Научная статья на тему 'Synthesis and crystal structure of the MnGaInSe4 compound'

Synthesis and crystal structure of the MnGaInSe4 compound Текст научной статьи по специальности «Химические науки»

CC BY
202
46
i Надоели баннеры? Вы всегда можете отключить рекламу.
Журнал
Azerbaijan Chemical Journal
Область наук
Ключевые слова
MNGAINSE4 / CRYSTAL / STRUCTURE / UNIT CELL / SPACE GROUP

Аннотация научной статьи по химическим наукам, автор научной работы — Mammadov F.M., Aliyeva M.Kh., Amiraslanov I.R., Niftiyev N.N.

The compound MnGaInSe4 was synthesized from the ternary compounds MnGa2Se4 and MnIn2Se4 by melting in conditions of vacuum. Its crystalline structure has been made precise on the basis of powder diffraction data by the Rietveld method. It is shown that the compound crystallizes in the trigonal syngony with lattice parameters: a = 3.9812 (1) Å, c = 12.9904 (4) Å, V = 178.32 (1) Å3, space group P-3m1. It was also found that the compounds MnGaInSe4 and ZnIn2S4 are isostructural.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «Synthesis and crystal structure of the MnGaInSe4 compound»

AZ9RBAYCAN KIMYA JURNALI № 4 2017

69

UDC 546 (711.681.682.23)

SYNTHESIS AND CRYSTAL STRUCTURE OF THE MnGaInSe4 COMPOUND

F.M.Mammadov, M.Kh.Aliyeva*, I.R.Amiraslanov**, N.N.Niftiyev***

M.Nagiev Institute of Catalysis and Inorganic Chemistry, NAS of Azerbaijan *.Azerbaijan State University of Oil and Industry ** H.Abdullaev Institute of Physics, NAS of Azerbaijan

[email protected]

Received 25.01.2017

The compound MnGaInSe4 was synthesized from the ternary compounds MnGa2Se4 and MnIn2Se4 by melting in conditions of vacuum. Its crystalline structure has been made precise on the basis of powder diffraction data by the Rietveld method. It is shown that the compound crystallizes in the trigonal syngony with lattice parameters: a = 3.9812 (1) A, c = 12.9904 (4) A, V = 178.32 (1) A3, space group P-3m1. It was also found that the compounds MnGaInSe4 and ZnIn2S4 are isostructural.

Keywords: MnGaInSe4, crystal, structure, unit cell, space group.

Introduction

Magnetic semiconductors of the AB2X4 type (where A - Mn, Fe, Co, Ni; B - Ga, In; X - S, Se, Te) are promising materials at making new optoelectronic devices, controlled by a magnetic field, due to their unique physical properties [1-13].

The system of MnSe-Ga2Se3 was investigated in [14]. The compound MnGa2Se4, formed in this system melts congruently at 1250 K and exists as a kind of two crystalline modifications: first of them is low-temperature tetragonal y-phase, which isostructural with CdGa2S4 [15]. The lattice parameters are a = 5.677 A, c = 10.761 A, Sp.gr. I-4; second phase is high-temperature P-phase, which isostructural with ZnAl2S4 [15]. This orthorhombic structure has the following lattice parameters: a = 13.5 A, b = 8.0 A, c = 6.5 A, Sp.gr. Pna21.

The MnSe-In2Se3 system was studied in [16] and characterized by the formation of the MnIn2Se4 compound. This phase melts congru-ently at 1200 K and crystallizes in the ZnIn2S4 structural type, with lattice parameters: a = 4.056 A, c = 39.497 A, Sp.gr. R-3m [17, 18].

In the work the results on the synthesis and refinement the crystal structure of MnGaInSe4 are presented. The refinement of crystal structure performed by Rietveld method, using the X-ray powder diffraction data.

Experimental part

For the research, there were synthesized first ternary compounds of MnGa2Se4 and

MnIn2Se4, for what were used elementary components of high purity, taken in stoichiometric relations. These components were placed in quartz ampoules and evacuated to ~10-2 Pa. In a two-zone inclined furnace where synthesis was carried out, the temperature of the lower "hot" zone made up 1400 K, and the upper "cold" was 650 K, which is significantly below than the boiling point of selenium (940 K).

The individuality of synthesized compounds were controlled by DTA and XRD methods. X-ray diffraction analysis of the synthesized compounds MnGa2Se4 and MnIn2Se4 showed that the crystallographic parameters of these crystals correspond to the literature data [15, 18].

Results and discussion

Alloys of the MnGa2Se4-MnIn2Se4 system with the 20, 40, 50, 60, and 80 mol% MnIn2Se4 compositions were prepared by melting the synthesized starting compounds in vacuumed quartz ampoules at 1400 K. The synthesis process proceeded for 8 h. In the liquid state the alloys were periodically mixed. In order to achieve an equilibrium, alloys were annealed at 900 K within 500 h. The powder X-ray diffraction patterns were recorded on a Bruker D8 ADVANCE diffractometer in the 20 range of 5-1200 (CuXa-radiation).

The analysis of the diffraction patterns shows that the alloy of 50 mol% of MnGa2Se4 (i.e. MnGaInSe4) has a qualitatively new view, that differs from the diffraction patterns of initial ter-

70

SYNTHESIS AND CRYSTAL STRUCTURE OF THE MnGaInSe4 COMPOUND.

nary compounds (Figure 1). The crystalline structure of this compound was refined by the Rietveld method, using the TOPAS-4.2 software (Bruker).

We find out that the MnGaInSe4 compound crystallizes in the trigonal system, with cell parameters: a=3.9812(4) Â, c=12/9904(1) Â,

V = 178.32(4) Â3, Sp.gr. P-3m1 Figure 2 shows the X-ray powder diffraction pattern of the MnGaInSe4 crystals. The curve under the diffraction spectrum refers to the difference between the experimental and calculated diffraction intensities.

1100010000900080007000- MnGa2Se4 J - A A JL

8 о 5000-<0003000200010000 MnGalnSej * , . . .U .11 A A. J. .

Mnln2Se4 Л...... . л/, L^J J -, ■ , - J i „ - ' .....,...., ...............

10 20 30 40 50 60

29

Fig. 1. Powder diffraction patterns of the MnGa2Se4, MnGaInSe4 and MnIn2Se4.

t 3

i 2 .

1 -

0 -

Jh

Л--—•_ ___Л_A,. -JUU^A-к . - ^ a . - -___ - -

20

40

60

80

100

120

4

29 ^

Fig. 2. The diffraction pattern the trigonal structure of the MnGaInSe4. The difference between the experimentally obtained and calculated intensities by the Rietveld method is shown below the diffraction spectrum.

AЗЕРБАЙДЖАНСКИЙ ХИМИЧЕСКИЙ ЖУРНАЛ № 4 2017

F.M.MAMMADOV et al.

71

The refined unit cell parameters, list of the experimental diffraction peaks, atomic positions, and interatomic distances are given in Tables 1-4.

Table 1. Refined parameters the unit cell of the MnGaInSe4

Table 4. Interatomic distances in the MnGaInSe4

Space group P-3m1

Lattice parameters at 298 K: a (Ä) c (Ä) 3.9812(1) 12.9904(4)

cell volume V (Ä3) 178.32(1)

density (g/cm3) 5.1713(4)

R-Bregg (%) 3.653

Table 2. List of diffraction peaks of the MnGaInSe4

2-Theta, 0 d, Ä I, % hkl

6.799 12.99120 3.6 001

20.493 4.33040 100.0 0 0 3

25.820 3.44781 3.7 10 0

26.730 3.33245 6.0 101

27.440 3.24780 27.6 004

29.303 3.04540 10.1 102

33.187 2.69729 1.4 103

34.491 2.59824 7.9 005

38.032 2.36409 10.1 104

43.583 2.07501 4.3 105

45.530 1.99059 5.9 110

46.094 1.96763 1.4 111

49.046 1.85589 3.8 007

49.682 1.83362 15.2 106

50.415 1.80865 2.4 113

53.985 1.69718 1.2 114

55.072 1.66622 1.4 202

56.634 1.62390 4.6 008

60.779 1.52270 1.6 204

69.663 1.34865 2.0 206

70.694 1.33149 2.7 109

72.732 1.29912 4.7 0010

78.637 1.21569 1.8 1010

87.171 1.11729 1.7 1011

87.246 1.11653 1.6 216

90.152 1.08793 1.7 1110

90.719 1.08260 1.4 0012

96.452 1.03288 1.7 1012

Table 3. Atomic positional parameters of the MnGaInSe4

Atom X y z Occupancy

Ga 1/3 2/3 0.2046(3) 0.5

In 1/3 2/3 0.2046(3) 0.5

Mn 0 0 0.5 1

Se(1) 2.3 1.3 0.1167(3) 1

Se(2) 1/3 2/3 0.3969(3) 1

Atomm Se(1) Se(2)

Ga (In) 2.567(2)-3 2.497(5)

Mn - 2.660(1)6

Figure 3 shows the three-dimensional view the trigonal MnGaInSe4 structure. Seven-layered packets of the MnGaInSe4 and ZnIn2S4 [17] have the similar structure.

Fig. 3. Crystal structure of the MnGaInSe4.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

However, in the ZnIn2S4 structure the zinc atoms occupy only tetrahedral positions, while in the MnGaInSe4 the indium atoms are located both, tetrahedral and octahedral positions. As a result, the arrangement of Zn and In atoms in different layers, the ZnIn2S4 structure is asymmetric. However in MnGaInSe4 structure, such segregation between Ga and In atoms is not observed. In this structure, these atoms are statistically located in tetrahedral positions, while the Mn atoms occupy only octahedral positions. As a result, the structured package acquires symmetry of inversion, and the MnGaInSe4 crystals are characterized by the space group P-3m1.

Thus, the compound MnGaInSe4 was synthesized, and its crystal structure was refined by the Rietveld method. It was found that this compound crystallizes in a trigonal system with lattice parameters: a = 3.9812 (1) Â, c = 12.9904 (4) Â, V = 178.32 (1) Â3, sp.gr. P-3m1. It was also found that the MnGaInSe4 and ZnIn2S4 compounds are isostructural.

72

SYNTHESIS AND CRYSTAL STRUCTURE OF THE MnGaInSe4 COMPOUND

References

1. Rimet R., Schlenker C., Daniel Fruchart. Antifer-romaqnetic properties of MnGa2Se4-a // J. Phy. 1982. T. 43. № 12. P.1759-1765.

2. Romero L., Pacheco J., Cadenas R. Calculation of the lattice energy the of the magnetic semiconductor MnGa2Se4 using Hartree-Fock density functional theory methods // Revista Mexicana de Física. 2016. V. 62. P. 526-529.

3. Rincón C., Torrres T.E., Sagredo V., Sergio J. Jimé-nez-Sandoval, E. Mares-Jacinto. The fundamental absorption edge in MnIn2Se4 layer semi-magnetic semiconductor // Phys. B, 2015. V. 477. P. 123-128.

4. Mantilla Ochoa J.C., Bindilatti V., Terhaar E., Coaquira J.A.H., Souza Brito G.E., Gratens X., Sagredo V. Spin glass behavior in MnIn2Se4 and Zni-xMnxIn2Se4 magnetic semiconductors // J. Magnetism Magnetic Mater. 2004. V. 272-276. P. 1308-1309.

5. Niftiev N.N., Alidzhanov M.A., Tagiev O.B., Ma-medov F.M., Muradov M.B. Electrical properties of MnIn2Se4 // Semiconductors. 2004. V. 38. No 5. P. 531-532.

6. Torres T., Sagredo V., Chalbaund L.M., Attolini G., Bolzoni F. Magnetic and structural characterization of the semiconductor FeIn2Se4 // Phys. B. 2006. V. 384. P. 100-102.

7. Manjon F., Segura J.A., Amboage M., Pellicer J., SancerRoyo J.F. Structural and optical high-pressure study of spinel-type MnIn2S4 // Phys. Status Solidi (b). 2006. V. 244. P. 229-233.

8. Sagredo V., Moron M.C., Betancourt L., Delgado G.E. Antiferromagnetic versus spin-glass like behavior in MnIn2S4 // J. Magnetic Mater. 2007. V. 312. No 2. P. 294-297.

9. Niftiev N.N., Tagiev O.B., Muradov M.B., Ma-medov F.M. AC electrical properties of FeIn2S4 //

Technical Phys. 2012. V. 57. Issue 4. P. 572-574.

10. Niftiev N.N., Tagiev O.B., Muradov M.B., Mame-dov F.M. Electrical properties of layered FeGaInS4 single crystals with an alternating current // Semiconductors. 2009. V. 43. No 11. P. 1407-1409.

11. Bodnar I.V., Rud V.Yu., Rud Yu.V. Photosensitive structures on single crystals of MnIn2S4: Preparation and properties // Semiconductors. 2009. V. 43. No 1. P. 1506-1509.

12. Mamedov F.M., Niftiev N.N. Dielectric properties of layered FeGaInS4 single crystals in an alternating electric field // Semiconductors. 2016. V. 50. No 9. P. 1203-1207.

13. Mammadov F.M., Niftiyev N.N., Mammadov F.I. Synthesis and crystal structure of the FeGaInS4 compound // Azerb. Chem. Journal. 2017. № 2. P. 56-59.

14. Pardo M.P., Flahaut J. Systeme Ga2Se3-MnSe -etude cristallographique-diagramme de phase // Mater. Res. Bull., 1978. V. 13. P. 1231-1237.

15. Cannas M., Garbato L., Geddo Lehmann A., Lampis N., Ledda F. Structural Polymorphismin MnGa2Se4 // Cryst. Res. Technol. 1998. V. 33. No 3. P. 417- 424.

16. Babayeva B.K., Allazov M.R.. Phase diagram of the MnSe-In2Se3 system // Investigation in the inorganic and physical chemistry area. Baku, Elm. 1977. P. 70-73.

17. Donika F.G., Kiosse G.A., Radautsan S.I., Semi-letov S.A., Mustya I.G.. Crystal structure of the two pack polytypic form ZnIn2S4(II)B // Crystallography. 1972. V. 17. P. 663-665.

18. Doll G., Lux-Steiner M.Ch., Kloc Ch., Baumann J.R., Bucher E.. Chemical vapor transport and structural characterization of layered MnIn2Se4 single crystals // Jour. of Crystal Growth, 1990. V. 104. P. 593-600.

МпОа1п8е4 BiRLЭ§MЭSiNiN SiNTEZi УЭ KRiSTAL QURULU§U

F.M.Mэmmэdov, М.Х.ЭНуеуа, LR.Эmiraslanov, КЛ.МШуеу

Мпва1п8е4 Мпва28е4 vэ Мп1п28е4 ид1и Ыг1э§тэ1эптп vakuum §эгаШпйэ birgэ эridilmэsilэ sintez edilmi§dir. Ви ЬМэ^эшп kristal qurulu§u ovuntu rentgenoqramlшn nэticэlэri эsaslnda Ritveld metodu ilэ dэqiqlэ§dirilmi§dir. Миэууэп edilmi§dir ki, о 2п1п284 Пэ izostrukturdur, triqonal sinqonoyada kristalla§lr vэ qэfэs parametrlэri а = 3.9812(1) А, с = 12.9904(4) А, V = 178.32 (1) А3, fэza qrupu Р-3т1 kimidir.

Лдаг sдzlэr: МпОа1пБе4, kristal, qurlщ, qэfэs, fэza qrupu.

СИНТЕЗ И КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА МпОа1п8е4

Ф.М.Мамедов, М.Х.Алиева, И.Р.Амирасланов, Н.Н.Нифтиев

Соединение Мпва1п8е4 синтезировано из тройных соединений Мпва28е4 и Мп1п28е4 сплавлением в условиях вакуума. На основе порошковых дифракционных данных методом Ритвельда уточнена его кристаллическая структура. Показано что оно кристаллизуется в тригональной сингонии с параметрами решетки: а = 3.9812(1) А, с = 12.9904(4) А, V = 178.32(1) А3, пространственная группа Р-3т1. Также выявлено, что соединения Мпва1п8е4 и 2п1п284 изоструктурны.

Ключевые слова: МпОа1пБе4, кристалл, структура, решётка, пространственная группа.

АЗЕРБАЙДЖАНСКИЙ ХИМИЧЕСКИЙ ЖУРНАЛ № 4 2017

i Надоели баннеры? Вы всегда можете отключить рекламу.