. Дмитриев, А.В. Завьялов, О.И. Койфман, М.К. Исляйкин

Александра Сергеевна Кузнецова*, Михаил Константинович Исляйкин

Кафедра технологии тонкого органического синтеза, Международная научно-исследовательская лаборатория наноматериалов, НИИ макрогетероциклических соединений, Ивановский государственный химико-технологический университет, просп. Шереметевский, 7, Иваново, Российская Федерация, 153000 E-mail: [email protected]*, [email protected]

Александр Владимирович Завьялов, Оскар Иосифович Койфман

Кафедра химии и технологии высокомолекулярных соединений, Ивановский государственный химико-технологический университет, просп. Шереметевский, 7, Иваново, Российская Федерация, 153000 E-mail: [email protected]

Максим Викторович Дмитриев

Кафедра органической химии, Пермский государственный национальный исследовательский университет, ул. Букирева, 15, Пермь, Российская Федерация, 614990 E-mail: [email protected]

Взаимодействием 4-нитрофталонитрила с триэтиленгликолем в среде осушенного диметилсульфоксида в присутствии прокаленного карбоната калия в течение 12 ч при 60 °C получен 4-(9-гидрокси-1,4,7-триоксинонил)фталонитрил. Выделение целевого продукта осуществляли выливанием реакционной массы в холодную дистиллированную воду с последующей экстракцией дихлорметаном. После отгонки растворителя при пониженном давлении, заключительную очистку проводили методом колоночной хроматографии используя элюирующую смесь состава: этилацетат : гексан (1:3). После удаления растворителей при пониженном давлении продукт сушили в вакууме в течение 4 ч при 80 °C. Структура полученного соединения установлена на основании данных элементного анализа, ИК и 1Н ЯМР спектроскопии, масс-спектрометрии и рентгеноструктурного анализа. В масс-спектре соединения обнаружены два сигнала, соответствующие комплексам с щелочными металлами: 299 [M+Na]+ и 315 [М+К]+ Da. Методом испарения растворителя из раствора 4-(9-гидрокси-1,4,7-триоксинонил)фтало-нитрила в этилацетате при пониженной температуре были получены монокристаллы, пригодные длярентгеноструктурного анализа. По данным кристаллографического исследования 4-(9-гидрокси-1,4,7-триоксинонил)фталонитрил в кристаллическом состоянии представляет собой моногидрат, в котором молекула воды координирована триэтиленгликольным фрагментом. Элементарная ячейка содержит четыре молекулы кристаллогидрата, связанных межмолекулярными водородными связями. Таким образом, триэтиленгликольный фрагмент образует хелатную полость, которая способна координировать молекулу воды или катионы щелочных металлов, таких как Na+ и К+. Геометрические характеристики, полученные оптимизацией моногидрата триэтиленгликользамещенного фталонитрила в газовой фазе методом DFT/B3LYP/6-31G(d,p), согласуются с данными рентгеноструктурного анализа.

Ключевые слова: 4-нитрофталонитрил, триэтиленгликоль, рентгеноструктурный анализ, теория функционала плотности

UDC: 547.525.3:54.057

SYNTHESIS AND STRUCTURE OF 4-(9-HYDROXY-1,4,7-TRIOXYNONYL)PHTHALONITRILE A.S. Kuznetsova, M.V. Dmitriev, A.V. Zav'yalov, O.I. Koifman, M.K. Islyaikin

Alexandra S. Kuznetsova*, Mikhail K. Islyaikin

Department of Fine Organic Synthesis Technology, IRLoN, Research Institute of Macroheterocycles, Ivanovo State University of Chemistry and Technology, Sheremetievskiy ave., 7, Ivanovo, 153000, Russia E-mail: [email protected]*, [email protected]

Alexander V. Zav'yalov, Oscar I. Koifman

Department of Higher Molecular Compounds Technology, Ivanovo State University of Chemistry and Technology, Sheremetievskiy ave., 7, Ivanovo, 153000, Russia E-mail: [email protected]

Maksim V. Dmitriev

Department of Organic Chemistry, Perm State University, Bukireva st., 15, Perm, 614990, Russia E-mail: [email protected]

4-(9-Hydroxy-1,4,7-trioxynonyl)phthalonitrile was prepared by reaction of 4-nitrophthalo-nitrile with triethylene glycol in dry DMSO in the presence offresh-calcined fine milled K2CO3 at 60 °C for 12 hours. The reaction mixture was poured into cold distilled water and extracted by CH2Cl2. Then the crude product obtained after solvent evaporation was purified by column chromatography on silica gel using elution mixture of ethyl acetate : hexane (1:3) and after that end product was dried at reduced pressure at 80 oC for 4 h. The product was characterized by IR and 1Н NMR spectroscopies, mass-spectrometry, elemental analysis and X-ray diffraction data. In MALDI-TOF spectrum, two signals located at 299 [M+Na]+ and 315 [M+K]+ Da were detected. Conformity between the calculated isotopic distributions and those derived from experimental data proves these assignments. A colorless monocrystal suitable for X-Ray measurements was grown up by low temperature solvent evaporation from a solution of 4-(9-hydroxy-1,4,7-trioxynonyl)phtha-lonitrile in ethyl acetate. X-ray studying showed that this compound is a monohydrate of 4-(9-hy-droxy-1,4,7-trioxynonil)phthalonitrile with a water molecule located in lateral chain. Four molecules of 4-(9-hydroxy-1,4,7-trioxynonil)phthalonitrile and four water molecules were founded to be located in one unit cell with formatting eight intermolecular hydrogen bonds. Hence triethylene glycol fragment forms a chelate-like cavity which is able to hold a water molecule or a cation of alkali metal. It was found that its structure is very similar to that optimized at DFT/B3LYP/6-31G(d,p) level. The some bond lengths of theoretical calculations are found to be greater than experiment data because of close intermolecular interactions in solid state.

Key words: 4-nitrophthalonitrile, triethylene glycol, X-ray diffraction, DFT method Для цитирования:

Кузнецова А.С., Дмитриев М.В., Завьялов А.В., Койфман О.И., Исляйкин М.К. Синтез и строение 4-(9-гидрокси-1,4,7-триоксинонил)фталонитрила. Изв. вузов. Химия и хим. технология. 2017. Т. 60. Вып. 3. С. 15-21. For citation:

Kuznetsova A.S., Dmitriev M.V., Zav'yalov A.V., Koifman O.I., Islyaikin M.K. Synthesis and structure of 4-(9-hydroxy-1,4,7-trioxynonyl)phthalonitrile. Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 2017. V. 60. N 3. P. 15-21.

INTRODUCTION

The substituted phthalonitriles are widely used as starting materials in the synthesis of phthalocya-nines (Pcs) and macroheterocyclic compounds (Мсs) [1-6]. Nature, number and positions of substituents

give a strong influence on the reactivity of phthalonitriles and properties of Pcs and Mcs derived from them. Selection of substituted phthalonitriles and diamines in the case of Mcs allows fine turning their properties and leads to new functional materials with desirable properties. For instance, introduction of bulky substituents

on periphery of macrocycles like as long alkyl chains [7] and bulky fert-butyl groups [8] allows to obtain the products soluble in organic solvents what makes easier their purifications and opens the large opportunities to studying their structures and properties by the methods where solubility is important. The oligooxyethylene glycol substituted phthalonitriles with various functional groups at the terminal oxygens [9-12] were used as precursors in synthesis of Pcs and Mcs [13, 14]. Thus, Pcs bearing hydrophilic polyethylene glycol monomethyl ether groups have been studied as agents for photodynamic therapy [15, 16].

To the best of our knowledge the phthalonitrile bearing triethylene glycol substituent wasn't obtained for the moment. Although using of the phthalonitrile with functional OH group can lead to macrocycles which are of interest to polymers modification. Therefore the aim of this work is synthesis and structure studying of 4-(9-hydroxy-1,4,7-trioxynonyl)phthalonitrile.

EXPERIMENTAL

4-Nitrophthalonitrile has been prepared following the method described in the literature [17]. Reaction solvents were thoroughly dried before use according to standard procedures [18]. Column chromatography was conducted on silica gel Merck-60. TLC was performed on aluminum sheets precoated with silica gel 60 F254 (Merck). MALDI-TOF spectra were obtained with a Shimadzu Biotech Axima Confidence in positive ions field using 2,5-dihydroxy benzoic acid (DHB) as matrix. :H NMR spectra were recorded with an Avance-300 instruments in DMSO-D6 with tetramethylsilane as inner standard. Chemical shifts are expressed in parts per million (ppm), and coupling constants (J) in Hertz (Hz). IR spectra were recorded on Avatar 360 FT-IR. Detection of carbon, hydrogen, nitrogen and oxygen was carried out with a FlashEA 1112 CHNS-O Analyzer. A mono-crystal suitable for X-ray investigation was grown by low temperature solvent evaporation from a solution of 4-(9-hydroxy-1,4,7-trioxynonyl)phthalonitrile in ethyl acetate. The molecular structure of C14H16N2O4H2O in the crystalline state was determined using an Xcalibur R diffraction instrument with monochromatic MoKa-radiation by ©-scanning method with CrysAlisPro software package [19]. Crystal is triclinic: a 7.4812(19), b 8.490(2), c 13.0208(19) A, a 97.418(16), p 95.726(16), Y 112.50(2)°, V747.5(3) A3, M294.30, dcalc 1.308 g/cm3, ^ 0.100 mm-1, Z 2, space group P-1, reflections collected: 6104; reflections unique = 3494, 2382 with I > 2a(I). The absorptions were corrected by SCALE3 ABSPACK multi-scan method. All non-H atoms were refined anisotropically by full-matrix least-squares method. All calculation were performed by using the SHELXL [20]

and OLEX2 [21] software packages. The final refinement parameters: R1 0.0502, WR2 0.1247 [I > 2o(I)], R1 0.0761, WR2 0.1502 (for all), S 1.040.

Quantum-chemical calculations were carried out with full geometry optimization at DFT/B3LYP/ 6-31G(d,p) level using Firefly software package [22]. Starting geometry for the calculation was derived from X-ray data. The optimized configuration was found to be in compliance with critical conditions [23]. Processing and presentation of the results were performed using Chemcraft software package [24].

SYNTHESIS

A mixture consisting of 1.49 g (8.0 mmol) 4-nitrophthalonitrile, 2.3 ml (16 mmol) triethylene gly-col and 20 ml dry dimethyl sulfoxide was heated up to 50 °C under argon. Then 3.2 g (23 mmol) fresh-calcined fine milled K2CO3 was added stepwise by a portion of about 0.5 g within 30 min intervals. The reaction mixture was heated up to 60 °C and was stirred at this temperature for 12 h. After cooling to r.t., K2CO3 was filtered off and filtrate was concentrated up to 5 ml volume at reduced pressure and then was poured into 55 ml cold distilled water. This mixture was extracted with 3 x40 ml portions of CH2Q2, the combined extract was washed by 50 ml distilled water, and the organic layer was dried over Na2SO4. After that the extract was concentrated at reduce pressure and the product was purified by column chromatography on silica gel using elution mixture: ethyl acetate:hexane (1:3). Finally solvents were rotaevaporated and white powder was dried at reduced pressure at 80 °C for 4 h. Yield: 0.99 g (46 %). tm = 141-142 °C. Rf = 0.39 (Silica gel 60 F254, CH2Cl2:CH3OH:C6H14 10:1:3). IR (KBr) v, cm-1: 526; 725; 838; 893; 970; 997; 1044; 1097; 1127; 1255; 1321; 1422; 1488; 1560; 1598; 1716; 2228; 2853; 2919; 3090; 3427. 1H-NMR (DMSO-d6) 5, M.g.: 8.05 (m, 1H, Har), 7.78 (dd, J = 11.8, 2.6 Hz, 1H, Har), 7.46 (m, 1H, Har), 4.28 (s, 2H, CH2), 3.77 (s, 2H, CH2), 3.56 (m, 11H, CH2, OH), 3.41 (d, J = 5.3 Hz, 2H, CH2). Anal. calc. for C14H16N2O4, %: C 60.68; N 10.14; H 5.84. Found, %: C 62.68; N 10.61; H 5.76. MALDI-TOF m/z, Da: found: 299, 315, calculate: EM = 299 [M + Na]+, C14H16N2O4Na+; EM = 315 [M + K]+,

C14H16N2O4K+.

RESULTS AND DISCUSSION

4-(9-Hydroxy-1,4,7-trioxynonyl)phthaloni-trile was obtained by interaction of 4-nitrophtalonitrile 1 with triethylene glycol 2 in dimethyl sulfoxide (DMSO) in the presence of fresh-calcined fine milled K2CO3 following the procedure described in literature

for olygooxyethylene phthalonitrile [25]. Since tri ethylene glycol has two terminal OH-groups, formation of

3 runs with participation of the first of them and that no gives much influence on reactivity of the second OH-group. Therefore a formation of bisphthalonitrile

4 as a side product takes place (Scheme).

N-y

JO"

no2

огц

K2co3 ^n.

-DMSO< 0 0-)

0H H0 ОС + X3 ОС

N N'

Scheme Схема

Variation of relationships between 1 and 2 at the range 1:2, 1:1 and 2:1 shown that the best yield of 3 is achieved while an excess of triethylene glycol was used. Separation of the products 3 and 4 has been done by column chromatography on silica gel using ethyl acetate: hexane (1:3) mixture.

The product 3 was characterized by mass-spectrometry, IR and :Н NMR spectroscopies, elemental analysis and X-ray diffraction method data.

It worthy to note that no signal of molecular ion was detected in MALDI-TOF spectrum of 3. But there are two signals located at 299 и 315 Da which correspond to [M+Na]+ and [M+K]+ ions. Conformity between the calculated isotopic distributions and those derived from experimental data proves this assignment. So electron density rich oxygens of triethylene glycol fragment of 3 are able to coordinate cations of alkali metal as it takes place in the case of crown ethers [13, 26, 27].

The dominant bands in the IR spectra of 3 are induced by vibrations of oxyethylene -С-О-С- (1127, 1096 cm-1) and -СН2- (2853, 2923 cm-1) groups. Intense absorption bands observed at 2230 cm-1 can be identified as stretching vibrations v(C=N).

1H NMR data were found to be in agreement to literature data [14,28]. Signal at 5 = 7.45-8.05 ppm corresponds to the resonance of benzene protons. The -O-CH2-CH2- units of triethylene glycol fragment were determined at 5 = 4.28-3.41 ppm.

A colorless monocrystal suitable for X-Ray measurements was grown up by low temperature solvent evaporation from a solution of 4-(9-hydroxy-1,4,7-trioxynonyl)phthalonitrile in ethyl acetate. Crystal structure (a) and packing (b) of 3-ШО are shown in Figure.

It was established that compound 3 in crystalline state (triclinic crystal, P-1 space group) is a monohydrate. Four molecules of 4-(9-hydroxy-1,4,7-tri-oxynonil)phthalonitrile and four water molecules were founded to be located in one unit cell (Fig. b). Two intermolecular hydrogen bonds between hydrogen H1 of

hydroxy group and oxygen O1W of water (1.963 A) and between oxygen O3 of triethylene glycol fragment and hydrogen H1WA of water (1.981 A) form crystalline structure of 3-H2O (Fig. b). The hydrogen H1WB of water is connected with another molecule 3 in the crystal pack (H1WB - O1). Hence, triethylene glycol fragment forms a chelate-like cavity which is able to hold a water molecule or a cation of alkali metal.

Quantum-chemical calculations at the DFT/B3LYP/6-3 lG(d,p) level were carried out with the aim to compare geometric characteristics of molecules in a solid and an isolated states. It was found that the calculated geometric parameters of monohydrate (3-H2O) are similar to those derived from X-ray data (table). The trend of quantum-chemical calculations yielding heteroatom-hydrogen distances larger than experimental values is similar to that obtained previously [29, 30].

б

Fig. Crystal structure (a) and packing (b) of 3-ШО by X-ray analysis Рис. Структура молекулы (a) и (b) упаковка кристалла молекулы 3-ШО методом РСА

a

Table

Selected experimental and calculated bond lengths (A)

and valence angles (°) of 3vH2O molecule Таблица. Экспериментальные и расчетные длины

The difference in position of water molecules in 3-H2O which is detected on going from theoretical model to X-ray data can be explained by participation of the water in intermolecular interactions with the second molecule of nitrile. So, the distance between O2 and O5 is equal to 2.975 A for the theoretical data and to 3.147 A for monocrystal. The maximal deviation (near 22.7°) was observed for angles (H18-O5-H1) between hydrogen of hydroxyl group of triethylene gly-col fragment and oxygen of molecule of water. Rotational motions and flexibility of triethylene glycol fragment of 3 contribute to non rigidity of its structure.

CONCLUSION

4-(9-Hydroxy-1,4,7-trioxynonyl)phthaloni-trile bearing triethylene glycol moiety was prepared by nucleophilic substitution of nitro group in 4-nitroph-thalonitrile with triethylene glycol in the presence of K2CO3. The product was characterized by mass-spectrometry, IR and 1H NMR spectroscopies, elemental analysis and X-ray diffraction data. It was established that phthalonitrile 3 in crystalline state is a monohydrate. The geometric parameters of 3 derived from X-ray analysis were found to be in agreement with those carried out by theoretical calculations at DFT/B3LYP/6-31G(d,p) level.

Acknowledgements. This work was performed thanks to the financial support from the Russian Science Foundation, grant 14-23-00204.

связей (A) и валентные углы (°) в молекуле З^ШО

X-ray diffraction DFT B3LYP/6,31 G(d,p)

C«—Oi' с/з 02 „Я*" H„ C,14—o> С/з \ HlfcOs O! Hi, 1 c'

J В Cl.2 о сн^и:.*. Си" Cl2 1 .-Oj , с 11 Сю or- Cv-^Jac-j-C®""

Bond lengh, A

r(Oi-Hj) 0.864 0.977

r(Ol-C14) 1.395 1.407

r(O2-C,2) 1.415 1.414

r(O2-Cl3) 1.422 1.428

r(O3-Cio) 1.420 1.417

r(Os-Cii) 1.424 1.421

r(O4-C6) 1.347 1.352

r(O4-C9) 1.435 1.432

r(CrCio) 1.488 1.515

r(Cll-Cl2) 1.491 1.516

r(Cl3-Cl4) 1.480 1.524

r(Hl-Os) 1.963 1.891

Angle, °

a(Hl-Ol-Cl4) 112.0 108.6

a(Ol-Hl-O5) 163.7 171.0

a(Ol-Cl4-Cl3) 111.8 113.6

a(Cl2-O2-Cl3) 113.4 113.9

a(O2-Cl2-Cn) 110.1 108.1

a(O2-Cl3-Cl4) 109.5 109.1

a(Clo-O3-Cn) 112.1 114.1

a(O3-Clo-C9) 110.0 108.8

a(O3-Cn-Cl2) 109.3 107.8

a(C6-O4-Cg) 118.2 119.1

a(O4-C9-Clo) 108.7 107.8

a(H„-Os-Hm) 99.8 103.7

a(Hlj-O5-Hl) 102.0 92.3

a(Hl8-Os-Hl) 122.3 99.6

ЛИТЕРАТУРА

1. Sharman W.M., Van Lier J.E. Synthesis of Phthalocya-nine Precursors. Porphyrin Handb. 2003. V. 15. P. 1-60. DOI: 10.1002/chin.200417264.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

2. Исляйкин М. К., Данилова Е.А. Структурные аналоги тетрапиррольных макроциклов и их биологические свойства. Изв.АН Сер. химическая. 2007. № 4. C. 663 - 679.

3. Danilova E.A., Islyaikin M.K. Synthesis of Thiadiazole Hemihexaporphyrazine Bearing iso-Propyloxy Groups and its Trinuclear Nill Complex. Macroheterocycles. 2012. V. 5. N 2. P. 157 - 161. DOI: 10.6060/mhc2012.120577i.

4. Исляйкин М.К., Хелевина О.Г., Данилова Е.А., Ломова Т.Н. Синтез, особенности строения и кислотно-основные взаимодействия азолсодержащих макрогетеро-циклических соединений. Изв. вузов. Химия и хим. технология. 2004. Т. 47. Вып. 5. С. 35 - 45.

5. de la Torre G., Vazquez P., Aguillo-Lopez F., Torres T. Role of structural factors in the nonlinear optical properties of phthalocyanines and related compounds. Chem. Rev. 2004. V. 104. N 9. P. 3723 - 3750. DOI: 10.1021/cr030206t.

REFERENCES

1. Sharman W.M., Van Lier J.E. Synthesis of phthalocyanine precursors. Porphyrin Handb. 2003. V. 15. P. 1-60. DOI: 10.1002/chin.200417264.

2. Islyaikin M.K., Danilova E.A. Structural analogs of tetrapyrrole macrocycles and their biological properties. Rus. Chem. Bulletin, International Edition. 2007. V. 56. N 4. P. 689 -706.

3. Danilova E.A., Islyaikin M.K. Synthesis of thiadiazole hemihexaporphyrazine bearing iso-propyloxy groups and its trinuclear Nill complex. Macroheterocycles. 2012. V. 5. N 2. P. 157 - 161. DOI: 10.6060/mhc2012.120577i.

4. Islyaikin M.K., Khelevina O.G., Danilova E.A., Lomova T.N. Synthesis, structure features and acid-base interactions of azolcontaining macroheterocyclic compounds. Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 2004. V. 47. N 5. P. 35 - 45 (in Russian).

5. de la Torre G., Vazquez P., Aguillo-Lopez F., Torres T. Role of structural factors in the nonlinear optical properties

6. Trukhina O.N., Zhabanov Yu.A., Krasnov A.V., Danilova E.A., Islyaikin M.K. Synthesis and thermal behavior of un-substituted [30]trithia-2,3,5,10,12,13,15,20,22,23,25,30-do-decaazahexaphyrin. JPP. 2011. N 15. P. 1287 - 1291. DOI: 10.1142/S108842461100418X.

7. Trukhina O.N., Rodríguez-Morgade M.S., Wolfrum S., Caballero E., Snejko N., Danilova E.A., Gutiérrez-Puebla E., Islyaikin M.K., Guldi D.M., Torres T.J. Scrutinizing the chemical nature and photophysics of an expanded hemiporphyrazine: the special case of [30]trithia-2,3,5,10, 12,13,15,20,22,23,25,30-dodecaazahexaphyrin. JACS. 2010. N 132. P. 12991 - 12999. DOI: 10.1021/ja104577d.

8. Danilova E.A., Melenchuk T.V., Trukhina O.N., Zakha-rov A.V. Islyaikin M.K. Thiadiazole containing macrocycles as core-modified analogues of phthalocyanine. Macrohetero-cycles. 2010. V. 3. N 1. P. 33 - 37.

9. Erdem S.S., Nesterova I.V., Soper S.A., Hammer R.P. Solid-phase synthesis of asymmetrically substituted "AB3-type" phthalocyanines. J. Org. Chem. 2008. N 73. P. 5003 -5007. DOI: 10.1021/jo800536v.

10. Tuncel S., Dumoulin F., Gailer J., Sooriyaarachchi M., Atilla D., Durmus M., Bouchu D., Savoie H., Boyle R.W., Ahsen V. A set of highly water-soluble tetraethyleneglycol-substituted Zn(II) phthalocyanines: synthesis, photochemical and photophysical properties, interaction with plasma proteins and in vitro phototoxicity. Dalton Trans. 2011. N 40. P. 4067 - 4079. DOI: 10.1039/c0dt01260b.

11. Ke M.-R., Yeung S.-L., Fong W.-P., Ng D.K.P., Lo P.-Ch. A phthalocyanine-peptide conjugate with high in vitro photo-dynamic activity and enhanced in vivo tumor-retention property. Chem. Eur. J. 2012. N 18. P. 4225 - 4233. DOI: 10.1002/chem.201103516.

12. Obraztsov I., Noworyta K., Hart A., Gobeze H.B., Kc Ch.B., Kutner W., D'Souza F. Langmuir-Blodgett films of self-assembled (alkylether-derivatized Zn phthalocyanine)-(C60 imidazole adduct) dyad with controlled intermolecular distance for photoelectrochemical studies. ACSAppl. Mater. Interfaces. 2014. N 6. P. 8688 - 8701. DOI: 10.1021/am501446g.

13. Sawada K., Kobayashi M., Satoh K. Complex formation of phthalocyanine derivatives substituted by polyethylene oxide with alkali metal ions in methanol. Monatsh Chem. 2015. N 146. P. 547 - 558. DOI: 10.1007/s00706-014-1398-z.

14. Sastre A., Bassoul P., Fretigny Ch., Simon J., Roger J.-P., Thami T. A mesomorphic amphiphilic phthalocyanine derivative used for the functionalization of the grid surface of a field effect transistor. New J. Chem. 1998. P. 569 - 578. DOI: 10.1039/A708759D.

15. Li Y., Wang J., Zhang X., Guo W., Li F., Yu M., Kong X., Wu W., Hong Z. Highly water-soluble and tumor-targeted pho-tosensitizers for photodynamic therapy. Org. Biomol. Chem.

2015. N 13. P. 7681 - 7694. DOI: 10.1039/C5OB01035G.

16. Li F., Liu Q., Liang Z., Wang J., Pang M., Huang W., Wu W., Hong Z. Synthesis and biological evaluation of peptide-conjugated phthalocyanine photosensitizer with highly hydro-philic modifications. Organic & Biomolecular Chemistry.

2016. P. 1 - 44. DOI: 10.1039/C6OB00122J.

17. Young, J.G., Onyebuagu W.J. Synthesis and characterization of di-disubstituted phthalocyanines. Org. Chem. 1990. V. 55. N 7. P. 2155 - 2159. DOI: 10.1021/jo00294a032.

18. Беккер Х. Органикум. Практикум по органической химии. М.: Мир. 1979. Т. 2. 402 с.

19. CrysAlisPro, Agilent Technologies, Version 1.171.37.33 (release 27-03-2014 CrysAlis171 .NET).

of phthalocyanines and related compounds. Chem. Rev. 2004. V. 104. N 9. P. 3723 - 3750. DOI: 10.1021/cr030206t.

6. Trukhina O.N., Zhabanov Yu.A., Krasnov A.V., Danilova E.A., Islyaikin M.K. Synthesis and thermal behavior of un-substituted [30]trithia-2,3,5,10,12,13,15,20,22,23,25,30-do-decaazahexaphyrin. JPP. 2011. N 15. P. 1287 - 1291. DOI: 10.1142/S108842461100418X.

7. Trukhina O.N., Rodríguez-Morgade M.S., Wolfrum S., Caballero E., Snejko N., Danilova E.A., Gutiérrez-Puebla E., Islyaikin M.K., Guldi D.M., Torres T.J. Scrutinizing the chemical nature and photophysics of an expanded hemiporphyrazine: the special case of [30]trithia-2,3,5,10, 12,13,15,20,22,23,25,30-dodecaazahexaphyrin. JACS. 2010. N. 132. P. 12991 - 12999. DOI: 10.1021/ja104577d.

8. Danilova E.A., Melenchuk T.V., Trukhina O.N., Zakha-rov A.V. Islyaikin M.K. Thiadiazole containing macrocycles as core-modified analogues of phthalocyanine. Macro-heterocycles. 2010. V. 3. N 1. P. 33 - 37.

9. Erdem S.S., Nesterova I.V., Soper S.A., Hammer R.P. Solid-phase synthesis of asymmetrically substituted "AB3-type" phthalocyanines. J. Org. Chem. 2008. N 73. P. 5003 -5007. DOI: 10.1021/jo800536v.

10. Tuncel S., Dumoulin F., Gailer J., Sooriyaarachchi M., Atilla D., Durmus M., Bouchu D., Savoie H., Boyle R.W., Ahsen V. A set of highly water-soluble tetraethyleneglycol-substituted Zn(II) phthalocyanines: synthesis, photochemical and photophysical properties, interaction with plasma proteins and in vitro phototoxicity. Dalton Trans. 2011. N 40. P. 4067 - 4079. DOI: 10.1039/c0dt01260b.

11. Ke M.-R., Yeung S.-L., Fong W.-P., Ng D.K.P., Lo P.-Ch. A phthalocyanine-peptide conjugate with high in vitro pho-todynamic activity and enhanced in vivo tumor-retention property. Chem. Eur. J. 2012. N 18. P. 4225 - 4233. DOI: 10.1002/chem.201103516.

12. Obraztsov I., Noworyta K., Hart A., Gobeze H.B., Kc Ch.B., Kutner W., D'Souza F. Langmuir-Blodgett films of self-assembled (alkylether-derivatized Zn phthalocyanine)-(C60 imidazole adduct) dyad with controlled intermolecular distance for photoelectrochemical studies. ACS Appl. Mater. Interfaces. 2014. N 6. P. 8688 - 8701. DOI: 10.1021/am501446g.

13. Sawada K., Kobayashi M., Satoh K. Complex formation of phthalocyanine derivatives substituted by polyethylene oxide with alkali metal ions in methanol. Monatsh Chem. 2015. N 146. P. 547 - 558. DOI: 10.1007/s00706-014-1398-z.

14. Sastre A., Bassoul P., Fretigny Ch., Simon J., Roger J.-P., Thami T. A mesomorphic amphiphilic phthalocyanine derivative used for the functionalization of the grid surface of a field effect transistor. New J. Chem. 1998. P. 569 - 578. DOI: 10.1039/A708759D.

15. Li Y., Wang J., Zhang X., Guo W., Li F., Yu M., Kong X., Wu W., Hong Z. Highly water-soluble and tumor-targeted pho-tosensitizers for photodynamic therapy. Org. Biomol. Chem.

2015. N 13. P. 7681 - 7694. DOI: 10.1039/C5OB01035G.

16. Li F., Liu Q., Liang Z., Wang J., Pang M., Huang W., Wu W., Hong Z. Synthesis and biological evaluation of peptide-conjugated phthalocyanine photosensitizer with highly hy-drophilic modifications. Organic & Biomolecular Chemistry.

2016. P. 1 - 44. DOI: 10.1039/C6OB00122J.

17. Young, J.G., Onyebuagu W.J. Synthesis and characterization of di-disubstituted phthalocyanines. Org. Chem. 1990. V. 55. N 7. P. 2155 - 2159. DOI: 10.1021/jo00294a032.

18. Becker H. Organikum. Practical works on organic chemistry. M.: Mir. 1979. V. 2. 402 p. (in Russia).

19. CrysAlisPro, Agilent Technologies, Version 1.171.37.33 (release 27-03-2014 CrysAlis171 .NET).

20. Sheldrick G.M. Crystal structure refinement with SHELXL. Acta Cryst. Section C. 2015. V. 71. P. 3-8. DOI: 10.1107/S2053229614024218.

21. Dolomanov O.V., Bourhis L.J., Gildea R.J, Howard J.A.K., Puschmann H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Cryst. 2009. V. 42. P. 339 - 341. DOI: 10.1107/S0021889808042726.

22. Granovsky A.A. Firefly version 8.1. http://classic.chem. msu.su/gran/gamess/index.html.

23. Минкин В.И., Симкин Б.Я., Миняев Р.М. Квантовая химия органических соединений. Механизмы реакций. М.: Химия. 1986. 248 с.

24. Zhurko G.A. http://www.chemcraftprog.com.

25. Snow A.W., Shirk J.S., Pong R.G.S. Oligooxyethylene liquid phthalocyanines. JPP. 2000. N 4. P. 518 - 524. DOI: 10.1002/1099-1409(200008)4:5<518: :AID-JPP279>3.0.CO;2-E.

26. Yanik H., Aydin D., Durmus M., Ahsen V. Peripheral and non-peripheral tetrasubstituted aluminium, gallium and indium phthalocyanines: Synthesis, photophysics and photochemistry. J. Photochem Photobiol. 2009. N 206. P. 18 - 26. DOI: 10.1016/j.jphotochem.2009.05.005.

27. Хираока М. Краун-соединения. Свойства и применения. М.: Мир. 1986. 363 с.

28. Akkurt H.Y.Y., Okur A., Gul A. Unsymmetrical phthalocyanines with cyclopalladated azo functions. JPP. 2012. N 16. P. 192 - 199. DOI: 10.1142/S1088424612004525.

29. Hargittai M., Rossi A. Theoretical investigation of the molecular structure of manganese dichloride. Inorg. Chem. 1985. V. 24. N 26. P. 4758 - 4760. DOI: 10.1021/ic00220a069.

30. Coruh A., Yilmaz F., Sengez B., Kurt M., Cinar M., Karabacak M. Synthesis, molecular conformation, vibra-tional, electronic transition, and chemical shift assignments of 4-(thiophene-3-ylmethoxy)phthalonitrile: a combined experimental and theoretical analysis. Struct Chem. 2011. V. 22. P. 45 - 56.

20. Sheldrick G.M. Crystal structure refinement with SHELXL. Acta Cryst. Section C. 2015. V. 71. P. 3 - 8. DOI: 10.1107/S2053229614024218.

21. Dolomanov O.V., Bourhis L.J., Gildea R.J, Howard J.A.K., Puschmann H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Cryst. 2009. V. 42. P. 339 - 341. DOI: 10.1107/S0021889808042726.

22. Granovsky A.A. Firefly version 8.1. http://classic.chem. msu.su/gran/gamess/index.html.

23. Minkin V.I., Simkin B.Ya., Minyaev R.M. Quantum chemistry of organic compounds. Mechanisms of reactions. M.: Khimiya. 1986. 248 p. (in Russian)

24. Zhurko G.A. http://www.chemcraftprog.com.

25. Snow A.W., Shirk J.S., Pong R.G.S. Oligooxyethylene liquid phthalocyanines. JPP. 2000. N 4. P. 518 - 524. DOI: 10.1002/1099-1409(200008)4:5<518::AID-JPP279>3.0.CO;2-E.

26. Yanik H., Aydin D., Durmus M., Ahsen V. Peripheral and non-peripheral tetrasubstituted aluminium, gallium and indium phthalocyanines: Synthesis, photophysics and photochemistry. J. Photochem. Photobiol. 2009. N 206. P. 18 - 26. DOI: 10.1016/j .jphotochem.2009.05.005.

27. Hiraoka M. Crown compound. Properties and applications. M.: Mir. 1986. 363 p. (in Russian).

28. Akkurt H.Y.Y., Okur A., Gul A. Unsymmetrical phthalocyanines with cyclopalladated azo functions. JPP. 2012. N 16. P. 192 - 199. DOI: 10.1142/S1088424612004525.

29. Hargittai M., Rossi A. Theoretical investigation of the molecular structure of manganese dichloride. Inorg. Chem. 1985. V. 24. N 26. P. 4758 - 4760. DOI: 10.1021/ic00220a069.

30. Coruh A., Yilmaz F., Sengez B., Kurt M., Cinar M., Karabacak M. Synthesis, molecular conformation, vibra-tional, electronic transition, and chemical shift assignments of 4-(thiophene-3-ylmethoxy)phthalonitrile: a combined experimental and theoretical analysis. Struct Chem. 2011. V. 22. P. 45 - 56.

Поступила в редакцию 24.11.2016 Принята к опубликованию 02.02.2017

Received 24.11.2016 Accepted 02.02.2017

i Надоели баннеры? Вы всегда можете отключить рекламу.