13. Руководство для резинового рабочего р. Я. Даучки и ингредиенты. М. МАИ, 2012. С. 518-525.
14. Технологический регламент БТП № 32.85.15.
15. Строкан Б.В., Сухоткин А.М. Методы защиты оборудования от коррозии. M. Химия, 1987. С. 280.
16.Мурадов А.В. Антикоррозионная защита нефтегазопроводов изоляцией покрытия. Нефть и газ, 2001. № 6. С. 102.
17.Дкенберг С.А., Кузнецов В.С., Московтцев Н.Г. Легкие материалы и их применение, 2002. № 1. С. 10.27.04.2000.
SYNTHESIS AND RESEARCH OF STRUCTURE AND PROPERTIES OF COMPLEX COMPOUNDS OF DIVALENT COPPER WITH LIGANDS (HISTIDIN AND ARGENIN)
12 3
Gahramanova Sh.I. , Dzhalaladdinov F.F. , Khudaverdiyev R.A. , Alieva Ch.Ch.4, Askerova T.Ya.5, Gahramanov T.O.6 (Republic of Azerbaijan) Email: [email protected]
1Gahramanova Shahnaz Ismail - PhD in Chemistry, Researcher;
2Dzhalaladdinov Fadail Fatullah - Leading Researcher, Associate Professor; 3Khudaverdiyev Rahim Aziz - Leading Researcher;
4Alieva Chavahir Chavad -Research Associate;
5Askerova Tarana Yashar - Research Associate, INSTITUTE OF CATALYSIS AND INORGANIC CHEMISTRY NAMED AFTER AKADEMICIANM.F. NAGIYEV NATIONAL ACADEMY OF SCIENCES OF AZERBAIJAN;
6Gahramanov Taleh Ordukhan - Doctoral Student, Associate Professor, PHYSICAL AND COLLOID CHEMISTRY DEPARTMENT, CHEMISTRY FACULTY, BAKU STATE UNIVERSITY, BAKU, REPUBLIC OF AZERBAIJAN
Abstract: new complex copper compounds with ligands (histidine and argenine) with the composition [CuCl2L (H2O)] H2O, [CuCl2L2], [CuCl2L (H2O)] 3H2O were synthesized. It is shown that the composition of the complexes obtained depends on the ratio of the initial components. The composition and structure of the complexes were studied by chemical analysis, IR spectroscopy, and thermogravimetry. The method of IR and UV spectroscopy showed that the ligands in the composition of the honey (II) complexes enter into the neutral form and are coordinated with the complexing agent through the nitrogen atom. The results of thermogravimetric studies have shown that the final product of the thermal decomposition of all compounds is copper oxide, respectively. Keywords: nistidine, arginine, copper oxide, amine groups, complex compounds.
СИНТЕЗ И ИССЛЕДОВАНИЕ СТРУКТУРЫ И СВОЙСТВ КОМПЛЕКСНЫХ СОЕДИНЕНИЙ ДВУХВАЛЕНТНОЙ МЕДИ С ЛИГАНДАМИ (ГИСТИДИН И АРГЕНИН)
1 2 3
Кахраманова Ш.И. , Джалаладдинов Ф.Ф. , Худавердиев Р.А. , Алиева Ч.Ч.4, Аскерова Т.Я.5, Гахраманов Т.О.6 (Азербайджанская Республика)
1Кахраманова Шахназ Исмаил кызы - кандидат химических наук, научный сотрудник;
2Джалаладдинов Фадаил Фатуллах оглы - ведущий научный сотрудник, доцент;
3Худавердиев Рагим Азиз оглы - ведущий научный сотрудник;
4Алиева Чавахир Чавад кызы- научный сотрудник;
5Аскерова Тарана Яшар кызы - научный сотрудник, Институт катализа и неорганической химии им. акад. М.Ф. Нагиева Национальная академия наук Азербайджана;
6Гахраманов Талех Ордухан оглы - докторант, доцент, кафедра физической и коллоидной химии, химический факультет, Бакинский государственный университет, г. Баку, Азербайджанская Республика
Аннотация: синтезированы новые комплексные соединения меди со лигандами (гистидин и аргенин) с составом [CuCl2L(H2O)]H2O, [CuCl2L2]2H2O, [CuCl2L(H20)]3H20]. Показано, что состав полученных комплексов зависит от соотношения исходных компонентов. Состав и строение комплексов исследованы методами химического анализа, ИК и УФ спектроскопии и термогравиметрии. Методом ИК-спектроскопии показано, что лиганды в состав комплексов мед (II) входят в нейтральной форме и координируются с комплексообразователем через атом азота. Результаты термогравиметрических исследований показали, что конечным продуктом термического разложения всех соединений является оксид меди соответственно.
Ключевые слова: гистидин, аргенин, оксида меди, аминных групп, комплексные соединения.
INTRODUCTION
The chemistry of complex compounds of transition metals with multidentate ligands, which simultaneously contains several donor atoms, is not only theoretical but also of practical interest, since in addition to the unusual properties of such complexes, the structure and types of binding of multidentate ligands with different metals give a new impetus to the development coordination chemistry as a whole. Among the coordination compounds, the complexes obtained on the basis of biomaterials take a special place. This is due to the fact that they play an important role in many biochemical processes and therefore are widely used in plant growing, animal husbandry, and pharmacology. In turn, the study of the properties and structure of coordination compounds of metal ions with organic ligands containing various donor centers was an important factor in the development of new approaches to their physico-chemical research [1-3].
On the other hand, complex compounds of many transition elements, including copper, can possess a wide range of useful properties, for which the chemistry of complex compounds has not yet been sufficiently studied [4-6].
In this paper, we present methods of synthesis and study of the properties of copper (II) complexes with ligands (histidine and argenine).
EXPERIMENTAL PART
The composition and chemical structure of the synthesis products obtained are studied by physical-chemical analysis methods: elemental analysis (iCP-MS); X-ray phase analysis (diffractometer (Germany) D-2 Phaser firm Bruker); IR spectroscopy ("Specord M-80"
brand Carl Zeiss). The spectra of the reaction solutions in the IR and UV regions were recorded on the Nicolet IS10 spectrometer and the Evolution 60S spectrophotometer, manufactured by Thermo Scientific Spectronic (USA). Differential thermogravimetric analysis was performed on a derivative (NETZSCH STA 449F3 STA449FSA-0622-M).
Synthesis -[CuCULj]
A sample of 1.71 g (0.001 mole)-CuCl2 2H2O was dissolved in a two-necked flask under reflux in 30 ml of ethyl alcohol at a temperature of 60 ° C, and 1.55 g (0.001 mole) of ligand L-histidine - (in a molar ratio of 1: 1) previously dissolved in 20 ml of ethyl alcohol. The resulting mixture was heated for 2 hours, then cooled to room temperature, filtered and put on crystallization. The beige-colored crystals were filtered, washed several times with the mother liquor, then 10-15 ml with acetone and dried in a desiccator over sulfuric acid until a constant weight was established.
Synthesis -[CuCl2L2]2H2O
To a beige color solution obtained by dissolving 0.85 g (0.05 mole) -CuCl2 2H2O in 20 ml of ethyl alcohol, 1.55 g (0.01 mole) of ligand L- histidine dissolved in 30 ml of ethyl alcohol (in a molar ratio 1: 2). The solution was heated for 2-2.5 hours at a temperature of 60°C. Further, the synthesis process was carried out according to the above described procedure.
Synthesis -[CuCl2L(H2O)] 3H2O
According to the above procedures, 1.74 g (0.01 mol) of ligand L- argenine (molar ratio 1: 1), previously dissolved in 20 ml of ethyl alcohol, was added to 1.71 g (0.01 mole) -CuCl2 2H2O dissolved in 30 ml of ethyl alcohol, alcohol. The resulting mixture was heated for 2 hours, then cooled to room temperature, filtered, washed several times with the mother liquor, then 10-15 ml with acetone and dried in a desiccator over sulfuric acid until a constant weight was established.
Fig. 1. The molecular structure of the ((L-histidyl)oxy) copper (III) chlorid
Chemical Formula: C6H8Cl2CuN3O2
Exact Mass: 286.93
Molecular Weight: 288.60
m/z: 286.93 (100.0%), 288.93 (63.9%), 288.93 (44.6%), 290.92 (28.5%), 290.92 (10.2%), 287.93 (6.5%), 292.92 (4.6%), 289.93 (4.1%), 289.93 (2.9%), 291.93 (1.8%), 287.93 (1.1%) Elemental Analysis: C, 24.97; H, 2.79; Cl, 24.57; Cu, 22.02; N, 14.56; O, 11.09.
RESULTS and CONCLUSION
To determine the coordination character of the synthesized complex compounds formed between the ligand and the coupler, IR spectroscopic analysis was carried out. In the primary amine, the absorption spectra of the covalent vibrations of the NH bond as a function of the spectra of co-ordination absorption oscillations vNH = 3273.64 cm-1, 3139.56 cm-1 shift to the lower area and the intensity is weakened, and vOH = 3447.72 cm-1 refers to the residues of the solvent, alcohol.
СрАлр 19 15:28:21 2D17(GMTt05:00) ПОИСК ГТИКОВ:
Спектр: CuCI2+L
Область: 4000,00 400.00
Порог: 25,641 •
Ч у вств ителькостьбО
Таблица пиков:
Положение: 423.84 Интенсивность: 24.712
Положение: 435.06 Интенсивность: 24,980
Положение: 445,90 Интенсивность: 25,221
Положение: 457,44 Интенсивность: 25,150
Положение: 509,07 Интенсивность: 22,655
Положение: 555,17 Интенсивность: 13.596
Fig. 2. IR spectra of complex[CuCl2L2]2H2O; L-arginin
When the IR spectra of the free ligand are aligned with the spectra of the complexes obtained, an obvious change is observed. The absorption bands due to the valence vibrations of the OH bond to the carboxyl group of the arginin 3300-3500 cm-1 in the mollusk disappear, and instead of the absorption bands vCOo = 1632.77 cm-1 ; 1352 cm-1 relating to the carboxylate ion.
To determine the composition and thermal stability of the synthesized two complexes [CuCl2L (H2O)] H2O, [CuCl2L2] 2H2O and [CuCl2L2] a thermal analysis was carried out and were determined.
Fig. 3. [CuCl2LJ • 2H2O complexity thermogrammogram. L - nistidine
Complexes are stable up to a temperature of 170°C. The thermal decomposition of [CuCl2L2] 2H2O begins at a temperature of 170°C, with a mass loss of 2.65%, in the second stage, a decrease in mass corresponds to (3.91%), and this refers to 1 mole of water. In the third stage, mass loss is 14.93% and this corresponds to 1 mole of ligand. At a high temperature, the destruction of complexes begins, which passes through several stages and in all cases of thermal processes the final product is CuO.
A solution of the complex [CuCl2L2]2H2O in a concentration of 0.01 m and removed the ultraviolet absorption spectrum. It can be seen from the spectrum that the d-d transition refers to a wavelength of 590-620 nm.
600 700 wavelength (nm)
Fig. 4. [CuCl2L2] Ultraviolet absorption spectrum of 0.01 M solution of 2H2O complex
Thermocouple analysis was carried out to determine the composition and thermal stability of the complexes under study. Despite the fact that the derivatograms of the complexes are identical, they differ substantially in the nature of the thermal decomposition.
Results of thermogravimetric and X-ray phase studies have shown that the thermal decomposition of complexes occurs in three stages and in all cases the third stage of thermolysis is accompanied by oxidation of copper oxide
Яе/егепсв8 in English / Список литературы на английском языке
1. Gahramanova Sh.I., Kuliyeva.E.A., Azizov. I.V. Influence of newly synthesized zinc complexes with amino acids on the morphophysiological characteristics of wheat seedlings. // Academic Journal of West Sibiuryi, 2014. № 5. T. 10. P. 94-95 [in Russian].
2. Gahramanova Sh.I., Guliyeva E.A., Suleymanov G.Z., Azizov I.V. Influence Newly Syntesized Manganese Complexes with Amino Asids on Morphophysiological Chracteristics Wheat Germ. American International Journal of Contemporary Research, 2014. V. 4. № 12. P. 58-60.
3. Mahmudov K.T., Sutradhar M., Martins L., Silva F.C, Ribera A., Nunes V.M., Marchetti F., Pombeiroa A.L., Gahramanova Sh.I. Mn II and Cu II complexes with arylhydrazones of active methylene compounds as effective heterogeneous catalysts for solvent and additive-free microwave-assisted peroxidative oxidation of alcohols. // RSC Advances An international journal to further the chemical sciences. The Royal Society of Chemistry, 2015. V. 5. P. 25979-25987.
4. Gahramanova Sh.I., Kulyeva E.A., Suleimanov G.Z., Kerimova U.A., Askerova T.Ya. Interaction of manganese (II) with valine and В-alanine // International Youth Scientific and Practical Conference of Students, graduate students and young "Fundamental and applied research in the field of chemistry and ecology", 2015 (Kursk 23- 26.). P. 29-31 [in Russian].
5. Babayeva V.I., Kerimov U.A., Osmanov N.S. Synthesis and study of rhenium (IV) complexes with some amino acids. // Journal. Chemistry and chemical technology, 2011.V. 54. № 1. P. 33-36 [in Russian].
6. Molodkin A.K., Esina N. Ya., Gnatik E.N. and etc. Complex compounds of Pt (IV) with cytosine and threonine. Inorg. Chemistry, 1998.V. 43. № 7. P. 1160-1166 [in Russian].
Список литературы /Referenсes
1. Кахраманова Ш.И., Кулиева Э.А., Азизов И.В. Влияние ново синтезированных комплексов цинка с аминокислотами на морфофизиологические показатели проростков пшеницы. // Академический журнал Западной Сибири, 2014. T. 10. № 5. С. 94-95.
2. Кахраманова Ш.И., Гулиева Е.Е., Сулейманов Г.З., Азизов И.И. Влияние недавно синтезированных марганцевых комплексов с аминоазидами на морфофизиологические характеристики пшеничного зародыша. Американский международный журнал современных исследований, 2014. V. 4. № 12. P. 58-60.
3. Махмудов К.Т., Сутрадар М., Мартинс Л., Сильва Ф.С, Рибера А., Нунес В.М., Маркетти Ф., Помберо А.Л., Кахраманова Ш.И. Mn (II) и Cu (II) с арилгидразонами активных метиленовых соединений в качестве эффективных гетерогенных катализаторов для растворимого и не содержащего добавок микроволнового пероксидативного окисления спиртов. // RSC Advances Международный журнал для продвижения химических наук. Королевское химическое общество, 2015. V. 5. С. 25979-25987.
4. Кахраманова Ш.И., Кулиева Э.А., Сулейманов Г.З., Керимова У.А., Аскерова Т.Я. Взаимодействие марганца (II) с валином и В-аланином // Международная молодежная научно-практическая конференция студентов, аспирантов и молодых «Фундаментальные и прикладные исследования в области химии и экологии» (Курск 23 -26 сентября, 2015). С. 29-31.
5. Бабаева В.И., Керимова У.А., Османов Н.С. Синтез и исследование комплексов рения (IV) с некоторыми аминокислотами. //Журн. Химия и химическая технология, 2011. Т. 54. Вып. 1. С. 33-36.
6. Молодкин А.К., Есина Н.Я., Гнатик Е.Н. и др. Комплексные соединения Pt(IV) с цитозином и треонином // Журн. неорг. химии, 1998. Т. 43. № 7. С. 1160-1166.