В. А. Бордовский, Н. И. Анисимова, А. В. Марченко,
Х. М. Али, П. П. Серегин
СТРУКТУРА СТЕКОЛ ГЕРМАНИЙ-СЕРА, ГЕРМАНИЙ-СЕЛЕН
И ГЕРМАНИЙ-ТЕЛЛУР
Методом мессбауэровской спектроскопии на изотопах Te( I) и Sn показано, что стекла Gei00-xSx, Gei00-xSex и Gei00-xTex , обогащенные халькоге-ном (x > 0,66), построены из структурных единиц, включающих двухкоорди-
нированные атомы халькогена X в цепочках типа -Ge - X - Ge - и
-Ge - X - X - Ge -, тогда как германий в этих стеклах только четырехвалентен и
четырехкоординирован, причем в локальном окружении атомов германия находятся только атомы халькогена. Стекла Ge100-xSx и Ge100-xSex, обедненные халькогеном, построены из структурных единиц, включающих двух- и трех-координированные атомы халькогена (соответственно в цепочках типа
i i i i -Ge - X - Ge - и -Ge - X - Ge - ), тогда как германий в этих стеклах стабили-
i i i
зируется как в четырехвалентном и четырехкоординированном состоянии, так и в двухвалентном и трехкоординированном состоянии, причем в локальном окружении атомов германия находятся только атомы халькогена.
Ключевые слова: локальная структура, халькогенидные стекла, мес-сбауэровская спектроскопия.
V Bordovsky, N. Anisimova, A. Marchenko, H. M. Ali, P. Seregin
GERMANIUM-SULFURS, GERMANIUM-SELENIUM AND GERMANIUM-TELLURIUM GLASS STRUCTURE
By Mossbauer spectroscopy method on 129Te(129I) and 119Sn isotopes it is shown, that chalcogenide enriched (x > 0,66) glasses Ge100-xSx, Ge100-xSex and Ge100-xTex are constructed of the structural units including two co-ordinate atoms
of chalcogenide X in chains of the type -Ge - X - Ge - и -Ge - X - X - Ge -, whereas
Germanium in these glasses is only tetravalent and four co-ordinate, and in a local environment of Germanium atoms there are chalcogenide atoms only. Chalco-genide impoverished glasses Ge100-xSx and Ge100-xSex, are constructed of
-Ge-X-Ge- and -Ge-X-Ge- structural units including two (in -Ge-X-Ge-
i i i i i
chain types) and three co-ordinate chalcogenide atoms (in -Ge-X-Ge- chain
types). Germanium in these glasses is stabilized in tetravalent and four co-ordinate
states or in bivalent and three co-ordinate states, and in a local environment of
Germanium there are chalcogenide atoms only.
Keywords: local structure, chalcogenide glasses, Mossbauer spectroscopy.
Известно, что физико-химические свойства стеклообразных полупроводников определяются их локальной структурой и поэтому экспериментальное определение структуры ближнего порядка стекол является актуальной задачей [3, c. 143]. Широкое использование в подобных исследованиях находит мес-сбауэровская спектроскопия. Поскольку число мессбауэровских изотопов, пригодных для структурно-химических исследований, невелико, то целесообразно развитие мессбауэровских исследований с использованием примесных атомов, когда мессбауэровский изотоп вводится в стекла в качестве «метки» и по его поведению делаются выводы о локальной структура стекол [2, c. 706].
Настоящая работа посвящена исследованию локальной структуры атомов халькогена в стеклообразных полупроводниках систем германий-сера, германий-селен и германий-теллур (Gei00.xSx, Gei00.xSex, Gei00.xTex) методом эмиссионной мессбауэровской спектроскопии на примесных атомах которые вводились в структуру стекла методом ядерной трансмутации. С этой целью
129гг.
стекла синтезировались с использованием радиоактивного изотопа Те после распада которого в узлах халькогена образовывался зонд 129I, параметры мес-сбауэровского спектра которого несут информацию о природе локального окружения атомов халькогенов. Для получения информации о природе локального окружения атомов германия использовалась абсорбционная мессбауэровская спектроскопия на изотопе 119Sn.
Методика эксперимента.
Стекла синтезировались из элементарных веществ в вакуумированных до 10 мм рт. ст. тонкостенных кварцевых ампулах при 950 °С с последующей закалкой расплава (~1 г) в воду. Стеклообразное состояние фиксировали по отсутствию включений, отсутствию линий на дебаеграммах и раковистому излому. Для исследований были выбраны стекла составов Ge20S90, Ge30S70, Ge40S60, Ge20Se90, Ge30Sey0, Ge^Se60, Ge20Te80, а также стекла Ge28,5Pb15S56,5, Ge27Pb17Se56 и аморфный сплав Ge50Te50. Мессбауэровские источники 129Te(129I) готовились путем плавления готовых стекол, причем в шихту добавлялся препарат безноси-тельного 129Те. Последний получали путем облучения обогащенного до 98% изотопа 128Те потоком нейтронов ~ 2,1020 см-2, последующего растворения облученного препарата в Н2О2 и хроматографического выделения 129Те. Концентра-
129 16 17 -3
ция Те во всех образцах была порядка 10 -10 см- .
Олово в виде обогащенного до 92% изотопа 119Sn вводилось в исходную шихту (его концентрация составляла 0,5 ат%).
При измерении мессбауэровских спектров 1
Te( I)
поглотителем служил
129 2 129
К I с поверхностной плотностью 15 мг/см по I. Изомерные сдвиги приводятся относительно спектра KI. Стандартный источник Zn129Te с использованным поглотителем имел спектр в виде одиночной линии шириной G = 0,72 ± 0,04 мм/с, которая принималась за аппаратурную ширину спектральной линии
129i
При измерении мессбауэровских спектров 119Бп источником служил Са119шш8пОз, поверхностная плотность поглотителей составляла 0,1 мг/см2 по 119Бп. Изомерные сдвиги спектров 119Бп приведены относительно СаБпО3. Стандартный поглотитель СаБпО3 такой же поверхностной плотности с использованным источником имел спектр в виде одиночной линии с шириной О = 0,80 мм/с, которая принималась за аппаратурную ширину спектральной линии 119Бп. Экспериментальные результаты и обсуждение.
Типичные мессбауэровские спектры Те(91) стекол приведены на рис. 1-3, а мессбауэровские спектры 119Бп — на рис. 4-6. Параметры спектров сведены в таблицах 1 и 2.
Для всех стекол Ое100.х8х, Ое100.х8ех и Ое100-хТех, обогащенных халькогеном
129 129
(х > 0,66), мессбауэровские спектры Те( I) представляют собой наложение двух квадрупольных мультиплетов I и II (см. рис. 1а, б, 2а, б, 3а).
Рис. 1. Мессбауэровские
129^ /129т\
спектры Te( I) стекол Ge2oS9o (а), Ge3oS7o (б), Ge4oS6o (в). Показано разложение спектров на мультиплеты I (отвечает двухкоординиро-ванной сере в цепочках
-Ge-S-Ge-X
II (отвечает двухкоордини-рованной сере в цепочках
-Ge-S-S-Ge-)
и III (отвечает трехкоорди-нированной сере в
цепочках -Ge-S-Ge-)
Квадрупольный мультиплет I с меньшими значениями изомерного сдвига К и постоянной квадрупольного взаимодействия (по модулю |С|) отвечает атомам 129^ которые образуют химические связи только с атомами германия в своем ближайшем окружении. Для этого мультиплета наблюдается отрицательная
129
величина С, и, следовательно, он относится к атомам I, замещающим атомы
I
двухкоординированного халькогена X в цепочках типа -Се - х - Се -. Аналогичные структурные единицы наблюдаются в кристаллических ОеБе2 и ОеБ2, причем степень искажения для них в кристалле и в стекле одинакова, что и приводит к близости величин С для кристаллических ОеБ2, ОеБе2 и стекол. Отметим, что мессбауэровские спектры 129! кристаллических соединений ОеБ2 и ОеБе2
представляют собой наложение двух квадрупольных мультиплетов, что отражает факт присутствия в исследованных образцах второй фазы.
Рис. 2. Мессбауэровские
129 129
спектры Те( I) стекол Ое2о8е9о (а), везоЗето (б), Ое4оБебо (в). Показано разложение спектров на муль-типлеты I (отвечает двухко-ординированному селену в
цепочках -Ое-8е-Ое-X
II (отвечает двухкоордини-рованному селену в цепочках -Ое-8е-8е-Ое-) и III
(отвечает трехкоординиро-ванному селену в цепоч-
-Ое-8е-Ое-
Рис. 3. Мессбауэровские
129т /129т\ г
спектры Те( I) стеклообразного сплава ве2оТе8о (а) и аморфного сплава ве5оТе5о (б). Показано разложение спектров на мультиплеты I (отвечает двухкоординиро-ванному теллуру в цепочках
-Ое-Те-Ое-X II (отвечает
двухкоординированному теллуру в цепочках
-Ое-Те-Те-Ое-) и III (отвечает трехкоординирован-ному теллуру в цепочках
-Ое-Те-Ое-)
Квадрупольный мультиплет II с большими значениями IS и |С| следует отнести к атомам 129I, которые образуют химические связи с атомами халькогена в своем ближайшем окружении. Близкие величины IS и С наблюдаются для эмиссионных мессбауэровских спектров 129Te(129I) в сере и селене. Для этого муль-типлета также наблюдается отрицательная величина С и, следовательно, он относится к атомам 129I, замещающим атомы двухкоординированного халькогена в
I
цепочках типа -Ge-X-X-Ge -. Очевидно, что после радиоактивного превращения Те дочерний атома иода в таких цепочках образует химическую связь только с атомами халькогена. Отметим, что по мере уменьшения индекса х площадь под спектром II для стекол Ge100-xSx и Ge100-xSex уменьшается, что отражает факт уменьшения содержания цепочек -Ge-X-X-Ge- в структуре стекол.
Для стекол Ge100-xSx и Ge100-xSex, обедненных халькогеном (x < 0,66), мес-сбауэровские спектры 129Te(129I) также представляет собой наложение двух квадрупольных мультиплетов, но различающихся знаком постоянной квадру-польного взаимодействия (рис. 1в, 2в). Квадрупольный мультиплет I с большим значением |C|, как и в предыдущих случаях, следует отнести к атомам 129I, которые образуют химические связи с атомами германия в своем ближайшем окружении. Для этого спектра наблюдается отрицательная величина С, и, следовательно, он относится к атомам 129I, замещающим атомы двухкоординированного халькогена в цепочках типа -Ge-X-Ge-.
Квадрупольный мультиплет III с меньшим значением |C| отвечает атомам 129I, которые образуют химические связи с атомами германия в своем ближайшем окружении. Для этого спектра наблюдается положительная величина С, и, следовательно, он относится к атомам 129I, замещающим атомы трехкоордини-
рованного халькогена в структурных единицах типа -Ge-X-Ge -. Аналогичные
структурные единицы имеют место в кристаллических GeS и GeSe, однако степень искажения для них в стекле значительно больше, что и приводит к большей величине.
Объемные стекла системы Ge100-xTex не могут быть получены в сплавах, обеденных теллуром, и поэтому для идентификации трехкоординированного состояния атомов теллура мы использовали аморфный сплав стехиометрическо-го состава GeTe, который был получен путем выливания расплава на металли-
129 129
ческую плиту, охлаждаемую жидким азотом. Мессбауэровский спектр 29Te(129I) такого сплава представлял собой наложение квадрупольных мультиплетов I и III (см. рис. 3б). Мультиплет I отвечает атомам 129I, которые замещают атомы двухкоординированного халькогена в цепочках типа -Ge - X - Ge -. Мультиплет III
отвечает атомам 129I, которые замещают атомы 3-х координированного халькогена в структурных единицах типа -Ge-X-Ge -. Аналогичные структурные единицы имеют место в кристаллическом GeTe, однако степень искажения для них в аморфном сплаве значительно больше, что и приводит к большей величине С.
Следует отметить, что построение стекол Ое100-х8х, Ое100-х8ех и Ое100-хТех, обогащенных халькогеном, из структурных единиц типа -Се_Х-Се- и
| I
"Се"Х"Х"Се_ требует стабилизации в структурной сетке стекол четырехвалентного и четырехкоординированного германия. Если для стекол Ое100-х8х и Ое100-х8ех такая ситуация вполне естественна (существуют стабильные сульфид Ое82 и селенид Ое8е2 четырехвалентного германия), то для стекла Ое100-хТех эта ситуация не очевидна, поскольку отсутствует теллурид четырехвалентного германия. В этом случае необходимы дополнительные экспериментальные аргументы в пользу стабилизации в структурной сетке стекла Ое100-хТех четырехвалентного и четырехкоординированного германия. С другой стороны, наличие в стеклах Ое100-х8х и Ое100-х8ех, обедненных халькогеном, трехкоординированного состояния халькогена требует стабилизации части атомов германия в двухвалентном состоянии. Очевидно, что это требование противоречит феноменологическом правилу Мота — Губанова о стабилизации в структурной сетке халь-когенидных стекол атомов с наивысшей валентностью [4, с. 114]. И в этом случае необходимо независимое экспериментальное подтверждение факта стабилизации германия в двухвалентном состоянии.
Для идентификации валентного и координационного состояния германия нами было предпринято исследование стекол Ое100-х8х, Ое100-х8ех и Ое100-хТех методом мессбауэровской спектроскопии на изотопе 1198п: предполагалось, что примесные атомы олова изовалентно замещают атомы германия в структурной сетке стекла и локальная структура олова отражает локальную структура атомов германия.
Мессбауэровские спектры 1198п стекол Ое99,5-х8п0,58х, Ое99,5-х8п0,58ех и Ое99,5-х8п0,5Тех, обогащенных халькогеном (х > 0,66), представляют собой одиночные линии I, отвечающие четырехвалентному олову (рис. 4а, 5а, 6а), причем величина изомерного сдвига спектров стекол Ое100-х8х и Ое100-х8ех типична для олова, имеющего в локальном окружении только атомы халькогена (типа спектров соединений Ое8е2 и Ое82). Особо отметим, что даже стекло Ое99,5-х8п0,5Тех демонстрирует присутствие в мессбауэровском спектре 1198п только четырехвалентного состояния олова, причем изомерный сдвиг спектра близок к изомерному сдвигу мессбауэровского спектра а-8п, для которого известна идеальная система тетраэдрических связей. Иными словами, в стеклах Ое100-х8х, Ое100-х8ех и Ое100-хТех атомы германия четырехвалентны и четырехкоординированы. Кристаллизация стекол Ое99,5-х8п0,58х и Ое99,5-х8п0,58ех не изменяет валентного состояния олова (см. табл. 2), тогда как кристаллизация стекла Ое19,58п0,5Те80 сопровождается изменением мессбауэровского спектра 1198п — он представляет собой одиночную линию, отвечающую двухвалентному олову (см. рис. 6б). Иными словами, в кристаллическом сплаве Ое20Те80, как и ожидалось, германий двухвалентен (что подтверждается данными рентгенофазового анализа — при кристаллизации стекла Ое20Те80 выделяются фазы ОеТе и теллура).
Мессбауэровские спектры 1198п стекол Ое99,5-х8п0,58х и Ое99,5-х8п0,58ех, обедненных халькогеном (х < 0,66), представляют собой наложение одиночной линии I, отвечающей четырехвалентному олову, и квадрупольного дублета II, отвечающего двухвалентному олову (рис. 4б, 5б), изомерный сдвиг которого
типичен для спектров соединении двухвалентного и трехкоординированного олова БпБ и БпБе.
Рис. 4. Рис. 4. Мессбауэров-
119 с
ские спектры Бп стекол Се29,5 Био,5 Буо (а), Оез9,5Бпо>58бо (б) и Ое288по,5РЬ1585б,5 (в). Показано разложение спектров на синглет I (отвечает четырехвалентному и четы-рехкоординированному олову) и квадрупольный дублет II (отвечает двухвалентному и трехкоординированному олову)
■в
5|)
5Г
!
а*
и
и
о &
8
К л
§ а
Рис. 5. Мессбауэровские спектры 119Бп стекол Ое29,58по,58е7о
(а), Оез9,58по,5Бебо (б) и Ое288по,5РЬ158е5б,5 (в). Показано разложение спектров на синглет I (отвечает четырехвалентному и четырехкоорди-нированному олову) и квадрупольный дублет II (отвечает двухвалентному и трехкоординированному олову)
чг>
5|)
чГ
а* и
и &
8
л
§ а
а
V/
хрг/
V
\11 в
2 0 2 Скорость, мм/с
а
\1
6
\г/
в
\п
-4-10 1
Скорость, мм/с
Это позволяет заключить, что валентное и координационное состояние атомов германия в стеклах Оешо-х8х, Оешо-х8ех и Оеш-хТех зависит от содержания халькогена в составе стекла: в стеклах, обогащенных халькогеном, германий только четырехвалентен и четырехкоординирован, тогда как в стеклах, обеденных халькогеном, германий стабилизируется как в четырехвалентном и че-тырехкоординированном состоянии, так и двухвалентном и трехкоординиро-
ванном состоянии. Во всех случаях в локальном окружении атомов германия находятся только атомы халькогена.
Рис. 6. Мессбауэровские спектры стеклообразного (а) и кристаллического (б) сплава Ое19,^п0,5Те70. Показано разложение спектров на синглет I (отвечает четырехвалентному и четырех-координированному олову) и синглет II (отвечает двухвалентному и трехко-ординированному олову)
Особенностью вхождения примесных атомов олова в структурную сетку стекол типа Ое40Х60 является зависимость соотношения двух- и четырехвалентного олова в стекле от присутствия в стекле атомов свинца — для стекол, содержащих свинец (0е28,5РЬ15856,5 и 0е27РЬ178е56), в мессбауэровских спектрах 119Бп наблюдается только двухвалентное олово (рис. 4в, 5в). Поскольку свинец в структуре таких стекол только двухвалентен [1, с. 431], то можно сделать вывод, что примесные атомы олова преимущественно стабилизируются в положении свинца в двухвалентном состоянии. Заключение.
Стекла 0е1-хБх и 0е1-хБех, обогащенные халькогеном, построены из структурных единиц, включающих двухкоординированные атомы халькогена в цепочках типа -Се-Х-Се-и -Се-Х-Х-Се-, тогда как стекла, обедненные халько-
1 1 1 1
геном, построены из структурных единиц, включающих двух- (в цепочках типа -Се-Х-Се-) и трехкоординированные атомы халькогена (в цепочках типа
1
-Се-Х-Се-). Валентное и координационное состояния атомов германия в стек-
1
лах зависит от содержания халькогена в составе стекла. В стеклах, обогащенных халькогеном, германий только четырехвалентен и четырехкоординирован, а в стеклах, обеденных халькогеном, германий стабилизируется как в четырехва-
лентном и четырехкоординированном состоянии, так и двухвалентном и трех-координированном состоянии, но во всех случаях в локальном окружении атомов германия находятся только атомы халькогена.
СПИСОК ЛИТЕРАТУРЫ
1. Бордовский Г. А., Кастро Р. А. Состояние атомов железа и олова в стеклообразных полупроводниках Ge28.5P15S56.5 и Ое27Р178е5б // Физика и химия стекла. 2006. Т. 32. С. 431-437.
2. Бордовский Г. А., Марченко А. В., Серегин П. П. Влияние аморфизации на локальное окружение атомов в халькогенидах мышьяка // Физика и химия стекла. 2008. Т. 34. С. 706-711.
3. Любин В. М., Клебанов А. В. Новые результаты фундаментальных и прикладных исследований халькогенидных стеклообразных полупроводников // Известия Российского государственного педагогического университета им. А. И. Герцена. Физика. 2006. 6(15). С. 143-151.
4. Фельц А. Аморфные и стеклообразные неорганические твердые тела. М.: Мир, 1986. 556 с.
REFERENCES
1. Bordovskii G. A., Castro R. A. Sostoyanie atomov zheleza i olova v stekloobraznykh po-luprovodnikakh Ge28.5P15S56.5 i Ge^Pi^^ // Fizika i khimiya stekla. 2006. T. 32. S. 431-437.
2. Bordovskii G. A., Marchenko A. V., Seregin P. P. Vliyanie amorfizacii na lokalnoe okruz-henie atomov v khalkogenidakh myshjyaka // Fizika i khimiya stekla. 2008. T. 34. S. 706-711.
4. Lubin V M., Klebanov A. V. Novye rezultaty fundamentaljnykh i prikladnykh issledo-vanii khalkogenidnykh stekloobraznykh poluprovodnikov // Izvestiya Rossiiskogo gosudarstven-nogo pedagogicheskogo universiteta im. A. I. Gercena. Fizika. 2006. 6(15). S. 143-151.
5. Felc A. Amorfnye b stekloobrazhye neorganicheskie tverdye tela. M.: Mir, 1986. 556 s.