Научная статья на тему 'Способы управления элементами рыбохозяйственных систем и рыбохозяйственными процессами'

Способы управления элементами рыбохозяйственных систем и рыбохозяйственными процессами Текст научной статьи по специальности «Экономика и бизнес»

CC BY
184
32
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
ЭЛЕМЕНТЫ РЫБОХОЗЯЙСТВЕННЫХ СИСТЕМ / УПРАВЛЕНИЕ ГИДРОБИОНТАМИ / УПРАВЛЕНИЕ РЫБОХОЗЯЙСТВЕННЫМИ ПРОЦЕССАМИ / АДАПТИВНОЕ УПРАВЛЕНИЕ / ELEMENTS OF FISHERY MANAGEMENT SYSTEMS / MANAGEMENT OF HYDROBIONTS / MANAGEMENT OF FISHERY PROCESSES / ADAPTIVE MANAGEMENT

Аннотация научной статьи по экономике и бизнесу, автор научной работы — Божко Андрей Петрович, Погожев Олег Александрович, Мельников Александр Викторович

Управление рыбохозяйственными системами предусматривает управление гидробионтами, направленное на изменение их положения и (или) степени подвижности с целью увеличения эффективности того или иного рыбохозяйственного процесса, и управление промыслом, служащее для того, чтобы объект лова попал в зону облова, а также для снижения вероятности его ухода из этой зоны. Показано, что управление гидробионтами различается по способу передачи информации и ее биологической эффективности, виду и принципу действия систем управления, биологической значимости внешнего воздействия, характеру реакции на раздражитель, селективности управления и т. д. Описаны особенности каждого варианта управления. С учетом информационного подхода рассмотрены методы оценки особенностей способов управления элементами рыбохозяйственных систем. Управление используют на различных этапах рыбохозяйственного процесса: на различных этапах лова, формирования стада промысловых гидробионтов и т. д. Также раскрываются некоторые вопросы применения методов адаптивного управления рыбохозяйственными процессами в связи с высокой степенью начальной неопределенности исходных данных и состояния системы. Принципом функционирования такого рода систем управления процессами является постепенное накопление и использование информации для достижения некоторого оптимального состояния и поведения системы при наличии начальной неопределенности, например при изменяющихся внешних условиях. Системы управления этого типа адаптируются в процессе настройки и эксплуатации. В ходе такой адаптации обычно изменяются коэффициенты, параметры и структура системы, в некоторых случаях алгоритм функционирования, управляющие воздействия и т. д.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по экономике и бизнесу , автор научной работы — Божко Андрей Петрович, Погожев Олег Александрович, Мельников Александр Викторович

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

WAYS TO MANAGE ELEMENTS OF FISHERIES MANAGEMENT SYSTEMS AND FISHERIES MANAGEMENT PROCESSES

The management of fishery systems provides for the management of aquatic organisms aimed at changing their position and (or) the degree of mobility in order to increase the efficiency of a particular fishery process, and management of the fishery to ensure that the catching object falls into the catching zone, as well as to decrease probability of his withdrawal from this zone. It is shown that the management of hydrobionts differs: by the way information is transmitted and its biological effectiveness; types and operation principles of the control systems; biological significance of external influence; reaction to the stimulus; selectivity of management, etc. The features of each control option are described. Methods of assessing the features of management of elements of fishery systems are considered, taking into account the information approach. Management is used at the different stages of the fishery process: at various stages of fishing, forming schools of commercial hydrobionts and so on. The paper describes some aspects of applying adaptive management methods to fisheries processes in connection with a high degree of uncertainty of the initial data and of the system condition. The principle of functioning of such systems of process control is the gradual accumulation and use of information to achieve some optimal state and behavior of the system in the light of initial uncertainty, e.g. changing external conditions. Control systems of this type are adapted in the process of adjustment and operation. In the course of such adaptation the coefficients, parameters and structure of the system usually change, in some cases the algorithm of functioning, control actions, etc. change too.

Текст научной работы на тему «Способы управления элементами рыбохозяйственных систем и рыбохозяйственными процессами»

DOI: 10.24143/2073-5529-2018-1-84-89 УДК 639.2.081.117

А. П. Божко, О. А. Погожее, А. В. Мельников

СПОСОБЫ УПРАВЛЕНИЯ ЭЛЕМЕНТАМИ РЫБОХОЗЯЙСТВЕННЫХ СИСТЕМ И РЫБОХОЗЯЙСТВЕННЫМИ ПРОЦЕССАМИ

Управление рыбохозяйственными системами предусматривает управление гидробионтами, направленное на изменение их положения и (или) степени подвижности с целью увеличения эффективности того или иного рыбохозяйственного процесса, и управление промыслом, служащее для того, чтобы объект лова попал в зону облова, а также для снижения вероятности его ухода из этой зоны. Показано, что управление гидробионтами различается по способу передачи информации и ее биологической эффективности, виду и принципу действия систем управления, биологической значимости внешнего воздействия, характеру реакции на раздражитель, селективности управления и т. д. Описаны особенности каждого варианта управления. С учетом информационного подхода рассмотрены методы оценки особенностей способов управления элементами рыбохозяйственных систем. Управление используют на различных этапах рыбохозяйственного процесса: на различных этапах лова, формирования стада промысловых гидробионтов и т. д. Также раскрываются некоторые вопросы применения методов адаптивного управления рыбохозяйственными процессами в связи с высокой степенью начальной неопределенности исходных данных и состояния системы. Принципом функционирования такого рода систем управления процессами является постепенное накопление и использование информации для достижения некоторого оптимального состояния и поведения системы при наличии начальной неопределенности, например при изменяющихся внешних условиях. Системы управления этого типа адаптируются в процессе настройки и эксплуатации. В ходе такой адаптации обычно изменяются коэффициенты, параметры и структура системы, в некоторых случаях - алгоритм функционирования, управляющие воздействия и т. д.

Ключевые слова: элементы рыбохозяйственных систем, управление гидробионтами, управление рыбохозяйственными процессами, адаптивное управление.

Введение

Оптимальное управление рыбохозяйственными системами и рыбохозяйственными процессами является ключевой целью рыбохозяйственной кибернетики. Описание способов управления гидробионтами, условиями внешней среды в водоемах и техническими средствами рыбохозяйственных систем рассматриваются в ряде работ В. Н. Мельникова и А. В. Мельникова [1-3], а также в работах других ученых [4-6]. В этой же работе покажем, как подходить к оценке особенностей способов управления элементами рыбохозяйственных систем с учетом того, что такое управление связывают с передачей и обработкой информации и рассматривают его на различных этапах рыбохозяйственного процесса, например на различных этапах лова, промысла, формирования стада промысловых гидробионтов и т. д.

С учетом того, что рыбохозяйственные системы характеризуются высокой степенью начальной неопределенности, рассмотрим также некоторые вопросы применения методов адаптивного управления рыбохозяйственными процессами.

Управление элементами рыбохозяйственных систем

Управление гидробионтами в рыбохозяйственных системах обычно направлено на изменение их положения и (или) степени подвижности с целью увеличения эффективности того или иного рыбохозяйственного процесса. В системах, связанных с промыслом, такое управление служит в основном для того, чтобы объект лова попал в зону облова, а также для снижения вероятности его ухода из этой зоны.

Управление гидробионтами различают [5]:

- по способу передачи информации и ее биологической эффективности;

- виду и принципу действия систем управления;

- биологической значимости внешнего воздействия;

- характеру реакции на раздражитель;

- селективности управления и т. д.

Способ передачи информации гидробионтам может быть контактным и неконтактным. Контактный способ передачи предусматривает соприкосновение гидробионтов с элементами орудий лова. При неконтактной передаче информации ее носителем служат физические поля различной природы (световое, электрическое, акустическое и т. д.). По признаку эффективности действия возможно энергетическое воздействие на объект лова (когда степень воздействия пропорциональна интенсивности раздражителя) и управление при информационном характере воздействия (когда степень воздействия в большей степени зависит от количества и вида информации, получаемой гидробионтами).

Поведением и распределением гидробионтов в водоеме в рыбохозяйственных системах можно управлять:

- с использованием ориентирующих, направляющих и задерживающих свойств физических полей или различных механических преград (при контактном управлении);

- путем существенного изменения двигательной активности гидробионтов;

- путем минимизации воздействия элементов орудия лова на гидробионтов;

- снижением действия на гидробионтов вредных посторонних факторов;

- путем дезориентации гидробионтов.

Характер перемещения гидробионтов при управлении с использованием ориентирующих и направляющих свойств физических полей и контактных воздействий может быть свободным, частично принудительным или полностью принудительным.

Свободное перемещение гидробионтов наблюдается в случаях, когда они определяют направление в физическом поле, используя ориентирующие свойства поля. Частично или полностью принудительное перемещение гидробионтов наблюдается при их взаимодействии с подвижными или неподвижными элементами рыбохозяйственных систем (механические преграды, гидродинамические поля и электрические поля постоянного тока). Использование для целей управления задерживающих функций механических преград характерно для объячеивающих, отцеживающих и крючковых орудий лова. При использовании физических полей для реализации задерживающих функций различают управляющие воздействия при отрицательной и положительной реакции гидробионтов. В первом случае гидробионты в основном задерживаются на границе поля, во втором - заходят в зону действия поля и остаются в нем.

В практике лова нередко возникают ситуации, когда важно предотвратить изменение поведения гидробионтов или сохранить их пространственное положение как наиболее благоприятное для проведения тех или иных промысловых операций. Наиболее перспективным в этом случае, очевидно, является управление по принципу наименьшего воздействия. В качестве примера можно привести ситуацию, когда нужно предотвратить обнаружение рыбой орудия лова, сохраняя ее поведение таким же, как и в естественных условиях. Реализация управления по принципу наименьшего воздействия может быть достигнута различными способами:

- снижением интенсивности или параметров физических полей;

- изменением формы и размеров зоны расположения гидробионтов;

- использованием дополнительных источников физических полей, маскирующих поля элементов орудий лова и позволяющих снизить вероятность изменения поведения или распределения гидробионтов;

- изменением условий внешней среды и т. д.

В большинстве случаев для достижения необходимого качества управления поведением и распределением гидробионтов необходимо сочетание различных способов управления и физических полей.

Управлять численностью, размерным, видовым и половым составом скоплений промысловых рыб можно различными способами или их сочетаниями. При этом выбор способа или сочетания способов зависит от вида управляющего воздействия. Например, для случая естественного воспроизводства, особенно в крупных водоемах, основными и часто единственными способами управления численностью и составом гидробионтов являются способы регулирования интенсивности и селективности рыболовства.

Управление способом лова подразумевает создание зоны облова необходимых размеров и формы в заданном месте водоема и уменьшение вероятности ухода рыбы из этой зоны. Для

осуществления такого управления используют следующие воздействия: выбор места и времени лова; изменение положения, формы и рабочих размеров орудия лова; изменение только формы и рабочих размеров орудия лова. При движении орудия лова по неизменной траектории, например в случае конусного подхвата или залавливающего устройства рыбонасоса, управление заключается в выполнении закона движения с определенными скоростями по заданной траектории. Если траектория движения определяется самими принципами управления, например в случае перемещения трала, то траекторию называют нежесткой. В случае отклонения орудия лова от заданной траектории появляется ошибка наведения, которую устраняют в процессе управления.

Исследования в области анализа и оптимизации способов управления элементами рыбо-хозяйственных систем, безусловно, являются актуальными и позволяют повысить эффективность эксплуатации промысловых гидробионтов.

Адаптивное управление рыбохозяйственными процессами

В теории и практике управления рыбохозяйственными процессами часто встречаются ситуации недостаточного количества первоначальной информации. Одним из перспективных способов решения подобного рода задач является применение адаптивных систем управления.

Принципом функционирования такого рода систем управления процессами является постепенное накопление и использование информации для достижения некоторого оптимального состояния и поведения системы при наличии начальной неопределенности, например при изменяющихся внешних условиях. Системы управления этого типа адаптируются в процессе настройки и эксплуатации. В процессе такой адаптации обычно изменяются коэффициенты, параметры и структура системы, в некоторых случаях - алгоритм функционирования, управляющие воздействия и т. д.

Коэффициенты в модели процесса изменяются, поскольку их величины, как правило, являются некоторыми средними и отличаются от реальных мгновенных значений.

Структура системы может изменяться из-за введения ограничений на переменные управления и переменные состояния. После того, как переменная управления превысит граничное значение, она приравнивается к заданному пределу и исключается из целевой функции и из модели процесса. Накладываемые на переменные управления и переменные состояния ограничения изменяют количество переменных управления.

Колебания условий внешней среды, в рамках функционирования модели, приводят к колебаниям переменных, влияющих на управляемый процесс как возмущения.

Сущность адаптивного управления процессом заключается в адаптации модели управления к изменению процесса, откуда и возникло название «адаптивное управление».

Особенностью адаптивных моделей является то, что входящие в них коэффициенты определяют заново после каждого изменения выходной величины.

Существует ряд способов адаптивного управления установившимися процессами [3]. Один из них отличается отсутствием обратной связи в модели процесса. В этом случае с помощью компьютера на основе экспериментальных данных определяют новые значения коэффициентов, входящих в модели процессов. Изменение коэффициентов необходимо при выходе процесса из изначально заданного диапазона линейности. При этом для вновь задаваемых диапазонов необходимо определить новые значения коэффициентов. Таким же образом задача решается в случае изменения условий внешней среды в районах промысла, характеристик орудий лова или элементов вспомогательных систем или параметров скоплений объекта лова.

Другой способ адаптивного управления связан с применением моделей процесса с обратной связью в приращениях. В отличие от моделей, устанавливающих зависимости между переменными состояния и переменными управления, модели процессов этого вида устанавливают зависимость между изменениями переменных состояния и переменных управления. Суть способа заключается в последовательной корректировке переменных управления с целью уменьшения ошибок управления. При этом точность модели процесса не влияет на скорость достижения оптимума.

Способ адаптивного управления с обратной связью в приращениях, в отличие от управления без обратной связи, не требует знания точного значения коэффициентов, входящих в модели процессов, для успешного оптимального управления процессами.

Еще один из способов адаптивного управления предусматривает приспособление к изменениям в структуре модели процесса, связанным с ограничениями на переменные управления и переменные состояния процесса.

В ряде случаев целесообразно вводить ограничения только на переменные управления, не ограничивая переменные состояния. Для решения задачи необходимо в ограничения подставлять уравнения модели процесса. В случае нелинейных ограничений целевую функцию, которую необходимо оптимизировать, изменяют, используя множители Лагранжа. Необходимо отметить, что введение ограничений на переменные управления изменяет как структуру модели, так и целевую функцию.

При решении задачи возможно два случая.

В первом случае каждый раз, когда переменная управления выходит за заданные границы, структура модели процесса и целевая функция меняются и задачу необходимо решать заново. Сложность решения возрастает с ростом числа переменных управления.

Во втором случае уравнения оптимального управления непосредственно используют для определения значений переменных управления. После этого оптимальные значения переменных управления сравнивают с ограничениями на них. Если параметры оптимального управления выходят за заданные границы, величину управляющей переменной приравнивают к константе, равной соответствующему пределу.

Адаптивное управление в случае изменения условий внешней среды заключается в адаптации модели к изменению неконтролируемых переменных.

Если математическая модель неконтролируемой переменной отсутствует, то можно без модификаций использовать способ управления с обратной связью для учета влияния на процесс неконтролируемой переменной.

В случае, когда модели процесса для описания неконтролируемых переменных и переменных состояния разработаны, для управления процессом с переменными характеристиками можно применить комбинированный подход. Адаптивное управление с обратной связью целесообразно использовать для учета изменений процесса, т. е. изменений, связанных с отклонением реальных мгновенных значений коэффициентов модели процесса от применяемых средних значений. Управление без обратной связи используют в основном для учета влияния на процесс неконтролируемых переменных.

Настройка адаптивных моделей управления с учетом влияния неконтролируемых внешних возмущений, на наш взгляд, возможна с применением вероятностной оценки полученных данных. Например, измерения из числа новых можно учитывать с вероятностью 1, а более ранние измерения - с вероятностью 0. В этом случае вновь полученная информация накапливается, а предыдущая отбрасывается или корректируется с использованием коэффициента старения, что повышает адекватность адаптивных моделей.

Управление с адаптацией можно применить также в системах с оператором, который в процессе работы обучается управлению и накапливает информацию и опыт.

Заключение

В работе показано, как подходить к оценке особенностей способов управления элементами рыбохозяйственных систем с учетом того, что такое управление связывают с передачей и обработкой информации и рассматривают его на различных этапах рыбохозяйственного процесса, например на различных этапах лова, промысла, формирования стада промысловых гидробионтов и т. д.

Также рассмотрены некоторые вопросы применения методов адаптивного управления рыбохозяйственными процессами в контексте высокой степени начальной неопределенности исходных данных и состояния системы.

СПИСОК ЛИТЕРА ТУРЫ

1. Мельников А. В. Оптимизация регулирования рыболовства как кибернетическая проблема. Астрахань, Астрыбвтуз. Деп. в ЦНИИТЭИРХ. 1988, рх-936. 42 с.

2. Мельников В. Н. Рыбохозяйственная кибернетика. Астрахань: Изд-во АГТУ, 1998. 312 с.

3. Мельников В. Н., Мельников А. В. Экологическая кибернетика: моногр. в 2 ч. Астрахань: Изд-во АГТУ, 2010. 382 с.; 424 с.

4. Васильев Д. А. Актуальные проблемы анализа параметров систем запас-промысел. М.: Изд-во ВНИРО, 2000. 256 с.

5. Джефферс Н. Р. Системный анализ и стратегии моделирования в экологии // Математические модели загрязнения среды. М.: Мир, 1981. 472 с.

6. Коган А. Б., Наумов Н. П. и др. Биологическая кибернетика. М.: Высш. шк., 1976. 384 с.

Статья поступила в редакцию 16.06.2017

ИНФОРМАЦИЯ ОБ АВТОРАХ

Божко Андрей Петрович - Россия, 414056, Астрахань; Астраханский государственный технический университет; студент, направление подготовки «Промышленное рыболовство»; [email protected].

Погожев Олег Александрович — Россия, 414056, Астрахань; Астраханский государственный технический университет; студент, направление подготовки «Промышленное рыболовство»; [email protected].

Мельников Александр Викторович — Россия, 414056, Астрахань; Астраханский государственный технический университет; д-р техн. наук, профессор; профессор кафедры аквакультуры и рыболовства; [email protected].

A. P. Bozhko, O. A. Pogozhev, À. V. Melnikov

WAYS TO MANAGE ELEMENTS OF FISHERIES MANAGEMENT SYSTEMS AND FISHERIES MANAGEMENT PROCESSES

Abstract. The management of fishery systems provides for the management of aquatic organisms aimed at changing their position and (or) the degree of mobility in order to increase the efficiency of a particular fishery process, and management of the fishery to ensure that the catching object falls into the catching zone, as well as to decrease probability of his withdrawal from this zone. It is shown that the management of hydrobionts differs: by the way information is transmitted and its biological effectiveness; types and operation principles of the control systems; biological significance of external influence; reaction to the stimulus; selectivity of management, etc. The features of each control option are described. Methods of assessing the features of management of elements of fishery systems are considered, taking into account the information approach. Management is used at the different stages of the fishery process: at various stages of fishing, forming schools of commercial hydrobionts and so on. The paper describes some aspects of applying adaptive management methods to fisheries processes in connection with a high degree of uncertainty of the initial data and of the system condition. The principle of functioning of such systems of process control is the gradual accumulation and use of information to achieve some optimal state and behavior of the system in the light of initial uncertainty, e.g. changing external conditions. Control systems of this type are adapted in the process of adjustment and operation. In the course of such adaptation the coefficients, parameters and structure of the system usually change, in some cases the algorithm of functioning, control actions, etc. change too.

Key words: elements of fishery management systems, management of hydrobionts, management of fishery processes, adaptive management.

REFERENCES

1. Mel'nikov A. V. Optimizatsiia regulirovaniia rybolovstva kak kiberneticheskaia problema [Streamlining regulation of fisheries as a cybernetic model]. Astrakhan, Astrybvtuz. Dep. v TsNIITEIRKh, 1988, rkh-936. 42 p.

2. Mel'nikov V. N. Rybokhoziaistvennaia kibernetika [Cybernetics of fisheries]. Astrakhan, Izd-vo AGTU, 1998. 312 p.

3. Mel'nikov V. N., Mel'nikov A. V. Ekologicheskaia kibernetika: monografiia v 2 chastiakh [Environmental cybernetics. Part 1. 2]. Astrakhan, Izd-vo AGTU, 2010. 382 p.; 424 p.

4. Vasil'ev D. A. Aktual'nye problemy analiza parametrov sistem zapas-promysel [Current issues of analyzing parameters of the "stock-fishing" systems]. Moscow, Izd-vo VNIRO, 2000. 256 p.

5. Dzheffers N. R. Sistemnyi analiz i strategii modelirovaniia v ekologii [System analysis and strategies of modelling in ecology]. Matematicheskie modeli zagriazneniia sredy. Moscow, Mir Publ., 1981. 472 p.

6. Kogan A. B., Naumov N. P. i dr. Biologicheskaia kibernetika [Biological cybernetics]. Moscow, Vysshaia shkola Publ., 1976. 384 p.

Bozhko Andrey Petrovich — Russia, 414056, Astrakhan; Astrakhan State Technical University; Student, training area "Industrial Fishery"; [email protected].

Pogozhev Oleg Aleksandrovich — Russia, 414056, Astrakhan; Astrakhan State Technical University; Student, training area "Industrial Fishery"; [email protected].

Melnikov Alexander Viktorovich — Russia, 414056, Astrakhan; Astrakhan State Technical University; Doctor of Technical Sciences, Professor; Professor of the Department of Aquaculture and Fishery; [email protected].

The article submitted to the editors 16.06.2017

INFORMATION ABOUT THE AUTHORS

i Надоели баннеры? Вы всегда можете отключить рекламу.