Научная статья на тему 'SYNTHESIS AND INFRARED SPECTROSCOPY (IR) STUDIES OF PHTHALOCYANINE PIGMENT CONTAINING COPPER, CALCIUM, NITROGEN AND N.P.K.'

SYNTHESIS AND INFRARED SPECTROSCOPY (IR) STUDIES OF PHTHALOCYANINE PIGMENT CONTAINING COPPER, CALCIUM, NITROGEN AND N.P.K. Текст научной статьи по специальности «Химические технологии»

CC BY
12
1
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
phthalocyanine pigment / infrared spectroscopy analysis / copper and calcium salts / phthalic anhydride / N.P.K / absorp-tion spectrum / фталоцианиновый пигмент / инфракрасный спектральный анализ / соли меди и кальция / фталевый ангидрид / N.P.K / спектр поглощения

Аннотация научной статьи по химическим технологиям, автор научной работы — Kayumjonov Odiljon, Yusupov Muzafar, Sherkuziyev Doniyor

The article presents the results of synthesis and IR-spectroscopic studies of a metal-containing phthalocyanine pigment of increased intensity, obtained with additives of copper, calcium, nitrogen, and N.P.K. in the temperature range of 200-220°C. It is proposed to use the synthesized organic pigment in the production of colored plastics in an amount of 0.3-1% and the production of paints and varnishes with an additive of 3-4% of the total mass. The analysis of the newly synthesized phthalocyanine metal complexes revealed that the pigment possesses an aromatic structure and is characterized by intricate bonding involving nitrogen, phosphorus, and metal atoms.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

СИНТЕЗ И ИК-ИССЛЕДОВАНИЯ ФТАЛОЦИАНИНОВОГО ПИГМЕНТА, СОДЕРЖАЩЕГО МЕДЬ, КАЛЬЦИЙ, АЗОТ И N.P.K.

В статье приведены результаты синтеза и ИК-спектроскопических исследований металлсодержащего фта-лоцианинового пигмента повышенной интенсивности, полученного с добавками меди, кальция, азота и N.P.K. в интервале температур 200-220°C. Предложено использование синтезированного органического пигмента при получении цветных пластмасс в количестве 0,3-1% и производстве лакокрасочных материалов с добавкой 3-4% от общей массы. Анализ вновь синтезированных фталоцианиновых металлокомплексов показал, что пиг-мент имеет ароматическую структуру и характеризуется сложными связями с участием атомов азота, фосфора и металла.

Текст научной работы на тему «SYNTHESIS AND INFRARED SPECTROSCOPY (IR) STUDIES OF PHTHALOCYANINE PIGMENT CONTAINING COPPER, CALCIUM, NITROGEN AND N.P.K.»

л Д UNIVERSUM:

№ 12 (129)_¿Л ТЕХНИЧЕСКИЕ НАУКИ_декабрь. 2024 г.

DOI - 10.32743/UniTech.2024.129.12.18974

SYNTHESIS AND INFRARED SPECTROSCOPY (IR) STUDIES OF PHTHALOCYANINE PIGMENT CONTAINING COPPER, CALCIUM, NITROGEN AND N.P.K.

Odiljon Kayumjonov

Doctoral student,

Namangan Institute of Engineering and Technology, Republic of Uzbekistan, Namangan E-mail: [email protected]

Muzafar Yusupov

Ph.D., associate professor, Namangan Institute of Engineering and Technology,

Uzbekistan, Namangan E-mail: [email protected]

Doniyor Sherkuziyev

Doctor of Technical Sciences, Prof., Namangan Institute of Engineering and Technology, Republic of Uzbekistan, Namangan E-mail: doniyor_8184@mail. ru

СИНТЕЗ И ИК-ИССЛЕДОВАНИЯ ФТАЛОЦИАНИНОВОГО ПИГМЕНТА, СОДЕРЖАЩЕГО МЕДЬ, КАЛЬЦИЙ, АЗОТ И N.P.K.

Каюмжонов Одилжон

докторант,

Наманганский инженерно-технологический институт, Республика Узбекистан, г. Наманган

Юсупов Музафар Орифжонович

канд. техн. наук, доцент, Наманганский инженерно-технологический институт, Узбекистан, Наманганская область, г. Наманган

Шеркузиев Дониёр Шермаматович

д-р техн. наук, проф., Наманганский инженерно-технологический институт, Республика Узбекистан, г. Наманган

ABSTRACT

The article presents the results of synthesis and IR-spectroscopic studies of a metal-containing phthalocyanine pigment of increased intensity, obtained with additives of copper, calcium, nitrogen, and N.P.K. in the temperature range of 200-220°C. It is proposed to use the synthesized organic pigment in the production of colored plastics in an amount of 0.3-1% and the production of paints and varnishes with an additive of 3 -4% of the total mass. The analysis of the newly synthesized phthalocyanine metal complexes revealed that the pigment possesses an aromatic structure and is characterized by intricate bonding involving nitrogen, phosphorus, and metal atoms.

АННОТАЦИЯ

В статье приведены результаты синтеза и ИК-спектроскопических исследований металлсодержащего фталоциа-нинового пигмента повышенной интенсивности, полученного с добавками меди, кальция, азота и N.P.K. в интервале температур 200-220°C. Предложено использование синтезированного органического пигмента при получении цветных пластмасс в количестве 0,3-1% и производстве лакокрасочных материалов с добавкой 3-4% от общей массы. Анализ вновь синтезированных фталоцианиновых металлокомплексов показал, что пигмент имеет ароматическую структуру и характеризуется сложными связями с участием атомов азота, фосфора и металла.

Библиографическое описание: Kayumjonov O., Yusupov M., Sherkuziyev D. SYNTHESIS AND INFRARED SPECTROSCOPY (IR) STUDIES OF PHTHALOCYANINE PIGMENT CONTAINING COPPER, CALCIUM, NITROGEN AND N.P.K. // Universum: технические науки : электрон. научн. журн. 2024. 12(129). URL:

https://7universum.com/ru/tech/archive/item/18974

№ 12 (129)

декабрь, 2024 г.

Keywords: phthalocyanine pigment, infrared spectroscopy analysis, copper and calcium salts, phthalic anhydride, N.P.K, absorption spectrum.

Ключевые слова: фталоцианиновый пигмент, инфракрасный спектральный анализ, соли меди и кальция, фталевый ангидрид, N.P.K, спектр поглощения.

Introduction

The early history of the synthesis and characterization of phthalocyanines was fully described by Moser and Thomas in 1983. Metal-free phthalocyanine (H2Pc) was first synthesized in 1907 by Braun and Chernyak, and copper phthalocyanine (CuPc) was prepared in 1927 by Diesbach and van der Weide. Many other substituted metal phthalocyanines were synthesized thereafter, and in 1934 Linsted and coworkers began a comprehensive study of their chemical properties [1].

The structure of a flat phthalocyanine molecule, which consists of four isoindole fragments linked together

via a nitrogen atom to form a tetrabenzotetraazaporphine (tetrabenzoporphyrazine) ring (Fig. 1), was first reported by Dent and his colleagues [2]. This aromatic cycle of the phthalocyanine molecule is an 18-electron multi-loop conjugated system: an internal system involving pyrrole and bridging nitrogen atoms and an external conjugation system involving benzene rings.

Phthalocyanines are finely dispersed powders that have a bright color, often shades of blue and green, due to the long length of the conjugation chain and absorption in the visible range in the region of approximately 500 - 800 nm[3].

Figure 1. Phthalocyanine molecule without metal

In metal (II) phthalocyanine (MPc), two central hydrogen atoms are replaced by one metal atom. Phthal-ocyanines form complexes with almost all metals of the periodic table. In this case, the heterocycle is the equatorial "ligand", and other ligands bound to the metal atom are located perpendicular to the plane of the cycle (occupy trans-axial positions). The most important feature of the molecule is the presence of a coordination cavity, limited by four nitrogen atoms, capable of coordinating metal ions, with the metal either occupying the center of the cavity, forming a flat coordination unit, or being outside the plane of the macrocycle in which the nitrogen atoms lie, and forming coordination units of various

geometric structures. Thus, using the example of several phthalocyanines of divalent metals (M = Co, Fe, Cu, Ni, etc.) [4-5], it was shown that all the atoms of the phthalocyanine ring lie practically in one plane. However, in the case of phthalocyanines of heavy metals, such as lead and tin [5-6], due to the relatively large size of the metal atom and the presence of an unshared pair of electrons, as well as in the case of the presence of a substituent in the axial position, for example, AlClPc and VOPc [7], a distortion of the "flat" structure of the molecule occurs, and the metal atom leaves the plane of the macro ring (Figure. 2).

№ 12 (129)

декабрь, 2024 г.

Figure 2. Unsubstituted vanadyl phthalocyanine molecules

Novelty of the work

The synthesis of a high-intensity organic phthalocya-nine pigment was successfully achieved through the chemical reaction of phthalic anhydride, urea, copper, calcium, N.P.K, and metal salts. By utilizing local raw materials, we significantly reduced import dependency and lowered the overall cost of the pigment.

Materials and Methods

In the synthesis of the organic metal phthalocyanine pigment, we combined 15 g of phthalic anhydride, 25 g of anhydrous copper(II) sulfate, 11 g of calcium chloride, 90 g of urea, 69 g of N.P.K, and an appropriate catalyst in a high-temperature-resistant 400 ml beaker. The mixture was thoroughly stirred at low temperature until fully dissolved, followed by a reaction process conducted at 200-220 °C until a homogeneous system was achieved. The result of this meticulous reaction was a blue-colored heavy pigment, which was subsequently

cooled to room temperature and placed in a vacuum oven for 120 minutes of heating. Once removed from the oven, the pigment was cooled and treated with sulfuric acid to eliminate unreacted substances. Concentrated sulfuric acid was carefully added along the beaker walls, and boiling water was introduced once a homogeneous substance was formed. The resulting pigment medium, thus rendered acidic, was washed with distilled water for neutralization. The pigment was then filtered and dried in a drying oven at a controlled temperature of 60-80 °C.

The newly synthesized pigment stands out due to its exceptional properties. It exhibits high heat resistance, remarkable durability against sunlight, and intense coloring capabilities that significantly broaden its application range. Impressively, the yield of the pigment obtained at the end of the reaction was 80%.

Results and Discussion

Figure 3. Shows the infrared spectroscopy analysis of the obtained sample.

i

(4

Figure 3. Infrared spectroscopic analysis of the synthesized CuNPKPc phthalocyanine pigment

№ 12 (129)

IR Spectrum Analysis of a Phthalocyanine Pigment

The IR spectrum reveals a complex aromatic structure, indicating the presence of functional groups that contain nitrogen and phosphorus. The substance associated with this spectrum exhibits high chemical and thermal stability.

Main Spectral Peaks and Their Interpretation:

1. Aromatic C=C and N-H Vibrations:

Strong peaks in the 1600-1500 cm1 range represent aromatic rings and nitrogen bonds. This feature suggests that the substance has a highly conjugated system, contributing to its distinctive bright color.

2. Carbonyl (C=O) and Metal Bonds:

Peaks indicating metal-ion complexes are observed in the spectrum. Carbonyl stretching vibrations are found in the 1700-1600 cm1 range, while the presence of metal bonds enhances the substance's resistance to light and heat.

3. C-N and C=N Bonds:

Peaks in the 1300-1000 cm1 range indicate C-N and C=N stretching vibrations. These vibrations contribute to the chromophore system, which imparts a bright blue or green color to the substance.

4. Aromatic C-H Vibrations:

Peaks in the 800-600 cm~i range are characteristic of aromatic C-H bonds, reflecting a stable chemical

декабрь, 2024 г.

structure within the ring. This feature enhances the chemical and physical stability of the substance.

Based on this IR spectrum analysis, it can be concluded that the substance is a phthalocyanine pigment. This pigment generates a unique bright color due to its macrocyclic structure comprising a nitrogen-containing aromatic ring and metal complexes. The chemical stability and high brightness of phthalocyanine pigments make them widely used in paints, coatings, and industrial applications.

Conclusion

A high-intensity organic pigment was synthesized using phthalic anhydride, urea, copper, calcium, N.P.K., and metal salts. The intensity is crucial for coloring materials; although higher synthesis temperatures can reduce yield, they increase intensity. The newly synthesized pigment aims to provide the domestic market with high-intensity local raw materials while producing import-substituting products. Based on the physicochemical analyses, the synthesized pigment demonstrates high intensity due to the presence of nitrogen, phosphorus, and metal component bonds, along with phthalic and amino groups.

Reference:

1. Moser, F.H., Thomas, A.L. Phthalocyanine compounds // J. Chem. Educ. - 1964. - V. 41. - N 5. - P. 245-249.

2. Yusupov M.O., & Ismailova, G.I. (2021). NVEO-NATURAL VOLATILES & ESSENTIAL OILS Journal| NVEO, pp. 10654-10660.

3. Yusupov, M., & Kadirkhanov, J. (2023). In E3S Web of Conferences (Vol. 390). EDP Sciences.

4. Friedel, M.K., Hoskins, B.F., Martin, R.L., Mason, S.A. A new metal(II) phthalocyanine structure: X-ray and Mössbauer studies of the triclinic tin(II) phthalocyanine // J. Chem. Commun. - 1970. - N 7. - P. 400-401.

5. Ukei, K. Lead phthalocyanine // Acta Crystallogr. B. - 1973. - V. 29. - N 10. - P. 2290- 2292.

6. Ziolo, R.F., Griffiths, C.H., Troup, J.M. Crystal structure of vanadyl phthalocyanine, phase II // J. Chem. Soc. Dalt. Trans. - 1980. - N 11. - P. 2300-2302.

7. Wynne, J.K. Crystal and molecular structure of chloro(phthalocyaninato)gallium(III), Ga(Pc)Cl, and chloro(phthal-ocyaninato)aluminum(III), Al(Pc)Cl // Inorg. Chem. - 2002. - V. 23. - N 26. - P. 4658-4663.

8. М.О. Юсупов, А.М. Нишонов - Universum: химия и биология, 2020, 12-2 (78)

i Надоели баннеры? Вы всегда можете отключить рекламу.