Научная статья на тему 'STRESS-DEFORMABLE STATE OF GLASS DURING WATERJET CUTTING'

STRESS-DEFORMABLE STATE OF GLASS DURING WATERJET CUTTING Текст научной статьи по специальности «Механика и машиностроение»

CC BY
17
3
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
stress-deformable state / glass / waterjet cutting / wheel / sharpening / sharpening angle / напряженно-деформируемое состояние / стекло / гидроабразивная резка / ролик / заточка / угол заточки

Аннотация научной статьи по механике и машиностроению, автор научной работы — Bazenov Gabit Maxutovich, Itybayeva Galiya Tuleubaeva, Kussainov Ruslan, Galinovskiy Andrey Leonidovich, Mussina Zhanara Kereyovna

The most common modern technology for cutting float glass is cutting with cutting wheels, which have a wedge-shaped obtuse cross section and are made of hard alloys. Cutting glass is the creation of a system of cracks. During this, an area of destruction is inevitably formed, consisting of a large number of tiny digs and cracks that occur because of the action of the cutting tool. In the process of waterjet cutting, the depth of surface and lateral cracks increases. In addition, this increases the variation in the depth of the middle cracks. These factors worsen the quality of the cut and increase the likelihood of a split not along the cut. All this results in the necessity to ensure the wheel sharpening angle, pressure and cutting speed that are optimal for the quality of the cut. These optimal values depend on the thickness of the glass and the retained stresses in the glass. The quality of the cut depends on the number and depth of microcracks (especially the middle ones). With a decrease in the angle of sharpening of the wheel, an increase in cutting pressure and speed, the average depth of the median cracks increases, which has a positive effect on the quality of the cut. As a result of the conducted research, optimal parameters of waterjet cutting (treatment) were established, namely, the angle of sharpening of the wheel (110°160°), cutting pressure (35 N) and speed, which is favorable for the quality of the cut and a reduction in the reject percentage.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

НАПРЯЖЕННО-ДЕФОРМИРУЕМОЕ СОСТОЯНИЕ СТЕКЛА ПРИ ГИДРОАБРАЗИВНОЙ РЕЗКЕ

Наиболее распространенной современной технологией раскроя флоатстекла является резка режущими роликами, которые имеют клиновидное тупоугольное сечение и изготавливаются из твердых сплавов. Резка стекла является созданием системы трещин. При этом неизбежно образуется область разрушения, состоящая из большого количества мельчайших выколок и трещин, возникающих под действием режущего инструмента. При гидроабразивной обработке увеличивается глубина поверхностных и боковых трещин. Кроме того, при этом увеличивается разброс по глубине срединных трещин. Эти факторы ухудшают качество реза и увеличивают вероятность разлома не по резу. Все это приводит к тому, что необходимы оптимальные для качества реза значения угла заточки ролика, давления и скорости реза. Эти оптимальные значения зависят от толщины стекла и остаточных напряжений в стекле. Качество реза зависит от количества и глубины микротрещин (в особенности срединных). При уменьшении угла заточки ролика, увеличении давления и скорости реза средняя глубина срединных трещин увеличивается, что положительно влияет на качество реза. В результате проведённых исследований установлены оптимальные параметры гидроабразивной резки (обработки), а именно угла заточки ролика (110°–160°), давления (35Н) и скорости реза, что благоприятно влияет на качество реза и уменьшение процента брака.

Текст научной работы на тему «STRESS-DEFORMABLE STATE OF GLASS DURING WATERJET CUTTING»

SRSTI 53.31.15

https://doi.org/10.48081/GOJT6832

G. M. Bazenov1, *G.T. Itybayeva2, R. B. Kussainov3,

A. L. Galinovskiy4, Zh. K. Mussina5

1,2,3,5Toraighyrov University, Republic of Kazakhstan, Pavlodar;

4Bauman Chuvash State University, Russian Federation, Moscow.

*e-mail: [email protected]

STRESS-DEFORMABLE STATE

OF GLASS DURING WATERJET CUTTING

The most common modern technology for cutting float glass is cutting with

cutting wheels, which have a wedge-shaped obtuse cross section and are made of

hard alloys. Cutting glass is the creation of a system of cracks. During this, an area

of destruction is inevitably formed, consisting of a large number of tiny digs and

cracks that occur because of the action of the cutting tool.

In the process of waterjet cutting, the depth of surface and lateral cracks

increases. In addition, this increases the variation in the depth of the middle cracks.

These factors worsen the quality of the cut and increase the likelihood of a split not

along the cut. All this results in the necessity to ensure the wheel sharpening angle,

pressure and cutting speed that are optimal for the quality of the cut. These optimal

values depend on the thickness of the glass and the retained stresses in the glass.

The quality of the cut depends on the number and depth of microcracks

(especially the middle ones). With a decrease in the angle of sharpening of the wheel,

an increase in cutting pressure and speed, the average depth of the median cracks

increases, which has a positive effect on the quality of the cut.

As a result of the conducted research, optimal parameters of waterjet cutting

(treatment) were established, namely, the angle of sharpening of the wheel (110°160°),

cutting pressure (35 N) and speed, which is favorable for the quality of the cut

and a reduction in the reject percentage.

Keywords: stress-deformable state, glass, waterjet cutting, wheel, sharpening,

sharpening angle.

Introduction

The most common modern technology for cutting float glass is cutting with cutting

wheels. The glass cutting wheels have a wedge-shaped obtuse-angle section and are

made of hard alloys (mainly based on tungsten carbide). The sharpening angle of the

wheel used depends on the thickness of the glass. In this case, the cutting takes place

in two stages: first a notch is made, that is a scratch is formed with a chain of cracks

appearing under it (usually from edge to edge of a sheet of glass with a straight cut),

and then a bending force is applied across the cutting line (splitting). Such glass cutting

is not cutting in the ordinary understanding of the word (such as cutting bread), but the

creation of microcracks in the glass under the action of a cutting wheel, along which

the glass then splits.

Thus, cutting glass is not cutting in the usual sense of the word, but the creation of

a system of cracks. In this case, an area of destruction is inevitably formed, consisting

of a large number of tiny digs and cracks that occur because of the action of the cutting

tool. A thinner trace, contributing to a better separation of the cut surfaces, is obtained

using a diamond. Diamond, being the hardest mineral, regardless of whether its natural

or polished face touches the glass, is the most suitable tool for cutting glass [1–7].

Materials and methods

The quality of the cut is influenced by many technological factors – the type

and quality of the wheels, the quality of their fixation in the cutting head, the cutting

pressure and speed, the brand of cutting fluid and the uniformity of its flow, the type

and thickness of the glass, the quality (roughness, presence of scratches, cuts, surface

bubbles and stones) and the temperature of its surface, the size of the glass sheets,

cutting chart, stress distribution in glass (annealing curve), etc. The quality of the cut

depends on the number and depth of microcracks (especially the middle ones). With

a decrease in the angle of sharpening of the wheel, an increase in cutting pressure and

cutting speed, the average depth of the middle cracks increases, has a positive effect

on the quality of the cut [8–14].

Waterjet treatment increases the depth of surface and lateral cracks. In addition,

this increases the variation in the depth of the middle cracks. These factors worsen the

quality of the cut and increase the likelihood of a split not along the cut. All this results

in the necessity to ensure the wheel sharpening angle, pressure and cutting speed that

are optimal for the quality of the cut. These optimal values depend on the thickness of

the glass and the retained stresses in the glass [15–21].

Results and discussions

Most manufacturers of cutting equipment give their recommendations on the

parameters of cutting various types of glass in the documentation for the equipment.

It is also very important to properly fix the wheel in the cutting head: it must rotate

freely around its axis, while remaining perpendicular to the plane of the glass. When

the wheel slips, a large number of cracks parallel to the surface are formed and the edge

of the glass is crumbling. With the inclined position of the wheel, the main crack does

not pass perpendicular to the surface of the glass and the cut is also non-perpendicular.

If the wheel swings on its axis, then the cut turns out to be intermittent and wavy and

therefore the split will be non-linear.

Figures 1, 2 and 3 show the types of glass cuts.

Figure 1 – A clean cut of good quality with small notches

Figure 2 – Poor quality of the cut with noticeable notches and chips

Figure 3 – Very bad cut with notches, chips and a jagged edge

The critical load of microcrack development depends on its depth. When splitting,

in the case of large bending loads applied to the cut, it is necessary to ensure a large

difference in size between the middle and other cracks. At the same time, the depth

of cracks is not too important here, since with large bending loads, the applied load

exceeds the critical value for most middle cracks.

As a result, for example, for cutting glass of large thickness, it is necessary to

select cutting parameters in such a way as to reduce the number of surface and lateral

cracks, even at the expense of a general reduction in the size of all cracks, including the

«useful» middle ones. For this reason, for cutting heavy thickness glasses, equipment

manufacturers recommend wheels with a high sharpening angle. Depending on the

thickness of the glass and the equipment used, wheels with a sharpening angle from

110° (for thin glass) to 165° (for thick glass) are used. For example, Bottero company

recommends using the following wheels for its cutting tables, depending on the thickness

of the glass: 4–6 mm – 145°, 8–19 mm – 155°, 25 mm – 160°. When increasing the

thickness of the glass, it is also recommended to increase the cutting pressure and

reduce its speed.

The recommendations of Bohle company on the choice of the angle of sharpening

of the wheel for rectangular cutting of float glass are given in Table 1.

Table 1 – Recommended sharpening angles of the wheel (diameter 5 mm)

Glass thickness Sharpening angle

0.8-1.0 mm 110°

1.0-2.0 mm 120°

2.0-3.0 mm 130°

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

3.0-4.0 mm 135°

4.0-10.0 mm 140°

5.0-12.0 mm 145°

8.0-15.0 mm 150°

10.0-20.0 mm 155°

20.0-25.0 mm 160°

Figure 4 shows the distribution of stresses created by the wheel over the thickness

of the glass.

Figure 4 – Distribution of stresses created

by the wheel over the thickness of the glass

Figure 5 shows the stress distribution in the glass after cutting.

Figure 5 – Stress distribution in glass

1 – cutting depth; 2 – pressure depth; 3 – tensile stress;

4 – compressive stress; 5 – reduced tensile stress

The wheel force is the most important cutting parameter. Figure 6 shows photographs

(in polarized light) of the edge of the glass. Cutting was performed with wheels with

the same sharpening angle (135°), but at different pressures: 35 N, 100 N and 35 N

(photo 30 minutes after cutting).

35 N 100 N 35 N (in 30 minutes)

Figure 6 – Stress distribution in glass

Conclusions

As a result of the conducted research, optimal parameters of waterjet cutting

(treatment) were established, namely, the angle of sharpening of the wheel (110°-160°),

cutting pressure (35 N) and speed, which is favorable for the quality of the cut and a

reduction in the reject percentage.

ReFeReNCeS

1 Popelyukh, A. I., Tyurin, A. G., Plotnikova, N. V. Promising methods of

material processing: Textbook– Chelyabinsk: SUSU Publishing House, 2014. – P. 49.

2 Ablyaz, T. R., Vil’deman, V. E., Muratov, K. R. et al. Mechanical Properties

of Products after electric-Discharge Machining // Russian engineering Research, 2018

– Vol. 39 – Issue 10 – P. 892–894.

3 Dudak, N. S., Itybaeva, G. T., Musina, Zh. K. et al. A New Pass-Through

Lathe Cutter // Russian engineering Research, 2014 – Vol. 34 – Issue 11 – P. 705–707.

4 Zvezdin, V. V., Khisamutdinov, R. M., Grechishnikov, V. A. et al. Laser

Machining of Tool Steels // Russian engineering Research, 2018 – Vol. 38 – Issue

12 – P. 1038–1041.

5 Mukanov, R. B., Kasenov, A. Z., Itybaeva, G. T. et al. Face Turning of Holes

// Russian engineering Research, 2019 – Vol. 39 – Issue 1 – P. – 75–78.

6 El-Hofy, H. Advanced machining processes. Nontraditional and Hybrid machining

processes // The McGraw-Hill Companies. – 2005. – P. 32–46.

7 Ospantaev, M. K. Geometric parameters of a peakless cutting tool in the

instrumental coordinate system // Science and Technology of Kazakhstan. – 2022. – №

1. – P. 40–51. – DOI 10.48081/VYTH5824.

8 Mendaliyeva, S. I., Kossatbekova, D. Sh., Akulovich, L. M. Technology and

equipment of hydraulic cutting and waterjet treatment in modern mechanical engineering

// Bulletin of Science of the Kazakh Agrotechnical University named after S. Seifullin.

– 2016. – № 2 (89). – P. 144–153.

9 Galinovsky, A. L., Tarasov, V. A., Elfimov, V. M. Minimization of the

technological cost of waterjet cutting taking into account the cost and technological

parameters of the treatment process // News of higher educational institutions

«Mechanical Engineering». – 2011. – № 4. – P. 46–54.

10 Stepanova, E. Yu., Kozhus, O. G., Barsukov, G. V. Innovative cutting

technologies with supersonic liquid jet: economy, market, state and prospects of

development // Bulletin of the Bryansk State Technical University. – 2017. – № 1

(54). – P. 243–253.

11 Stepanov, Yu. S., Barsukov, G. V., Alyushin, E. G. Modern technologies of

hydro- and hydroabrasive processing of workpieces // Science-driven technologies in

mechanical engineering. – 2012. – № 6. – P. 15–20.

12 Tikhonov, A. A. Improving the efficiency of the process of waterjet treatment:

dissertation, Candidate of Technical Sciences. Rostov-on-Don. 2011. – P. 156.

13 Verchenko, A. V., Tamarkin, M. A., Kishko, A. A. Research of the roughness

of the cut surface in case of waterjet cutting // Advanced engineering Research. 2017.

– № 2 (89). – P. 116–130.

14 Smirnov, M. I., Spiridonov, Yu. A., Karapetyan, A. R. Modern technologies

of sheet glass cutting // Glass and ceramics. – 2011 – № 1 – P. 6–10.

15 Galinovskiy, A. L., Izotov, N. A. An experimental study of hydroerosion

of surface of a chill metal under the influence of an abrasive-liquid ultra-jet // AIP

Conference Proceedings, 2021 – Vol. 2318. – Art. No 150013.

16 Dudak, N., Itybaeva, G., Kasenov, A. et al. Multi-flute drill-broach for precision

machining of holes // Scientia Iranica, 2019 – Vol. 26 – Issue 3 – P. 1415–1426.

17 Popov, V., Yanyushkin, A., Arkhipov, P. Combined electric diamond grinding

of materials prone to adhesive diffusive interaction // Materials Today: Proceedings this

link is disabled, 2019 – № 11 – P. 36–41.

18 Shpilev, V. V. Improving the efficiency of the process of waterjet cutting of

sheet parts by optimizing the processing modes and parameters of the working fluid

jet: dissertation, Candidate of Technical Sciences. Saratov, 2012. – P. 147.

19 Kasenov, A. Precision of hole processing by reamer-broaching // Science and

Technology of Kazakhstan. – 2023. – № 1. – P. 28–36. – DOI 10.48081/MSMF5347

20 Bazenov, G. M. On the issue of the use of waterjet treatment in modern

mechanical engineering // Science and Technology of Kazakhstan. – 2021. – № 2. – P.

39-47. – DOI 10.48081/BDFH9117

Material received on 22.07.23.

СпиСок иСпользованных иСточников

1 Попелюх, А. И., Тюрин, А. Г., Плотникова, Н. В.

перспективные способы

обработки материалов: Учебное пособие – челябинск: изд-во ЮУрГУ, 2014. – 49 с.

2 Ablyaz, T. R., Vil’deman, V. E., Muratov, K. R. et al. Mechanical Properties

of Products after electric-Discharge Machining // Russian engineering Research, 2018

– Vol. 39 – Issue 10 – P. – 892–894.

3 Dudak, N. S., Itybaeva, G. T., Musina, Zh. K. et al. A New Pass-Through

Lathe Cutter // Russian engineering Research, 2014 – Vol. 34 – Issue 11 – P. 705–707.

4 Zvezdin, V. V., Khisamutdinov, R. M., Grechishnikov, V. A. et al. Laser

Machining of Tool Steels // Russian engineering Research, 2018 – Vol. 38 – Issue

12 – P. – 1038–1041.

5 Mukanov, R. B., Kasenov, A. Z., Itybaeva, G. T. et al. Face Turning of Holes

// Russian engineering Research, 2019 – Vol. 39 – Issue 1 – P. – 75–78.

6 El-Hofy, H. Advanced machining processes. Nontraditional and Hybrid machining

processes // The McGraw-Hill Companies. – 2005. – P. 32–46.

7 Ospantaev, M. K. Geometric parameters of a peakless cutting tool in the

instrumental coordinate system // Science and Technology of Kazakhstan. – 2022. –

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

№. 1. – P. 40–51. – DOI 10.48081/VYTH5824.

8 Мендалиева, С. И., Косатбекова, Д. Ш., Акулович, Л. М.

технология

и оборудование гидрорезки и

гидроабразивной обработки

в современном

машиностроении // вестник науки казахского агротехнического университета

имени С. Сейфуллина. – 2016. – № 2 (89). – С. 144–153.

9 Галиновский, А. Л., Тарасов, В. А., Елфимов, В. М.

Минимизация

технологической

себестоимости

гидроабразивного резания с учетом стоимостных

и технологических параметров процесса обработки // известия высших учебных

заведений «Машиностроение». – 2011. – № 4. – С. 46–54.

10 Степанова, Е. Ю., Кожус, О. Г., Барсуков, Г. В.

инновационные

технологии

резания сверхзвуковой

струей

жидкости: экономика, рынок, состояние

и перспективы развития // вестник Брянского государственного технического

университета. – 2017. – № 1 (54). – С. 243–253.

11 Степанов, Ю. С., Барсуков, Г. В., Алюшин, Е. Г.

Современные технологии

гидро-и гидроабразивной обработки заготовок // наукоемкие технологии в

машиностроении. – 2012. – № 6. – С. 15–20.

12 Тихонов, А. А.

повышение

эффективности процесса

гидроабразивной

обработки: дис. кандидат технических наук. Ростов-на-Дону. 2011. – 156 с.

13 Верченко, А. В., Тамаркин, М. А., Кишко, А. А.

исследование

шероховатости поверхности реза

при гидроабразивной резке

//

Advanced

Engineering Research. 2017. – № 2 (89). – С. 116–130.

14 Смирнов, М. И., Спиридонов, Ю. А., Карапетян, А. Р.

Современные

технологии резки листового стекла // Стекло и керамика. – 2011 – №1 – С. 6–10.

15 Galinovskiy, A. L., Izotov, N. A. An experimental study of hydroerosion

of surface of a chill metal under the influence of an abrasive-liquid ultra-jet // AIP

Conference Proceedings, 2021 – Vol. 2318. – Art.no 150013.

16 Dudak, N., Itybaeva, G., Kasenov, A. et al. Multi-flute drill-broach for precision

machining of holes // Scientia Iranica, 2019 – Vol. 26 – Issue 3 – P. 1415–1426.

17 Popov, V., Yanyushkin, A., Arkhipov, P. Combined electric diamond grinding

of materials prone to adhesive diffusive interaction // Materials Today: Proceedingsthis

link is disabled, 2019 – № 11 – P. 36–41.

18 Шпилев, В. В.

повышение эффективности процесса гидроабразивной

резки листовых деталей путем оптимизации режимов обработки и параметров

струи рабочей жидкости: дис. канд. техн. наук. Саратов, 2012. – 147 с.

19 Kasenov, A. Precision of hole processing by reamer-broaching // Science and

Technology of Kazakhstan. – 2023. – № 1. – P. 28–36. – DOI 10.48081/MSMF5347.

20 Bazenov, G. M. On the issue of the use of waterjet treatment in modern

mechanical engineering // Science and Technology of Kazakhstan. – 2021. – № 2. – P.

39–47. – DOI 10.48081/BDFH9117.

Г. М. Базенов1, *Г. Т. Итыбаева2, Р. Б. Кусаинов3,

А. Л. Галиновский4, Ж. К. Мусина5

1,2,3,5торайғыров университеті, Қазақстан Республикасы, павлодар қ.;

4н. Э. Бауман атындағы Мәскеу мемлекеттік техникалық университеті,

Ресей Федерациясы, Мәскеу қ.

Материал 22.07.23 баспаға түсті.

ГИДРОАБРАЗИВТІ КЕСУ КЕЗІНДЕГІ ШЫНЫНЫҢ

КЕРНЕУ-ДЕФОРМАЦИЯЛАУ КҮЙІ

Флоат шыныларды кесудің

ең кең таралған заманауи технологиясы-сына

тәрізді доғал

қимасы бар және қатты қорытпалардан жасалған кескіш

роликтермен кесу. Шыны кесу-бұл жарықтар жүйесін құру. Бұл жағдайда

кесу құралының әсерінен пайда болатын көптеген ұсақ сынықтар мен

жарықтардан тұратын жойылу аймағы сөзсіз қалыптасады.

Гидроабразивті өңдеу кезінде беткі және бүйірлік жарықтардың

тереңдігі артады. Сонымен қатар, бұл ортаңғы жарықтардың тереңдігі

бойынша таралуды арттырады. Бұл факторлар кесу

сапасын нашарлатады

және кесілмеген ақаулардың ықтималдығын арттырады. Мұның бәрі роликті

қайрау бұрышының, қысымның және кесу жылдамдығының кесу сапасы үшін

оңтайлы мәндерін қажет етеді. Бұл оңтайлы мәндер шыны қалыңдығына

және шыныдағы қалдық кернеулерге байланысты.

Кесу сапасы микрожарықтардың саны мен тереңдігіне байланысты

(әсіресе орташалар). Роликтің қайрау бұрышы азайған кезде, қысым және

кесу жылдамдығы жоғарылағанда, ортаңғы жарықтардың орташа тереңдігі

артады, бұл кесу сапасына оң әсер етеді.

Жүргізілген зерттеулер нәтижесінде гидроабразивті кесудің (өңдеудің)

оңтайлы параметрлері анықталды, атап айтқанда роликті қайрау бұрышы

(110°-160°), қысым (35Н) және кесу жылдамдығы, бұл кесу сапасына және

ақау пайызының төмендеуіне жағымды әсер етеді.

Кілтті сөздер: кернеулі деформацияланатын күй, шыны, гидроабразивті

кесу, ролик, қайрау, қайрау бұрышы.

Г. М. Базенов1, *Г. Т. Итыбаева2, Р. Б. Кусаинов3,

А. Л. Галиновский4, Ж. К. Мусина5

1,2,3,5торайгыров университет, Республика казахстан, г. павлодар;

4Московский государственный технический университет

имени н. Э. Баумана, Российская Федерация, г. Москва.

Материал поступил в редакцию 22.07.23.

НАПРЯЖЕННО-ДЕФОРМИРУЕМОЕ СОСТОЯНИЕ

СТЕКЛА ПРИ ГИДРОАБРАЗИВНОЙ РЕЗКЕ

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Наиболее распространенной современной технологией раскроя флоатстекла

является резка режущими роликами, которые имеют клиновидное

тупоугольное сечение и изготавливаются из твердых сплавов. Резка стекла

является созданием системы трещин. При этом неизбежно образуется

область разрушения, состоящая из большого количества мельчайших выколок

и трещин, возникающих под действием режущего инструмента.

При гидроабразивной обработке увеличивается глубина поверхностных

и боковых трещин. Кроме того, при этом увеличивается разброс по глубине

срединных трещин. Эти факторы ухудшают качество реза и увеличивают

вероятность разлома не по резу. Все это приводит к тому, что необходимы

оптимальные для качества реза значения угла заточки ролика, давления и

скорости реза. Эти оптимальные значения зависят от толщины стекла и

остаточных напряжений в стекле.

Качество реза зависит от количества и глубины микротрещин (в

особенности срединных). При уменьшении угла заточки ролика, увеличении

давления и скорости реза средняя глубина срединных трещин увеличивается,

что положительно влияет на качество реза.

В результате проведённых исследований установлены оптимальные

параметры гидроабразивной резки (обработки), а именно угла заточки ролика

(110°–160°), давления (35Н) и скорости реза, что благоприятно влияет на

качество реза и уменьшение процента брака.

Ключевые слова: напряженно-деформируемое состояние, стекло,

гидроабразивная резка, ролик, заточка, угол заточки.

i Надоели баннеры? Вы всегда можете отключить рекламу.