Научная статья на тему 'Synchrotron radiation of cosmic ray electrons in the anomalous diffusion model'

Synchrotron radiation of cosmic ray electrons in the anomalous diffusion model Текст научной статьи по специальности «Физика»

CC BY
84
27
i Надоели баннеры? Вы всегда можете отключить рекламу.

Аннотация научной статьи по физике, автор научной работы — Lagutin A. A., Tyumentsev A. G., Volkov N. V., Kuzmin A. S.

A new study of the cosmic ray electron and synchrotron spectra is presented. Anomalous diffusion model, proposed in our recent papers, is used to describe the particles propagation in fractal-like interstellar medium. The parameters defining the anomalous diffusion have been determined from the analysis of nuclear component. We carried out calculation of the synchrotron spectrum in the frequency range ~ 2 MHz 2 GHz (corresponding to energies of electrons ^ 0. 2 6 GeV). The computed electron and synchrotron spectra are in a good agreement with the experimental data.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «Synchrotron radiation of cosmic ray electrons in the anomalous diffusion model»

UDK 537.591.15

A. A. Lagutin, A. G. Tyumentsev, N. V. Volkov, A. S. Kuzmin.

Synchrotron radiation of cosmic ray electrons in the anomalous diffusion model

A new study of the cosmic ray electron and synchrotron spectra is presented Anomalous diffusion model, proposed in our recent papers, is used to describe the particles propagation in fractal-like interstellar medium. The parameters defining the anomalous diffusion have been determined from the analysis of nuclear component. We carried out calculation of the synchrotron spectrum in the frequency range ~ 2 MHz - 2 GHz (corresponding to energies of electrons ~ 0.2 — 6 GeV). The computed electron and synchrotron spectra are in a good agreement with the experimental data.

1. Introduction

The studies of the electron component of cosmic rays and their resulting non-thermal synchrotron radiation in galactic magnetic fields allows to obtain information on the origin, acceleration and propagation of particles in the cosmic objects. Calculations of electron spectrum and spectrum of the non-thermal synchrotron radiation were considered in series of papers (see, for example, [1-5]). In this work we consider propagation of cosmic ray electrons in the context of anomalous diffusion model, which recently was discussed in the papers [6-9]. It has been shown that the "knee" in the primary cosmic ray spectrum could be due to large free paths (the so called "Levy flights") of cosmic rays particles between inhomogeneities of magnetic fields - "traps" of the various type. The "Levy flights" are distributed according to inverse power law a Ar~3~a,r —> oo,a < 2, where exponent a is defined by fractal features of the interstellar medium.

In [6, 10, 11] an anomalous diffusion (superdiffu-sion) equation for concentration of the electron in the fractal-like interstellar medium was proposed. This equation has the following form

~ = -D(E, Q)(-A)a/,2yV(f, t, E) +

r\

+—(b(E)N(f,t,E)) + S(f,t,E), (1)

where D(E,a) is the anomalous diffusivity and (-A)"/2 is the fractional Laplacian (called "Riss operator" [12]).

The main goal of this paper is calculation of electron and synchrotron spectra in the framework of anomalous diffusion model. To solve this problem

"This work was presented at the XXXth ICRC (Merida, Mexico, 2007). Also this work is supported by the RFBR grant No. 07-02-01154 and RF president's grant MK - 2873.2007.2.

we resort to two-component model [6, 10, 11]. The sources were separated into two categories: local sources and distant sources, which provides stationary regime of injection.

2. Spectrum of cosmic ray electrons

For a point impulse source with the power-law energy spectrum S{f,t,E) = S0E~PS(r)H{T -t)H(t) that simulates the process of generation of particles in the nearby young sources (so-called local component (L), r < 1 kpc, and injection time T « 104 yr) a flux of electrons is written as [6, 10, 11]

minit,i/62(£+E2)] Ji{f,t,E) — So J drEo(r)-p

max(o,i-7-i \{E,E0(t))-va(l-b2t(E + E2))-2 x

x^a)(rA(£,£o(T))-1/a). (2)

The flux from the distant sources (global component (G), r > 1 kpc) is obtained from the steady-

state model (6, 111

oo

JG(r,E) = dE0EoP x

e

\(E,E0r3'*gM{rX{E,E0)-V°). (3)

In (2) and (3) g{3a){r) is the density of three-dimensional spherically-symmetrical stable distribution with characteristic exponent a < 2 [19, 20]. Equation for E0(t) has been presented in form [1]

p . , __£ + __E

0[T) 1 -&,t(£ + £2)/(£2-£I) 11

A. A. Lagutin, A. G. Tyumentsev, N. V. Volkov, A. S. Kuzmin.

o

100

£

§

10

1

e, GeV

Peterson et al. (1999) ■—•—-Webber etal. (1980)

97 (Barbellini et al. (1997)) *.......*.....<

2000 (Boezio et al. (2000)) --*--HEAT (Barwick et al. (1998)) —a - ■ Golden etal. (1994) >•••» Muller et al. (1997) »■■-<»-< Tang (1984) t-*•■-<

G-component--

L-oomponent --------

ISM spectrum .........

Modulated spectrum .................

Figure 1. L- and Q- components and total energy spectrum of electrons. Experimental data are reported in [4, 5, 13-18].

and

e

where

b{E) = b0 + b,E + b2E2 «

Kb2(E + E1)(E + E2). (4)

Equation (4) gives the energy-loss rate of relativists electrons ¡1], where 60 = 3.06 ■ 10"16n (GeV s_1) is for ionization losses in interstellar medium, byE with b\ — 10_15n (s-1) corresponds to the bremsstrahlung energy losses, and b2E2 with b2 = 1.38- lO-16 (GeV s)-1 represents synchrotron and inverse Compton losses (for 0x ~ 5^G and to % 1 (eV/cm3)), Ei « 60/&:l, E2 « b1/b2.

As a result the flux of electrons from all types of galactic sources may be presented as

Je(r,E)= ]T JUfi,ti,E) + JG{ r,E). (5)

r<ikpc

The nearby sources characteristics, used in our calculations are given in [11].

The parameters defining the anomalous diffusiv-ity and used in our work have been recently derived from the studies of nuclei propagation [21]: a = 0.7, D{E,q) = D0ES where D0 = 2-10-5pc°V~1 and S = 0.27. Our calculations show that the best

agreement with the experimental data may be obtained if electrons are generated by sources with a spectrum S oc E~26 (Fig. 1).

For description of the spectrum in low-energy range near solar system it is necessary to take into account an effect of solar modulation. The solar modulation is calculated as (15]

E2 - mec2

Jmod{r,b) - [E + m]2_77leC2 x

xJe(r,E + $(i)), (6)

where <b(t) = 600 MeV. Results of calculations of cosmic ray electrons spectrum in ISM and the modulated spectrum in low-energy range are demonstrated in Fig. 1.

3. Synchrotron radiation spectrum

The synchrotron radiation emitted by relativistic electrons is the most important diagnostic available for the study of the transport of these particles in the interstellar medium.

Intensity of synchrotron radiation Iu at a given frequency v is defined by average density of electrons pe(E) — J dzJe(r,E) (2 is measured along the line of observation), and equals to [2]

/„ = J P„{E)pe(E)dE,

where PV{E) is the intensity of radiation at a frequency v of single electron with the energy E.

Figure 2. Synchrotron radiation spectrum. Experimental data are taken from [4J.

For E » mec2 the function PU(E) has the peak at a frequency [22]

vm{ MHz) = 16-OBj. (fiG)E2(GeV).

For our purpose (calculation of synchrotron radiation spectrum), it is sufficient to use the delta-approximation in the form PV{E) = Pq5(v - um).

As a result, the intensity of synchrotron radiation is given by the expression [22]

/„ = P0 f dzJe(r,E). (7)

The synchrotron spectrum, calculated by equation (7) with parameters p « 2.6 and a = 0.7 is shown in Fig. 2.

4. Conclusion

We have carried out new calculations of synchrotron radiation spectra using an anomalous diffusion model to describe cosmic ray electrons propagation in the Galaxy. Comparison of results of calculations of the synchrotron spectrum in the frequency range ~ 2 MHz - 2 GHz (corresponding to energy of electrons ~ 0.2 -6 GeV) with the experimental data allowed us to obtain the conclusion on the spectrum power index of the cosmic ray electrons in the low-energy region. Extensive calculations of the cosmic ray electron and synchrotron spectra show that the best fit of experimental data may be obtained for p «s 2.6.

References

1. Atoyan A. M., Aharonjan F. A., Volk H. J. Electrons and positrons in the galactic cosmic rays 11 Phys, Reu. D. - 1995. - 52. - Pp. 3265-3275.

2. Berezinsky V. S., Bulanov S. V., Ginzburg et al. V. L. Astrophysics of cosmic rays. — North Holland, Amsterdam, 1990. - P. 528.

3. Moskalenko I. V., Strong A. W. Production and propagation of cosmic rays positrons and electrons // ApJ. - 1998. - 493. - Pp. 694-707.

4. Peterson J. D., Higbie P. R., Rockstroh J. M.

A new look at galactic polar radio emission and the local interstellar electron spectrum // Proc. of the 26th ICRC (Salt Lake City, USA). - 1999. - OG 3.2. - Pp. 17-20.

5. Webber W. R„ Simpson G. A., Cane H. V. Radio emission, cosmic ray electrons, and the production of 7-rays in the Galaxy // ApJ. — 1980. - 236. - Pp. 448-459.

6. Lagutin A. A., Osadchiy K. /., Strelnikov D. V. Propagation of cosmic ray electrons in the Galaxy // Proc. of the 27th ICRC (Hamburg, Germany). - 2001. - 5. - Pp. 1889-1891.

7. Lagutin A. A., Sterlnikov D. V., Tyumentsev A. G. Mass composition of cosmic rays in anomalous diffusion model: comparison with experiment // Proc. of the 27th ICRC (Hamburg, Germany). - 2001. - 5 - Pp. 1896-1899.

8. Lagutin A. A., Tyumentsev A. G., Yushkov A. V. Energy spectrum and mass composition of primary cosmic rays in the vicinity of the "knee" in a model with two types of sources // Bulletin of the Russian Academy of Sciences: Physics. - 2007. - 71, No. 4. - Pp. 590-592.

9. Lagutin A. A., Uchaikin V. V. Anomalous diffusion equation: Application to cosmic ray transport 11 NIM B. - 2003. - 201. -Pp. 212-216.

10. Lagutin A. A., Osadchiy K. /., Gerasimov V. V. Spectra of cosmic ray electrons and positrons in the Galaxy // Problems of Atomic Science and Technology. — 2001. — 6. — Pp. 209-213.

11. Lagutin A. A., Tyumentsev A. G. Spectrum of electrons in the Galaxy // Izv. Altai. Gos. Univ. - 2004 (in Russian). - 35(4). -Pp. 22-26.

12. Samco S. G., Kilbas A. A., Marichev O. I. Fractional integrals and derivatives — Theory and Applications. — Gordon and Breach, New York, 1993.

13. Barbiellini G., Basini G., Belotti et al. R. Measurements of the positron and electron spectra with the CAPRICE experiment // Proc. of the 25th ICRC (Durban, South Africa). - 1997. -4. - Pp. 221-224.

14. Barvick S. W., Beatty J. J., Bower et al. C. R. The energy spectra and relative abundances of

electrons and positrons in the galactic cosmic radiation // ApJ. - 1998. - 498. - Pp. 779-789.

15. Boezio M., Carlson P., Francke et al. T. The cosmic ray electron and positron spectra measured at 1 AU during solar minimum activity // ApJ. - 2000. - 532. - Pp. 653-669.

16. Golden R. L., Grimani C., Kimbell et al. B. L. Observations of cosmic iray electrons and positrons using an imaging calorimeter // ApJ.

- 1994. - 436. - Pp. 769-775.

17. Muller D„ Barvick S. W., Beatty et al. J. J. Energy spectra of electrons arid positrons from 5 to 100 GeV // Proc. of the :25th ICRC (Durban, South Africa). - 1997. - 4. - Pp. 237-240.

18. Tang K. The energy spectrum of electrons and cosmic ray confinement: a new measurements and its interpretation // ApJ. - 1984. - 278.

- Pp. 881-892.

19. Uchaikin V. V., Zolotarev V. M. Chance and stability. - VSP. Netherlands, Utrecht, 1999.

- P. 570.

20. Zolotarev I/. M., Uchaikin V. V., Saenko V. V. Superdiffusion and stable law // ZhETF. — 1999 (in Russian). - 1115. - Pp. 1411-1425.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

21. Lagutin A. A., Tyumentsev A. G. Spectrum, mass composition and anizotropy of cosmic rays in the fractal Galaxy // Izv. Altai. Gos. Univ. - 2004 (in Russian). - 35(4). -Pp. 4-21.

22. Ginzburg V. L., Syrovatskii S. V. Origin of cosmic rays. — Pergamon Press, 1964. —

P. 384.

i Надоели баннеры? Вы всегда можете отключить рекламу.