UCD 548.736.18
STUDY OF THE INTERACTION PLATINUM(II) AND PALLADIUM(II) SALTS WITH THE BIOLOGICALLY ACTIVE LIGANDS CONTAINING OXYGEN SULPHUR AND
NITROGEN SULPHUR
A.N.Azizova, Kh.I.Hasanov*, D.B.Tagiyev
M.Nagiyev Institute of Catalysis and Inorganic Chemistry, NAS of Azerbaijan *The Center for Scientific Research, Azerbaijan Medical University
Received 10.03.2016
The complexing ability of platinum(II) and palladium(II) with various oxygen-sulphur and nitrogen-sulphur donor-containing ligands in various combination of their functional groups have been studied. With this it is found that during complexing not less important role belongs to nature of the primary metal salts, the pH medium, the nature of the solvent and the ratio of reactants. Actual dentaty of thiodiacetic, thiodipropionic acid, mercaptoethanol, and bis-p-hydroxy-ethyl sulphide was determined. Upon finding that during the reaction the cystamine molecule is split into S-S bond and the resulting deprotonated mer-camine enters into complexing. In the non-aqueous medium the cleavage of S-S bond does not occur.
Keywords: platinum(II), palladium(II), mercaptoethanol, bis-p-hydroxy-ethyl sulphide, mercamine.
A great interest in the carboxyl sulphur, nitrogen sulphur and sulphur hydroxyl containing ligands is explained on the one hand that they can be viewed as compounds containing modeling bioactive functionalities, and on other hand can specify the way of directed synthesis of coordination compounds of platinum(II) and pal-ladium(II) with coordination sphere of different strength.
Studies of coordination compounds of platinum, palladium and some with d- elements chelating ligands comprising different functional groups in nature (HS-, -S-, -COOH, -OH) in different combinations demonstrated the dependence of coordination method of these ligands on the synthesis conditions and the nature of the central atom [1-4].
In this work, as the objects of study organic ligands such as thiodiacetic acid - S(CH2COOH)2, thiodipropionic acid - S(CH2C^COOH)2, 2-mer-captoethanol (mercaptoethanol) HSCH2CH2OH, bis-(B-aminoethyl) disulphide - H2NCH2CH2S-SCH2CH2NH2 (cystamine), and bis-P-hydroxy-ethil sulphide -S(CH2CH2OH)2, which contain functional groups consisting of oxygen sulphur and nitrogen sulphur-donor atoms in various combinations are considered.
These molecules are universally applicable ligands, which are widely used to solve a
number of problems of science, technology and medicine, thanks to the ability to form highly stable water-soluble complexes with a large number of metal cations. Sulphur- and oxygen-containing ligands, and some of their derivatives, as well complexes obtained on the basis of these ligands, possess various biological properties [5-15].
Thiodiacetic and thiodipropionic acid, 2-mercaptoethanol, and bis-P-hydroxyethilsulphide represent chelating ligands. Chloro derivative bis-B-hydroxyethilsulphide yprite - S(CH2CH2Cl)2, even in a small dose has cytotoxic properties [14], as well as the blistering effect [16]. Thiodiacetic and thiodipropionic acids have been used in analytical chemistry as precipitating reagents for the determination of organic content of zirconium, copper, lead, mercury, cadmium and silver [17].
Among the functional groups of the protein molecule belonging to the side chains of amino acid residues, the particular attention of chemists and biochemists since long time was attracted by disulphide (S-S) groups of cystine. Such interest is due, on the one hand, to the high chemical reactivity of the group and on the other hand, this attention is due to the large value of S -S groups for specific functions of a number of enzymes, hormones and other biologically
active substances, which control the flow of many normal physiological processes [18-20].
Successful application of dithiols (2,3-dimercaptopropanol) and unitiol-2,3-dimercap-topropansulfonate natrium) at poisoning caused by arsenic compounds and heavy metals [6-8] is widely known.
Cystamine currently is used as a medicament at radiotherapy and treatment of certain diseases [6, 11, 12, 21-25]. It should be noted that cystamine, as a highly effective radiopro-tectant, protects the body from both bone marrow and intestinal death [26-28], the radiopro-tective effect on bone marrow was studied in details [27, 29-31].
These facts allow us to understand the reasons for the great interest in the study of organic molecules containing S-S groups not only from enzymologists and specialists in the field of chemistry of biologically active substances, but also physiologists, pharmacologists, toxico-logists, radiobiologist, cyto- and histochemists.
It is natural that a detailed study of the chemical behavior and the biological role of these functional groups, contained in organic molecules, is important for many application fields of medicine and biology (toxicology, ra-diobiology, technical biochemistry, etc.).
With these ligands we synthesized numerous complex compounds of platinum(II) and palladium(II) of different type, composition and structure.
At coordination with platinum the thiodi-acetic acid does not manifest itself as a tridentate ligand even in condition of deprotonation of both carboxyl groups of thiodiacetic acid and the presence of such labile ligand as water in the coordination sphere of platinum, as is the case in the complex K[PtS(CH2COO-)2ClH2O]3H2O [32].
From the data of X-ray diffraction (XRD) of complex K[PtS(CH2COO-)2ClH2O] • 3H2O it follows that chelation of one branch of thiodi-acetic acid coordinated by ligand with platinum atom increases CSC angle up to 1040 compared with the value of this angle in non-coordinated thiodiacetic acid (960) and the formed bond of Pt-O is abnormally long (2.51A) against commonly observed 2.05 A [32]. Tension of genera-
ted metallocycle leads to a distortion of all platinum coordination polyhedron. The consequence of this tension is lability of generated metallo-cycle, which under the influence of various chemical factors is disclosed and complex of other composition and structure is formed [33].
Thus, it was found that thiodiacetic acid, even with available free deprotonated carboxyl group is not coordinated tridentatily.
Attempts to synthesize the of complexes palladium(II) with thiodiacetic acid, coordinated by an oxygen atom, have not led to success. We can say that regardless of conditions of synthesis and the nature of the starting salts of pal-ladium(II), thiodiacetic acid is coordinated only by monodentate and ligand deprotonation of the carboxyl group does not occur [33, 50].
In the complexes of platinum(II) mono-dentate coordination of thiodipropionate acid is carried out by a sulphur atom in the cis-position, and in palladium complexes - only in trans-position [34].
The complex [PtH^LHLCl] 2H2O coordination of thiodipropionate acid of mixed type at the sulphur atom of one molecule of ligand and one bidentate on the oxygen atom and the sulphur atom of the second ligand molecule with the formation of one six-membered metallocycle [34] is implemented. Such mixed coordination of thiodipropionic acid in palladium(II) complex is not carried out.
To achieve bidentate coordination of thio-dipropionic acid with palladium(II) becomes possible only if to take as a primary salt of palladium^) K2[Pd(OH)4] and disodium salt of thiodipropionic acid in alkaline (pH=9) medium [34]. In this case the ligand is coordinated bi-dentate by sulphur and oxygen atom of one car-boxyl group to form a trans-position of two six-membered metallocycles [34].
Depending on conditions of synthesis complexes platinum(II) with the same composition thiodipropionic acid is achieved, but of different structure. For example, one observed IR band absorption at 368 cm-1 in the spectrum of the complex trans-[Pt(HL)2] related by us to the bond vpt-s with the trans-position of ligands relatively to each other [34]. The complex of the
same composition but of different structures was synthesized by a totally different way. The cis-structure of the complex [Pt(HL)2] shows that the observed absorption bands at 355 and 363 cm-1 relating to the Pt-S bonds, are in the cis-position relative to each other. In both complexes bidentate coordination of the ligands is confirmed.
Thiodipropionic acid unlike thiodiacetic acid in planar square complexes can be coordinated tridentate. In our opinion, this may be due to the greater size of CSC (1030) angle in thio-dipropionic acid, compared with the value of CSC angle (960) in thiodiacetic acid.
Evidence of tridentate coordination of thiodipropionic acid in complexes K[PtLCl], K[PtLBr], [PtLNHs] and [PtLH^O] is the data of IR spectroscopy and elemental analysis [34]. A high value of CSC angle in thiodipropionic acid facilitates spatially the approach to the coordination node of platinum tetrahedron with forming a kinetically stable six-membered me-tallocycle. Such tridentated coordination of thi-odipropionate acid in the complex palladium(II) is not carried out. Another type of tridentate coordination of thiodipropionate acid between two platinum atoms as a bridge in the complex [Pt2(L2)(NH3)2] is proved by X-ray diffraction. The carboxyl groups present in the two molecules of ligand complex [Pt2(L2)(NH3)2], are de-protonated and involved in coordination.
Thiodipropionic anion with one platinum atom is coordinated through sulphur and oxygen atoms of one among carboxyl groups with forming one six-member metallocycle. Other deprotonated carboxyl group of the same ligand is coordinated by a second neighboring platinum atom, and is a bridge between two metal atoms. Second thiodipropionic anion is coordinated identical in the symmetrical position [35].
There have been obtained complexes of platinum(II) and palladium(II) with sulphur-and oxygen-containing potential tridentate lig-and ¿is-B-hydroxy-ethyl sulphide. Chloride and bromide complexes of ¿is-P-hydroxy-ethyl sulphide are synthesized by various methods. Regardless of the methods of obtaining these complexes, to maintain the aspect ratio metal:ligand
1:2 the ligand is taken in an excess amount. Recovery of palladium(II) and platinum(II) till the metal did not allow us to obtain complexes of bis-P-hydroxyethylsulphide with platinum(II) and palladium(II) of different composition and structure (e.g., 1:4) in the presence of a large excess of ligand [ 36, 37].
The study showed that the bis-P-hydroxy-ethyl sulphide at complexation with the platinum(II) and palladium(II) is only coordinated monodentately by a sulphur atom in the cis- or trans-locations depending on conditions of synthesis. The hydroxyl group of the ligand is not involved in complex formation [35, 37].
If to create conditions for non-destruction of original amminoproisis water complexes of platinum(II) and palladium(II), in some cases, by controlling synthesis conditions one can obtain complexes of bis-P-hydroxy-ethyl suplhide of the given structure. These facts, as shown by further studies, are of interest in terms of biological activity [38].
During complexation of platinum(II) and palladium(II) with mercaptoethanol, it was found that the conditions of the synthesis, structure of primary salts and ratio of the reactants greatly affect the composition and structure of the synthesized complexes [39]. Even in some cases, at the synthesis the intramolecular reorganization of the atoms or groups of atoms in the primary salts palladium(II) occurs. For example, if at synthesis to take as original salts individually cis- or trans-[Pd(NH3)2Cl2] and act bu mercaptoethanol, the composition obtained complex [Pd(SCH2CH2OH)2(NH3)2] with a li-gand therein trans-arangement. If you take an initial salt [Pd(NH3)4]Cl2, then we get a complex with the same composition but with cis-arrangement of ligands therein [39].
The totality of the conducted researches show that in the synthesis of complexes of mer-captoethanol the deprotonation of sulphhydryl groups occurs and in all synthesized compounds a monodentate coordination of mercaptoethanol by a sulphur atom at the terminal or bridging position is implemented. The hydroxyl group of the ligand is not involved in the complexing process. Conducted physical and chemical
methods of research allow attributing the synthesized complexes of mono- and binuclear structure. At the binuclear complexes of palla-dium(II), atoms of sulphur ligand serve as a bridge only, and either sulphur atoms or halogen atoms may be in similar complexes of platinum [39].
It is known that in chloro bridges in bi-nuclear complexes of platinum(II) and palladi-um(II) are easily destroyed by thiourea, ethy-lenediamine and ammonia. Such destruction in binuclear mercaptoethanol containing sulphur bridge compounds of palladium(II) and plati-num(II) are not carried out [39]. Sulphur bridge strength, compared with halogen bridge was proved also by thermal behavior of these sulphur bridge complexes. Sulphur bridge dimers have a higher decomposition temperature than halogen bridge complexes [39].
Our studies on interaction of salts of pal-ladium(II), platinum(II), as well as complex acid of platinum(II) with cystamine dihydrochloride in extended interval of pH range (1-14) showed that in all cases, cleavage of S-S bonds occurs in cystamine dihydrochloride. At that a product of cleavage of cystamine - mercamine depen-ding on the synthesis conditions with palladium(II) and platinum(II) forms a mono, bi, tri and hex-anuclear complexes with different coordination and configuration [41-44, 46].
In highly alkaline environments (pH= 13.5-14) a formation of mononuclear complex platinum(II) and palladium(II) composition [Me(SCH2CH2NH2)2] [45, 46] takes place. The structure of these complexes proved by XRD. The molecule of ligand of these complexes coordinated bidentate on atoms of palladium and platinum through S and N to form two five-membered chelate metallocycles. From the structure of the complexes, it is clear that at formation of five-membered metallocycle in a complex of palladium the atoms of sulphur and nitrogen are coordinated in trans-, but in platinum complex - in cis-positions [47].
At the interaction of mononuclear complexes of palladium(II) and platinum(II) with an aqueous ammonia solution at a certain temperatures and pH medium the opening of five-mem-
bered metallocycle occurs to form another mononuclear complex in which a ligand is monodentate coordinated on sulphur atom and a destruction of primary structure of the complexes does not occur [45, 46].
In the complex [Pt(SCH2CHNH2)2] link Pt-S is shorter (2.19 A) [47], than typically observed bonds for other platinum complexes (2.26 A). The value of this length causes strength of bond Pt-S and thus at the processing of the complex [Pt(SCH2CH2NH2)2] with concentrated aqueous ammonia and acids (HCl, HBr) discloses a five-membered metallocycle at site of Pt-NH2 bond [47] is disclosed.
During the synthesis of complexes of palladium^) with cystamine dihydrochloride at interval pH=1-8.5 at various temperatures and in ratio of metal:ligand the binuclear complexes are obtained [48]. Study of the composition and structure of the synthesized complexes showed that at pH = 1.7, at temperature 70-750C and at ratio metal:ligand 1:1 the binuclear complex is formed. At pH=1 and at temperature 30-500C the ratio of metal:ligand 1:1 other binuclear complex of the same composition is obtained. Investigation of the structure of these complexes by XRD showed that at pH=1.7 binuclear complex with sulphur bridge is formed, but at pH=1 - with chloro bridge [49, 50].
The results of the infrared spectroscopic study of binuclear sulphur bridge complex are well matched with XRD data, according to which the central metallocycle Pd2S2 in a complex is non-planar and bent through the line sulphur-sulphur [49].
These results indicate that in the binucle-ar chloro- and bromo brigded complexes of platinum(II) deprotonated mercamine coordinated bidentate by a sulphur atom and an amino nitrogen group to form the two end five-mem-bered metallocycles.
In all binuclear chloro- and bromo-bridge complexes of platinum(II) with mercamine the two observed absorption bands related to brid-
v /halv / ging bond yPt ( fragment indicate to
7 Xhar X their planar structure [49].
It should be noted that the binuclear complexes platinum(II) with a bridge position of mercamine, coordinated by a sulphur atom, i.e. complexes with a bridging atom of sulphur, we were unable to synthesize. However, we succeeded in synthesizing trinuclear complexes platinum(II) with a bridging sulphur atom of mercamine [48]. Bidentate bridging coordination of mercamine promotes the formation of four five-membered metallocycles. IR data for trinuclear complex platinum(II) is almost identical practically to the IR data of trinuclear complex palladium(II), whose structure was studied by XRD [49]. By opening and closing a five-membered metallacycle in trinuclear complexes no decay of complex on components occurs [49].
When changing the synthesis conditions three- and sixnuclear complexes palladium(II) with 1/2 cystamine were obtained. The IR spectrum of trinuclear complex of palladium(II) [Pd3(SCH2CH2NH2)4]Cl2-H2O three strypes of absorption for bridge bond Pd-S allows to suggest pyramidal structure of sulphur atoms, which in turn would determine the conformation of the complex as a "chair ". At the bridge position of mercamine between three palladium atoms on the sulphur atom shown by X-ray analysis of the carried out X-ray study proved chair shape structure of the complex.
It can be concluded on the basis of XRD that the interaction of K2[PdCl4] and cystamine dihydrochloride at pH=12 and a ratio of reac-tants of 1:2 trinuclear complex is obtained, where the central palladium atom is directly coordinated to four sulphur atoms. Two terminal atoms of palladium are linked to the central atom via palladium sulphur bridge [48]. Terminal palladium atoms due to bidentate coordination of mercamine formed by two five-membered metallocycles are in different planes relative to the central atom of palladium.
The experimental results showed that at the interaction of trinuclear palladium(II) complex with concentrated halogen hydrohalic acids the opening of the five-membered metallocycles takes place and in complexes formed the lig-ands are monodentate coordinated by a sulphur
atom. At the resulting complex metallocycle Pd-SS-Pd has a planar structure.
With continued studying the behavior of cystamine dihydrochloride in an alkaline medium in the presence of palladium(II), two six-nuclear complexes with different structures were synthesized [42, 51].
In both sixnuclear complexes, the base of structures is formed by centrosymmetrical hexa-nuclear complex cations [Pd6(SCH2CH2NH2)8]4+, chlorine ions and water molecules [44]. Six palladium atoms are located at the vertices of an octahedron, four of which are coordinated by 8 molecules of deprotonated mercamine with cis- arrangement of nitrogen atoms and thiolate sulphur atoms. The coordination sphere of the two palladium atoms includes four bridging sulphur atom. All palladium atoms have planar square coordination with a small tetrahedral distortion [44].
In one hexanuclear complexes one can distinguish two mutually perpendicular metallocycle passing through the central atom of palladium. In both complexes no metal to metal bond exists [44].
As a result of the interaction of palladi-um(II) with cystamine dihydrochloride in a strongly alkaline medium there have been obtained and structurally characterized two with the same gross formulas, but different structure, six-nuclear complexes of palladium(II) are obtained of non-clustered type mercamine with bidentate coordination by the nitrogen and sulphur atoms. The latter occupies a bridging position between the palladium atoms [44].
At changing the conditions of synthesis and the nature of the reactants in an alkaline medium (pH = 9) a non-clustered six-nuclear complex of platinum of non-cluster type with bidentate coordination of the ligand and with the composition [Pt6(SCH2CH2NH2)8]Cl4 [42, 44] is obtained. Study by XRD of this complex established presence of four atoms from the platinum with coordination unit PtS3N. Other platinum atoms have the same environment of two sulphur atoms and two nitrogen atoms. It should be noted that the two nitrogen and sulphur atoms surrounded by a platinum cis-position relative to each other [42, 44, 52, 53].
In the reaction of palladium with cysta-mine dihydrochloride salts in benzene medium one can prevent cleavage of the S-S bond [49]. The study of the interaction of cystamine dihy-drochloride with dibenzonitril dihalogenide of palladium leads to the formation of tetraaci-doanion. This forms a tetraacidoanion with same of mixed hallogens, and that is the only case in which there is no cleavage of S-S bonds in cystamine dihydrochloride [47, 49].
It can be concluded on the basis of the results that by controlling the conditions of synthesis can be obtained the complexes with a given composition and structure that is important factors in bio-coordination chemistry.
References
1. Коваленко С.В., Мальчиков Г.Д. Взаимодействие меркаптоуксусной кислоты с транс-диамминдихлорплатиной (II) // Журн. неорг. химии. 1982. Т. 27. № 12. С. 3125-3129.
2. Appleton T.G., Connar J.W., Hall J.R. Metal ions in biological systems // Inorg. Chem. 1988. V. 27. No l. P. l30-137.
3. Sigel Ed. H. Dithiother Complexes of Palladium (II) the Relationship between Ligand Chain Length and Structure about Palladium // Inorg. Chim. Acta. 1980. V. 20. P. 293-318.
4. Azizova A.N., Gyulalov O.M., Gasimov Sh.G., Gasanov H.I. Biological activity of mixedligands complexes of platinum // The USA Appl. Sci. 2015. P. 153-156
5. Даниелян Д.Г., Цирульникова H.B., Темкина В.Я. Радиозащитная свойств органических соединений // Реактивы и особо чистые вещества. Тр. ИРЕА. Москва. 1984. Т. 46. С. 3- 6.
6. Гильяно Н.Д., Малиновский О.Б., Степанов С.И. Кристаллическая структура [Pd(NH3)4][I2Cl6] // Радиобиология. 1985. Т. 25. № 2. С. 238-241.
7. Корнеев С.В., Алексеев В.И., Громилов С.А., Бандина И. А. Дистония сосудов легких при лучевой болезни и ее профилактика радиопротекторами // Журн. неорг. химии. 1999. Т. 44. № 9. С. 1504-1506.
8. Schroer Н.Р., Wiss. Z. Pad. Darstellung und eigenschaften von physiologisch aktiven koordinations verbindungen der ubergangsmetalle // Hochsch. Liselotte Hermanu Gustrov. Math. Naturwiss. Fak. 1987. V. 5. No l. S. 41-50.
9. Амосов И.С. Вопросы фармакологической защиты от радиационных поражений // Мед. радиология. 1966. Т. 11. № 6. С. 44-49.
10. Арбузов С.Я. Многократное рентгеновское облучение собак в условиях защиты цистами-ном // Вестн. АМН СССР. 1962. № 3. P. 58-73.
11. Кавукчян Т.В., Богатырев А.Б., Свердлов А.Г. Лекарственные средства // Радиобиология. 1974. Т. 14. № 2. С. 308-310.
12. Мошковский М.Д. Новое в профилактике и лечении опухолей // Радиобиология. 1987. Т. 2. С. 187-190.
13. Podlaha J., Podlahova J. Metal complexes of thiopolycarboxylic asids. Ethylene dithiodiacetic acid // Inorg. №em. Acta. 1971. V. 5. No 3. P. 413-419.
14. Возный E.K.. Новое в профилактике и лечении опухолей. М.: Знание, 1982. 100 с.
15. Jain N., Paul M.K., Srivastova T.S. Diam-minediethyldithiocarbamato platinum(II) nitrate // J. Inorg. Biochem. 1992. V. 45. No 2. P. 123 -127.
16. Тюкавкина Н.А., Бауков Ю.И. Биоорганическая химия. М.: Медицина, 1985. 480 с.
17. Podlaha J., Podlahova J. Studies on D-pencill-amine metabolism in systinuria and rheumatoid arthritis: isolation of S-methyl-D-penicillamine // Inorg. Chim. Acta. 1970. V. 4. No 4. P. 521-525.
18. Perrett D., Sneddon W., Sterhens A.D. Biochemical Penicillamine, a new oral therapy for Wilson's disease // Pharmacology. 1976. V. 25. No 3. P. 259-264.
19. Walshe J.M. Complexes of Metals with Biologically Meanings with Ligands // Am. J. Med. 1956. V. 21. No 4. P. 487-495.
20. Wanjek H., Steimann M., Beck W. Basic Medical Biochemistry. USA // Chem. Ber. 1988. V. 121. No 8. P. 1417-1420.
21. Marks D.B., Marks A.D., Smith C.M. Basic Medical Biochemistry. USA. Philadelphia. 1996. 806 p.
22. Арбузов С.Я. Кристаллическая структура [Pd(NH3)4][I2Cl6] // Вестн. АМН СССР. 1962. № 3. P. 58-73.
23. Корнеев С.В., Алексеев В.И., Громилов С.А., Бандина И. А. Диметиламиндикарбоксилаты палладия(П) // Коорд. химия. 1988. Т. 14. № 1. С. 63-66.
24. Kong Р. Past and present radiochemistry // Bio-inorg. Chem. 1975. V. 5. P. 51-58.
25. Несмеянов А. Н. Химическая радиозащита. Л.: Химия, 1985. 164 p.
26. Куна П.М. Профилактика острой лучевой болезни в эксперименте. Л.: Медицина, 1989. 191 с.
27. Семенов Л.Ф. Радиобиология человека и животных. Л.: Медицина, 1967. 215 с.
28. Ярмоненко С.П. Изменение функционального состояния центральной нервной системы под влиянием цистамина и некоторых его производных. М.: Высш. школа, 1988. 424 с.
29. Генералов В.И. Сульфгидрильные группы и радиочувствительность // Фарм. и токсикология. 1966. Т. 29. № 5. С. 548-550.
30. Граевский Э.Я. Влияние профилактического введения цистамина на биоэлектрическую активность некоторых отделов головного мозга. М.: Атомиздат, 1969. С. 58.
31. Динер Л.Д., Мозжухин А.С. Координационные возможности тиодиуксусной кислоты в комплексах платины(11) // Радиобиология. 1970. Т. 10. № 2. С. 289-292.
32. Ефименко И.А., Михайлов Ю.Н., Курбакова А.П., Гасанов Х.И., Мистрюков В.Э. Способы координации тиодипропионовой кислоты в комплексах палладия(П) и платины(11) // Ко-орд. химия. 1990. Т. 16. № 11. С.1574-1580.
33. Zakharova I.A., Kurbakova А.Р., Belyakova Z.V., Gasanov Kh.I., Kurbanov T.Th., Ponticelli G. Methods in thiodipropionate coordination in complexes of palladium (II) and platinum(II) // Polyhedron. 1987. V. 6. No 5. P. 1065-1070.
34. Гасанов Х.И. Синтез, исследование разноли-гандных комплексов платины (II) с тетраметил-этилендиамином и тиодиуксусной кислотой // Химия и хим. технология. 2000. Т. 43. № 6. С. 3-9.
35. Гасанов Х.И. Новый тип биологически активного координационного соединения платины (II) с этаноламином // Химия и хим. технология. 2000. Т. 43. № 6. С. 3-9.
36. Gasanov Kh.I. A new type of active platinum coordination compound (II) with p-ethanolamine // J. of Chem. Chem. Eng. 2000. V. 43. No 4. P. 111-113.
37. Гасанов Х.И. Синтез и исследование нового класса металлсодержащих радиопротекторов // VI Респуб. конф. "Физико-химический анализ и неорганическое материаловедение". Сб. ст. Баку. 2000. С. 198-203.
38. Гасанов Х.И., Касумов Ш.Г., Мирзаи Дж.И. Комплексы платины (II) с меркаптоэтанолом. // VI Респуб. конф. " Физико-химический анализ и неорганическое материаловедение". Сб. ст. Баку. 2000. С. 194-198.
39. Гасанов Х.И. Биологически активные комплексы платины(П) и палладия(П) с ароматическим гетероциклическим амином // XVI Менделеевский съезд по общей и прикладной химии. Санкт-Петербург. Тез. докл. 1998. Т. 1. С. 66.
40. Гасанов Х.И. Синтез и исследование нового класса металлсодержащих радиопротекторов // Медицина и здравоохранение. Баку. 1999. С. 95-97.
41. Гасанов Х.И. Новый гексаядерный комплекс Pd(II) с p-меркаптоэтиламином некластерного типа [Pd6(NH2-CH2-CH2S)8Cl4]-wH2O (и=5,10). // Хим. и хим. технология. 2000. Т. 43. № 3. С. 123-126.
42. Гасанов Х.И., Мирзаи Дж.И. Аминопроизвод-ные комплексы палладия(П) с продуктом расщепления дитиодиэтиламина - меркамином // Азерб. хим. журн. 2000. № 1. С. 56-59.
43. Гасанов Х.И., Фатуллаева С.С., Тагиев Д.Б., Мирзаи Дж.И. Исследование взаимодействий в биядерных комплексных соединениях пал-
ладия(11) с продуктом расщепления дитиоди-этиламина-меркамином // Азерб. хим. журн. 1998. № 3. С. 38-42.
44. Ефименко И.А., Гасанов Х.И., Горбунова Е.Ю., Курбакова А.П., Михайлов Ю.Н. Новые гексаядерный комплекс Pd(II) с р-меркапто-этиламино некластерного типа [Pd6(NH2-CH2-C^S^CLJw^O (и=5,10) // Докл. АН СССР. 1992. Т. 326. № 4. С. 654-657.
45. Hasanov Kh.I, Antsyshkina A.S., Sadikov G.G., Ivanova N.A., Mirzai J.I. The Crystal Structure [Pd(NH2CH2CH2OH)n] [Pd6(NH2CH2CH2S)8] Cl6 5 H2O // Crystallography. 2002. No 4. P. 660-666.
46. Гасанов Х.И., Канищева А.С., Михайлов Ю.Н., Горбунова Ю.Е., Курбакова А.П. Синтез и исследование комплексов палладия(П) с моно-этаноламином / Тез. докл. VI Совещания по кристаллохимии неорганических и координационных соединений. Львов. 1991. 21-25 сентябрь. С. 24.
47. Гасанов Х.И., Фатуллаева С.С., Мирзаи Дж.И. Изучение состава и структуры ядерного комплекса [Pd2(SGH2CH2NH2)2]. Современные проблемы неорганической и физической химии. Баку: Элм, 1998. С. 59-61.
48. Azizova A.N., Tagiyev D.B., Mammadova H.F. Coordination ways of polydentate ligands in a mixedligands complexes of platinum / ANAS-70/ Book of abstracts, International Multidisciplinary Forum. 02-04 november 2015. P. 69-70.
49. Гасанов Х.И. Комплексобразование палладия (II) с пирролпроизводными лигандами // I Рес-публ. научн. конф. "Химия комплексных со-ед." Сб.ст.. Баку, 1999. С. 141-145.
50. Гасанов Х.И. Галоген- и аминопроизводные моноядерных комплексов палладия (II) с бис-(Р-аминоэтил)дисульфидом // Азерб. хим. журн. 1999. № 2. С. 20-23.
51. Azizova A.N., Gasimov Sh.G., Gasanov Kh.i. Multinuclear palladium complexes // The Second European Conf. on Chemical Sciences. Vienna. 20 may 2015. P. 10-11.
52. Tagiyev D.B., Azizova A.N., Imamverdiyeva S.R. Asadov M.M. A novel bioactive compound of palladium(II) with mercaptoethanol // 3rd International Conf. on Nanotechnologies and Biomedical Engineering. ICNBME-2015. P. 289-291.
53. Asadov M.M., Azizova A.N., Imamverdiyeva S.R., Tagiyev D.B. Calculartion of the constant of solutions containing platinum(II) complex // Tec-nical Program. The Hall of Conference Room. CDSM 2015. Shenyang. China. August 17-19. P. 8.
54. Azizova A.N., Gasimov Sh.G., Tagiyev D.B., Gasanov Kh.i. Hexanuclear Complex of Platinum (II) with Cleavage Product of Cystamine Dihy-drochloride by р-Mercaptoethylamine // J. Adv. Chem. Eng. Sci. January 2016. V.6. No 1. P. 29-34.
Pt(II) VO Pd(II) DUZLARININ TORKÍBÍNDO KÜKÜRD-OKSÍGEN VO KÜKÜRD-AZOT SAXLAYAN
bíolojí aktív líqandlarla qar§iliqli tosírínín todqíqí
O.N.Ozizova, XXHasanov, D.B.Tagiyev
Pt(II) va Pd(II)-un müxtalif S-O, S-N, donor atomlari saxlayan liqandlarla kompleks amalagalmasi öyranilmi§dir. Bu zaman müayyan edilmi§dir ki, kompleks amalagalma zamani mühitin pH-i, halledicilarin va metallarin ilkin duzlarinin tabiati reaksiyaya giran komponentlarin nisbati asas rol oynayir. Tiodisirka, tiodipropion tur§ularinin merkaptoetanol va bis-getta-hidroksietil sulfidin faktiki dentatligi müayyan edilmi§dir. Malum olmu§dur ki, reaksiyanin gedi§i zamani sistamin molekulunda S-S rabitasinin qinlmasi ba§ verir va alinmi§ dprotonla§dinlmi§ merkamin molekulu kompleksamalagalmada i§tirak edir. Susuz mühitda S-S rabitasinin qirilmasi ba§ vermir.
Agar sözlar: platin(II), palladium(II), merkaptoetanol, bis-ß-hidroksietil sulfid, merkamin.
ИССЛЕДОВАНИЕ ВЗАИМОДЕЙСТВИЯ СОЛЕЙ ПЛАТИНЫ(П) И ПАЛЛАДИЯ(П) С СЕРО-КИСЛОРОД- И СЕРО-АЗОТСОДЕРЖАЩИМИ БИОЛОГИЧЕСКИ АКТИВНЫМИ
ЛИГАНДАМИ
А.Н.Азизова, Х.И.Гасанов, Д.Б.Тагиев
Изучены комплексообразующие способности платины(П) и палладия(П) с различными серо-кислород- и серо-азот-донорсодержащими лигандами в различных сочетаниях их функциональных групп. Обнаружено, что при комплексообразовании немаловажную роль играют природа исходных солей металлов, рН-среды, природа растворителей и соотношение реагирующих компонентов. Определена фактическая дентатность тиодиуксусной, тиодипропионовой кислот, меркаптоэтанола и бис-р-гидроксиэтилсульфида. Выявлено, что в ходе реакции в молекуле цистамина происходит расщепление S-S-связи, и полученный депротонированный меркамин вступает в комплексообразование. В неводной среде расщепление S-S-связи не происходит.
Ключевые слова: платина(11), палладий(П), меркаптоэтанол, бис-ß-гидроксиэтилсульфид, меркамин.