УДК 550.831
СОВРЕМЕННЫЕ ОТЕЧЕСТВЕННЫЕ ПРОГРАММНЫЕ КОМПЛЕКСЫ ИНТЕРПРЕТАЦИИ ГРАВИМАГНИТНЫХ ДАННЫХ
О.М. ВЕЛЬТИСТОВА, Е.Н. МОТРЮК
Ухтинский государственный технический университет, г. Ухта [email protected]
В статье дан анализ современных подходов к интерпретации гравимагнитных данных. Приведены характеристики популярных отечественных программных продуктов. КОСКАД 3D, СИГМА 3D, VECTOR и GCIS применяются для решения задач обработки (преобразований потенциальных полей, таких как фильтрация, трансформация, и т.д.), решения прямых и обратных задач. Рассматриваются особенности разработанных в УГТУ нового программного комплекса GeoVIP и модуля EvDynInversion, обеспечивающих построение адекватных моделей сложнопостроенных сред в условиях недостатка геологогеофизической информации на основе критериального и эволюционнодинамического принципов решения обратных задач.
Ключевые слова: гравитационные и магнитные данные, обратные задачи, критерии оптимальности, программные продукты, технологии
O.M.VELTISTOVA, E.N.MOTRYUK. MODERN DOMESTIC SOFTWARE FOR GRAVIMAGNETIC DATA INTERPRETATION
The paper deals with the analysis of modern approaches to gravimagnetic data interpretation. It also gives specifications of several most popular domestic software products. КОСКАД 3D, СИГМА 3D, VECTOR и GCIS are applied to solve processing tasks (potential fields modifying, such as filtering, transformation etc.) as well as direct and inverse problems. Charaсteristic features of a new bundled software GeoVIP and the module EvDynInversion developed at Ukhta State Technical University and providing creation of adequate models of complex media at the lack of geological and geophysical information on the basis of criterial and evolutional-dynamic principles of inverse problems solution are considered.
Key words: Interpretation of gravity and magnetic data, processing tasks, inverse problems, optimality criteria, software products, technologies
Целью интерпретации геолого-геофизических данных является извлечение полезной информации из имеющихся геолого-геофизических данных, главным образом, для построения геологических моделей сред изучаемых районов при проведении прогноза нефтегазоносности. Необходимость увеличения запасов нефти и газа и повышения эффективности работ, связанных с разработкой месторождений полезных ископаемых, требует формирования надежных моделей эффективных параметров. Развитие компьютерной техники позволяет создавать программные продукты, оперирующие с большим объемом информации и решающие сложные задачи с минимальной затратой времени.
В статье приводится краткий анализ методов и наиболее распространенных отечественных компьютерных технологий интерпретации гравимагнитных данных. В ранее опубликованных материалах не проводилось совместное описание методик и технологий обработки и геологического истолкования потенциальных полей. Отдельно рассматривались различные способы обработки, методы решения обратных задач и подходы, основанные на использовании определенного математического аппарата.
Критический анализ традиционных методов решения обратных задач гравиметрии дан в статье
А.И. Кобрунова [1], где выделяются два подхода: один основан на решении обратных задач в рамках призматических конструкций, другой - на пересчете трансформаций поля в единицы плотности. Отмечены проблемы, возникающие при применении их на сложных средах. В первом случае возникают эффекты скрытой эквивалентности, во втором -полученные модели не обеспечивают учет реальной информации и не соответствуют наблюденному гравитационному полю с заданной точностью. Предлагается применение критериальных и эволюционно-динамических принципов при решении обратной задачи, которые позволяют максимально использовать априорную информацию об изучаемом объекте и повысить достоверность построений.
Одним из важнейших составляющих элементов в методах интерпретации является аппарат теории вероятностей и математической статистики. Обзор статистических методов комплексной интерпретации геолого-геофизической информации приведен в работе А.А. Никитина [2], где автор отмечает ведущую роль статистических методов при определении геологической природы объектов по ком-
плексу геофизических данных (фильтрация геополей, методы распознавания образов и др.) и при оценке количественных параметров объекта. Особое внимание уделяется комплексной интерпретации, которая позволяет уменьшить неоднозначность и повысить достоверность построений и реализуется путем объединения решений обратных задач каждого метода с использованием корреляционных зависимостей между физическими характеристиками изучаемой среды и согласования геометрии контактных поверхностей (В.Н. Глазнев). Соответствие полученных моделей реальной среде можно оценить функцией, в которой участвуют элементы корреляционной матрицы отклонения модельного и наблюденного полей. Имеющиеся методы истолкования геолого-геофизических данных предназначены для решения широкого круга задач.
Основные задачи, решаемые при интерпретации гравиметрических данных
Традиционное разделение интерпретации на качественную и количественную позволяет выделить два направления.
Первое направление включает в себя анализ различных видов преобразования поля. К данному направлению относятся задачи, включающие фильтрацию, способы аналитического продолжения, метод особых точек (В.Н. Страхов, Г.Я. Голиздра, А.В. Цирульский, Г.М. Воскобойников, В.М. Березкин и др.), аналитические F- и S-аппроксимации полей (В.Н. Страхов, И.А. Керимов, И.Э. Степанова, А.С. Долгаль), анализ спектрального разложения полей, корреляционно-регрессионный и факторный анализы (К.В. Гладкий, Ф.М. Гольцман, В.И. Шрайб-ман, М.С. Жданов, О.В. Витвицкий, С.А. Серкеров,
A.А. Никитин и др.), вейвлет-анализ (А.С. Долгаль, Э.В. Утемов, М.Б. Штоколенко, А.В. Пугин). Проведение таких работ позволяет проводить качественную интерпретацию, устанавливать особенности аномалии, оценивать глубину ее залегания.
Второе направление - это построение физико-геологических моделей сред, основанное на решении обратных задач с применением различных методов подбора (В.И. Старостенко, В.Н. Страхов,
B.М. Новоселицкий, Е.Г. Булах и др.), методов аналитического решения (В.Н. Страхов, А.И. Кобрунов, Ю.И. Блох и др.), спектральном анализе в решении обратных задач (Л.Т. Бережная, М.А. Телепин, О.И. Журавлева и др.), использовании методов регуляризации для решения неустойчивых обратных задач (В.И. Старостенко, С.М. Оганесян), теории вероятностей, математической статистики (В.Н. Глазнев, Ф.М. Гольцман, Т.Б. Калинина и др.), нейронных сетей и генетических алгоритмов (И.И. Приезжев) и других разделов прикладной математики. В зависимости от поставленных геологических задач, наличия априорной информации используются различные способы получения результатов и выполнения адекватных реальной среде построений.
Для прогнозирования залежей углеводородов наибольший интерес имеет второе направление, основанное на представлении объектов и полей как
функциональных метрических пространств. В данном типе задач строится содержательный класс единственности (модельный класс), учитывающий априорную информацию о возможном решении; выбирается критерий качества подбора наблюденного поля полем модели из заданного класса с последующей разработкой алгоритма оптимизации модели [6, 7]. Модельный класс - множество возможных элементарных тел т, аппроксимирующих геологическую среду. Для каждого т расчет гравитационного поля осуществляется при помощи оператора прямой задачи А(т) = и. Критерий подбора наблюденного и рассчитанного полей представлен минимизацией функционала J(и , А(т)),
характеризующего степень согласия наблюденного ин и рассчитанного гравитационного полей. Вид
функционала определяется имеющимися предположениями о виде помех в исходном поле. Существуют различные способы представления критерия: интегральные квадратичные критерии оптимальности, корреляционные критерии оптимальности, равномерные критерии оптимальности и др. Алгоритм решения обратной задачи есть способ осуществления минимизации функционала J(и , А(т)), в
результате чего определяется искомая плотностная
* 1-ч
модель т . В зависимости от того, как задано гравитационное поле и с какой точностью, а также от таких факторов, как наличие регионального фона, влияния пород, залегающих вне области поиска решения, и т.п., принимается различный вид функционала J(u А(т)). Первые методы решения обратных задач (методы подбора) были основаны на аппроксимации среды набором тел правильной формы (призмы, уступы и т.д.). При использовании данного подхода возникают эффекты скрытой эквивалентности, когда полученное решение значительно отличается от исходной модели. Существуют методы решения обратных задач, позволяющие уменьшить возникновение этих эффектов, в частности, базирующиеся на критериальном и эволюционно-динамическом подходах.
Известно, что обратная задача в геофизике не может быть решена однозначно. Эта неоднозначность решения имеет две стороны. Одна из них касается качественного определения геологической природы геофизических аномалий, вторая - получения количественных характеристик геометрии объекта исследований: формы, размеров, глубины и других элементов залегания. Для сужения неоднозначности в настоящее время интерпретация гравиметрических материалов проводится на основе комплексного подхода к решению поставленных геологических задач с учетом использования априорной геолого-геофизической информации. Применение критериального подхода при решении системы обратных задач для разных методов носит название согласованно-критериального подхода [1, 7].
На современном этапе развивается эволюционно-динамический подход к решению обратных задач геофизики [1, 8]. В качестве составляющей
критерия оптимальности используются уравнения движения материи для распределенных параметров и системы поверхностей, управляемых геодинами-ческими параметрами (к числу которых относятся скорости дилатации, сдвиговых деформаций и другие). Разработанные принципы и выведенные уравнения позволяют включать в процесс решения обратной задачи априорную информацию о сценариях эволюции системы, ее возможном генезисе.
Наиболее распространенные отечественные программные продукты, предназначенные для интерпретации гравимагнитных данных
Рассмотрим методы, на которых основаны используемые геофизиками технологии интерпретации гравимагнитных данных и для решения каких задач они применяются. Обсудим возможные пути улучшения качества решения. Среди наиболее часто применяемых отечественных программных разработок можно выделить: КОСКАД 3D, СИГМА 3D, VECTOR, GCIS.
Компьютерная технология статистического и спектрально-корреляционного анализа данных КОСКАД 3D (Авторы: А.А. Никитин, А.В. Петров, А.С. Алексашин, http://www.coscad3d.ru/). В основе функционального наполнения технологии лежат работы Г.А. Тархова, А.А. Никитина, В.И. Аронова, С.А. Серкерова, Д.А. Родионова, Г.В. Демуры и др., в которых впервые был обозначен спектр оригинальных геологических задач, решаемых с помощью вероятностно-статистических методов. В комплекс КОСКАД 3D входят программы обработки и интерпретации геолого-геофизической информации, базирующиеся на оценке и анализе статистических, градиентных и спектрально-корреляционных характеристиках геофизических полей, методах линейной оптимальной фильтрации, способах обнаружения слабых аномалий, алгоритмах классификации и распознавания [9]. Программная реализация методов межпрофильной корреляции, самонастраиваю-
щейся фильтрации, обратных вероятностей и их многомерных аналогов позволяет успешно решать задачу обнаружения слабых сигналов на фоне соизмеримых по амплитуде помех (рис. 1). Математический аппарат, основанный на вейвлет-анализе, позволил использовать спектральные характеристики для разложения нестационарных полей, а применение процедур статистического зондирования потенциальных полей дает возможность опреде-
лять глубину аномального объекта. Последней разработкой в этом программном комплексе является программный модуль PRMOD. Программа предназначена для интерактивного построения гравимагнитных моделей геологического разреза земной коры. Полученные результаты предназначены, главным образом, для построения начального приближения к решению обратных задач.
Система VECTOR (Авторы: В.М. Новоселиц-кий, В.А. Кутин, М.С. Чадаев, С.Г. Бычков, Г.В. Про-столупов, http://www.mi-perm.ru/gp/index.html). В ней реализован метод обработки и интерпретации потенциальных полей, основанный на трансформациях векторов полного горизонтального градиента [10]. Векторная трансформация и сканирование поля векторов с процедурой их последующего интегрирования (восстановления поля) позволяют провести детальное разделение источников аномалий в плане и по глубине с привязкой каждого источника к шкале эффективных глубин. Результатом таких преобразований является модель строения геологической среды, представленная системой срезов приближенных распределений плотности или намагниченности. Следует отметить, однако, что при этом связь истинных глубин с радиусами скользящих окон интегрирования градиента неоднозначна. Использование компьютерной системы VECTOR позволяет проводить пересчет поля на горизонтальную плоскость, трехмерную интерполяцию и т.д. (рис. 2). В зависимости от выбранных параметров обработки можно выделить гравитационный эф-
Рис. 1. Двумерная фильтрация в системе КОСКАД 3D: гравитационное поле, трендовая компонента, локальная компонента.
- EKElJKHfrfcl
Рис. 2. a) Сравнение разделительных возможностей системы VECTOR и стандартных трансформаций поля, б) Вертикальное сечение трехмерной диаграммы остаточного гравитационного поля Решетниковской площади в системе VECTOR.
фект в наземном поле от любого горизонтального слоя и представить гравитационное поле в объемном виде. Реализуя возможности интерпретации потенциальных полей в системе VECTOR с использованием априорной геологической информации, можно успешно решать сложные геологические задачи, определять глубины залегания источников аномалий и идентифицировать их с определенными геологическими объектами.
Коллективом лаборатории геопо-тенциальных полей ГИ УрО РАН разработан метод решения прямой задачи гравиразведки в рамках принципа контактных поверхностей, реализована возможность решения прямых и обратных задач гравиметрии при кусочнопризматической аппроксимации геологических объектов на основе быстрого вейвлет-преобразования. Отдельно следует отметить монтажный метод решения трехмерной нелинейной обратной задачи гравиметрии (В.Н.Страхов, П.И.Балк, А.С.Долгаль), который основан на функционально-аналитическом и вероятностно-статистическом подходах и приводит к компактному множеству возможных решений. Данный вид алгоритмов используется в геофизике при изучении формы и пространственного положения источников поля. Основу его составляет неразрывное единство монтажного способа описания плотностной среды и специального способа построения приближенного решения в классе таких моделей, не связанного с нелинейными методами оптимизации. Это один из многочисленных методов подбора, т.е. последовательной аппроксимации геологического объекта элементарными телами правильной формы в сеточном классе моделей. Тем не менее, учет определенного объема априорной информации позволяет сделать интерпретационные построения геологически содержательными, которые могут быть выполнены за приемлемое число итераций.
Программный пакет СИГМА 3D (Авторы: П.С. Бабаянц, Ю.И. Блох, А.А. Трусов, http://www. pangea.ru/software/sigma.shtml) предназначен для содержательной интерпретации гравимагнитных данных при решении задач геологического картирования, поисков месторождений углеводородов и твердых полезных ископаемых. Отличительной особенностью используемых технологий является сохранение работоспособности при минимальном количестве априорной информации. Пакет содержит следующие программы: ROMGAS - для оценки морфологии субгоризонтальных границ раздела; REIST -для автоматизированного моделирования гравитационного и магнитного полей; DVOP - для вычисления объемного распределения эффективной плотности и эффективной намагниченности; QUASI - для количественной оценки характеристик выбранных пользователем изолированных аномалий; IGLA -для интерактивной количественной экспресс-интер-
претации локальных магнитных и гравитационных аномалий и т.д. Программы основаны на определении координат особых точек функций, описывающих магнитные и гравитационные аномалии, по амплитудному спектру, вычисляемому в скользящем окне; вычислению трансформант потенциальных полей; геологическом редуцировании и т.д. [11] (рис. 3, 4).
Несмотря на большое количество решаемых задач, здесь тоже возникают проблемы. Из-за того, что связь между параметрами (координаты особых точек) и характеристиками амалеобразующих объектов различна, при преобразовании поля особые точки не могут трактоваться однозначно.
Разработкой технологий интерпретаций гравимагнитных данных активно занимаются также в Томском государственном, Уральском федеральном, Воронежском университетах и других научных учреждениях. Широко используется компьютерная система ГИС ИНТЕГРО, разработанная в 1992 г. в лаборатории геоинформатики ВНИИГеосистем (г.Москва) и является специализированной геоинформационной системой, которая предназначена для решения задач картопостроения, прогноза полезных ископаемых и моделирования геологического строения земной коры. Она создана, главным образом, для хранения и визуализации разных видов геолого-геофизической информации, вычисления различных преобразований поля, но также оснащена модулями решения прямых и обратных задач в рамках метода подбора многоугольниками, многогранниками, а также в классе 3^ сеточных моделей, где физические свойства приписаны не телу, а точке.
Следует отметить работы, касающиеся усовершенствования решения систем большой размерности при решении прямых и обратных задач. Эту проблему поднимал еще В.Н. Страхов. В этом направлении были разработаны пакеты программ ADG-3D, основанные на адаптивных алгоритмах (А.В.Кочнев и др., Институт вычислительного моделирования СО РАН, г. Красноярск). Метод решения
Рис. 3. Трехмерная модель распределения намагниченности, полученная методами интерпретационной томографии с помощью программ пакета СИГМА-3D на Олейниковском нефтяном месторождении Прикаспия.
Рис. 4. Пример применения технологий ROMGAS, REIST и CLASS2 в районе Московской синеклизы: а) распределение эффективной намагниченности; б) распределение эффективной плотности; с) результаты двупараметрической классификации эффективных параметров на рельефе кровли кристаллического фундамента.
сводится к уточнению параметров по невязке последовательно в каждом уравнении. Проходя несколько итераций, получаем последовательное уменьшение невязок, величина которых на последних итерациях характеризует погрешности измерений и погрешности, связанные с неадекватностью физической и математической модели. Как правило, последнее выясняется при решении прямой модельной задачи.
Технология комплексной интерпретации геофизических данных GCIS (Aвторы: A^. Кобру-нов, A^. Петровский и др.). Aвтоматизированная система GCIS (Geophysical Complex Interpretation System - система интегрированной интерпретации геофизических данных) представляет собой совокупность программно-интерпретационных процедур, направленных на решение задач нефтегазовой
геологии посредством максимального привлечения геолого-геофизических методов (сейсморазведка, гравиразведка) [12]. С помощью системы ёс^ возможно: построение 2D и 3D интегрированных моделей геологических объектов; уточнение структурно-тектонического строения геолого-геофизичес-кого разреза в условиях низкой информативности данных сейсморазведки; выявление локальных плотностных неоднородностей модели среды для изучения перспективных зон нефтегазонакопления и прогнозирования крупных залежей углеводородов; согласование сейсмогравитационных моделей локальных геологических структур (рис. 5). Реше-
ние обратных задач гравиметрии происходит на основе критериального подхода (поиск оптимальных решений обратной задачи гравиметрии в классе плотностных границ и классе распределений плотности). Наряду с этим осуществляется учет регионального фона в истокообразном и полиномиальном представлениях с учетом влияния боковых зон. Система позволяет контролировать процесс решения обратных задач по характеру изменения невязки, ее статистическим характеристикам. Применение данной технологии дает хорошие результаты, подтверждаемые бурением. Однако она требует задания информации в специальном формате, что усложняет подготовку данных.
В настоящее время в лаборатории математического моделирования УГТУ под руководством А.И. Кобрунова разработана методика сейсмогра-витационного моделирования с использованием совместного анализа геолого-геофизических данных на основе решения задач инверсии геофизических полей для проведения объемного структурно-плотностного моделирования сложно построенных геологических сред и обеспечивающая возмож-
ность уточнения их строения [13]. В качестве технологической составляющей используются компоненты интегрированной среды физико-геологического моделирования, разработанной коллективом лаборатории математического моделирования и системного анализа в науках о Земле УГТУ. В её состав входят программный редактор физикогеологических моделей среды GeoVIP, программные модули решения содержательных задач геофизики в двумерной постановке PlayGround и EvDynInversion.
Комплекс GeoVIP /Авторы: А.И. Кобрунов,
С.Г. Куделин, М.И. Барабанов) предназначен для интерпретации результатов геофизических исследований, построения моделей среды и поддержки их актуальности за счёт взаимной увязки данных и их корректировки на основе оптимальных решений обратной задачи [14]. GeoVIP представляет собой набор функциональных модулей, объединенных на уровне базы данных и общей программной оболочки: структурно-плотностное моделирование (рис. 6), моделирование электромагнитных параметров, базовый модуль (2D, 3D визуализация, загрузка данных, документация, доступ к другим модулям), скважинное, геодинамическое, сейсмическое моделирование (находится в стадии разработки). Разработаны и включены в программный комплекс алгоритмы интерполяции структурных границ и распределения параметра для трехмерной модели из двумерных данных (интерполяция по профилям) и процедуры согласования структурно-плотностной модели. Гео-динамическое моделирование представлено модификаторами, применяемыми к структурным границам модели с целью: изменить её геометрию сообразно некоторому физическому закону.
Программный модуль PlayGround /Авторы: А.И. Кобрунов, М.И. Барабанов) - инновационная разработка, предназначенная для построения нулевого приближения двумерных структурно-плот-ностных моделей [15]. В качестве начальных данных используется графическое представление результатов различных исследований. Содержит экспресс-конструктор структурной модели для моделирования структуры геологического разреза и экспресс-конструктор плотностной модели для аппроксимации плотностных неоднородностей набором элементарных тел. Предусматривает решение прямой задачи гравиразведки, оценку невязки вычисленного и наблюдённого гравитационного эффекта, экспорт результатов обработки (рис. 7).
Рис. 5. Интерфейс системы GCIS и структурно-плотностная модель с наблюденным и рассчитанным гравитационным полем.
Файл Добавить Помощь
•a’
Гряда Чер-ыиева Сеюа*іская плошаа» Кожвимская ппошшь К>ц>!№-ЦКВЯ ГеОЧ** >++№*«
Кувж Барещеоо
S3
а)
: '■ ■ ИНИ
Ф J ПроЧ*іГи 1
$ J ПроФиГв 2
Ф J ПроФгГЪ 3
ф J ПроФИГЪ і
№□ ПроФигъ 5
a J ПроФиі*. С
ф J Профиль 7
Ё J ГТроФигъ 8
ф J Про^ль Э
Е J ПроФиГъ 10
Ф J Пр(ЧиП> 11
І J Прочмгь 12
Ф J npowib 13
ffi-J ПрОФИі» ІД
J СРЕЗ
J npoOv'jt. 15
і Скмлгины
Задать профиль Задать прямоугольный блок
читан
1500000 140ММ i iJWOOO
СО * Структурные карты
ш Lit Ппкты И: ♦ Тесты для М3 Й ♦ Севесоюгидсхая М ♦ Модель Нести * чфг Макс_нулееое приближение Q Макс_тестовая модель 5. Ч#* У—гй-к5в Тест
3 ♦ Тест согпасооагмя профиле
Й 'ф вор-ам 2
Й] ♦Воргамуоор___________
JD0CW 100000 200000 X-eiJfi«5.9;Y-
Про* і^нгь 1
П] 4
«У
У&*. 5
jr \ lpww
Мр
Профип. 7
j Профигь 1
j Прокинь 2 ЗОЯХ
j Профиль 3
|ПроФг-грь 4 5СШ
|прОЧМ№р 5 ЗДС0Ї
7ооа н
♦|* ! ❖ "Ь. іГ ДТ-
100000
С* <> Рллс иы *
Э0СС00 «00000
5СОХС
€ОТОО
it 1
Профиль
?<?8Эооо \п
вооооо
і п,У$Шт^
/ J
Псюс /іпь 1 Cj
Пг>гк^еъс0мпь 7
б)
М
>с(85Й
ООО
Рис. 6. a) Карта профилей и визуализация одного из 2D профилей; б) Трёхмерная плотностная модель Ба-ренцевоморского региона в GeoVIP.
Программный модуль EvDynInversion (Авторы: А.И. Кобрунов, С.Г. Куделин) предусматривает решение обратных двумерных задач гравиразведки на основе объединенного критериального и эволюционно-динамического принципа оптимальности [14]. Алгоритм представляет собой итерационную
схему решения обратной задачи с применением уравнений движения материи в качестве составляющей критерия оптимальности. На первом этапе выполняется компенсация невязки за счет сдвиговых деформаций. На втором этапе невязка компенсируется за счет дивергенции. Модели, полученные в результате рабо-
Рис. 7. Формирование структурно-плотностной модели в Playground.
ІУІ Показывать плотности
Рис. 8. Результат решения обратной плотностной задачи по модельному профилю в EvDynInversion.
ты модуля, удовлетворяют наблюденным потенциальным полям и соответствуют заложенным в процесс решения геодинамическим характеристикам (рис. 8).
Интегрированная среда физико-геологического моделирования имеет единую базу, позволяет проводить обработку геолого-геофизической информации в разных модулях, строить согласованные наблюденным полям модели.
Результаты проведенного анализа отечественных технологий интерпретации гравиметрических данных объединены в таблицу.
• дают возможность уточнения модели строения геологической среды не только на этапах поисково-разведочных работ, а также в процессе разработки месторождений с целью контроля за состоянием и динамикой запасов сырья.
Современные методические и программноалгоритмические комплексы обработки, анализа и интерпретации гравимагнитных данных:
• способствуют повышению надежности, достоверности и эффективности проводимых геологоразведочных работ при одновременном снижении
Сравнительные характеристики интерпретации потенциальных полей
Интерпретация
Качественная
Количественная
Решаемые задачи Используемые методы
Результат решения задач
Используемые технологии
Особенности
Задачи обработки Фильтрация полей Спектральный анализ Трансформация полей Статистический анализ
Обнаружение Разделение аномалий
COSCAD 3D SIGMA 3D VECTOR
Обнаружение и выделение аномалий потенциальных полей. Эффективно использование при формировании начальных приближений в решении обратных задач.
Обратные задачи Спектральный анализ Методы математической статистики Методы подбора, в том числе: Монтажный метод Генетические алгоритмы Нейросети
Структурные и плотностные модели в выбранном классе
SIGMA 3D (Riest)
VECTOR COSCAD 3D
Моделирование неэффективно для сложнопостроенных сред. Применяется для построения упрощенных моделей, в связи с чем возникает недоучет априорной информации, скрытая эквивалентность.
Особые точки не могут быть интерпретированы однозначно.
Критериальный подход
Эволюционнодинамических подход
Структурно-плотностные модели сложнопостроенных многопараметрических сред
GCIS
GeoVIP (EvDynInver-sion)
Создание достоверных геоплотностных моделей среды с учетом максимума априорной информации, в том числе о ее генезисе, что позволяет уменьшить эффекты эквивалентности.
Заключение
В настоящее время организациями нефтегазоразведочной отрасли в основном применяется комплексная интерпретация геолого-геофизических данных с использованием методов качественного и количественного анализа, позволяющая выявлять неоднородности и структурные особенности, влияющие на развитие зон нефтегазонакопления.
Технологии обработки и анализа потенциальных полей (включая фильтрацию, трансформации, спектральное разложение полей и др.) на основе различных разделов математики предназначены для качественной интерпретации и уточнения начальных приближений при решении обратных задач.
Технологии построения физико-геологических моделей сред, основанные на решении обратных задач:
• используются для создания единой согласованной геофизическим полям модели;
• позволяют детально изучать геологическое строение осадочных толщ;
• направлены на вовлечение максимального объема имеющейся информации;
стоимости поисково-разведочных работ и нагрузки на окружающую среду;
• постоянно совершенствуются с учетом новейших теоретических разработок, развития компьютерной техники и измерительной аппаратуры;
• достаточно универсальны и могут быть использованы для решения различных геологических задач.
Однако в технологиях, связанных с обратными задачами геофизики, существуют проблемы: наличие эквивалентности; неоднозначность решения; недостаток априорной информации, а в некоторых методах и недоучет (трансформации, фильтрации полей).
Учитывая результаты проведенного анализа, можно сделать вывод, что несмотря на большое количество программных продуктов, на данном этапе возникает потребность в создании новой технологии комплексного анализа для изучения геологического строения. Она должна обеспечивать согласованность результатов интерпретации монометодов и быть ориентирована на единую информационную базу, используемую в интерактивном режиме. В лаборатории математического моделирова-
ния и системного анализа в науках о Земле УГТУ с учетом этих требований разрабатывается интегрированная среда физико-геологического моделирования, в состав которой входят программный редактор физико-геологических моделей среды GeoVIP, а также программные модули PlayGround и EvDynlnversion. В решении задач инверсии используются критериальный и эволюционно-динамический подходы. Это позволяет максимально учитывать априорную информацию, включая данные об эволюции и генезисе рассматриваемой геологической среды и проводить построение сбалансированных физико-геологических моделей, согласованных потенциальным полям.
Работа выполнена в рамках Федеральной целевой программы «Научные и научно-педагогические кадры инновационной России» на 20092013 гг. и аналитической ведомственной целевой программы “Развитие научного потенциала высшей школы (2009-2011 гг.)”.
Литература
1. Кобрунов А.И. Геомоделирование на основе инверсии системы геофизических данных // Вестник Центральной комиссии по разработке месторождений углеводородного сырья Роснедра. 2012. №2. С. 46-51.
2. Никитин АА. Теория и практика статистических методов комплексной интерпретации геоданных // Материалы 39-й сессии Международного научного семинара им. Д.Г. Успенского «Вопросы теории и практики геологической интерпретации геофизических полей». Воронеж, 2012. С.199-202.
3. Бычков С.Г., Симонов АА Эволюция программно-алгоритмического обеспечения обработки и интерпретации гравиметрических материалов // Горное эхо. Вестник Горного института. №2(28). Пермь, 2007. С. 38-42.
4. Приезжев И.И. Информационные технологии комплексной интерпретации геофизических данных для геологического моделирования: Дис. докт. техн. наук. М.: РГГУ, 2010. 225 с.
5. Галуев В.И. Методика и компьютерная технология физико-геологического моделирования строения земной коры (ГИС ИНТЕГРО-ГЕОФИЗИКА): Дис. докт. техн. наук. М.: ВНИИгеосистем, 2009. 181 с.
6. Блох Ю.И. Интерпретация гравитационных и магнитных аномалий. Учебное пособие для студентов университетов и ВУЗов, обучающихся по специальности 080400 «Геофизические методы поисков и разведки полезных ископаемых». М., 2009. 232 с. http://sigma3d. com /pdf /books/blokh-2009.pdf
7. Кобрунов А.И. Математические основы теории интерпретации геофизических данных: Учебное пособие. М.: Из-во ЦентрЛитНефте-Газ, 2008. 286 с.
8. Михайлов В.О. и др. Геодинамические модели и их применение при совместной интерпретации геологических и геофизических данных (обзор) // Физика Земли. 2007. №1. С. 4-15.
9. Петров А.В., Хоу Сюели. Библиотека решений компьютерной технологии статистического и спектрально-корреляционного анализа данных КОСКАД 3D//Материалы 38-й сессии Международного семинара им. Д.Г. Успенского «Вопросы теории и практики геологической интерпретации геофизических полей». Пермь: ГИ УрО РАН, 2011. С. 224-226.
10. Бычков С.Г., Фурман С.Г. Комплексирование гравиразведки и сейсморазведки 3D при изучении месторождений нефти и газа // Материалы 39-й сессии Международного научного семинара им. Д.Г. Успенского «Вопросы теории и практики геологической интерпретации геофизических полей». Воронеж, 2012. С.54-58.
11. Бабаянц П.С., Блох Ю.И., Трусов АА. Возможности структурно-вещественного картирования по данным магниторазведки и гравиразведки в пакете программ СИГМА-3D // Геофизический вестник. 2004. № 3. С. 11-15.
12. Кобрунов А.И., Петровский А.П., Моисеенко-
ва С.В. Автоматизированная система комплексной интерпретации сейсмогравиметри-ческих данных // Международная геофизическая конференция: Тезисы докладов.
Санкт-Петербург, 2000. С. 534-535.
13. Мотрюк Е.Н., Вельтистова О.М. Апробация программных модулей на примере моделирования строения Воргамусюрской структуры гряды Чернышева // Материалы 39-й сессии Международного научного семинара им. Д.Г.Ус-пенского «Вопросы теории и практики геологической интерпретации геофизических полей». Воронеж, 2012. С.189-194.
14. Кобрунов А.И., Куделин С.Г., Барабанов М.И. Программный комплекс создания и поддержки геолого-геофизических моделей среды «GeoVIP» и его функциональные возможности // II научно-практическая молодежная конференция «Новые технологии в газовой отрасли: опыт и преемственность»: Материалы конференции (6-7 октября 2010 г.). М., 2010. С.18
15. Кобрунов А.И., Кулешов В.Е., Куделин С.Г., Барабанов М.И. Математическое обеспечение технологии эволюционно-динамического моделирования при инверсии геофизических данных // Автоматизация, телемеханика и связь в нефтяной промышленности. 2011. №2. С. 26-34.
Статья поступила в редакцию 25.12.2012.