УДК 504.06:622.272 (571.17)
Г.В. Харитонов, А.В. Ремезов
СОВРЕМЕННЫЕ ЭКОЛОГОЧИСТЫЕ ТЕХНОЛОГИИ ДОБЫЧИ УГЛЯ
В современной технологии добычи угля, его обогащении возникает множество проблем по полному использованию, как самого угля, так и попутно добытых минералов, газообразных угле-родов, т.е. комплексного безотходного использования природных ресурсов.
Комплексное использование всех природных компонентов определенных как самой технологией добычи и переработки угля, так и инициирования техногенным воздействием на массив выделение газообразных углеродов, в данном рассматриваемом случае конкретно газа метана (СН4) является главной задачей современного времени.
Комплексное использование природных ресурсов позволяет:
- снизить затраты на его добычу;
- улучшает экологическую обстановку жизнеобеспечения не только самого человека, но и всей флоры и фауны;
- сокращает затраты энергии на единицу добычи угля и в целом на единицу ВВП.
В данной статье мы хотим рассмотреть вопрос использования отходов обогащения и использования попутно выделившегося из угля и массива горных пород газа метана за счет его сбора и утилизации.
В настоящее время из доступных для широкого круга ученых и читателей публикаций известно несколько технологий, занимающих свое определенное место в технологии комплексного использования угля, отходов его переработки, попутно добытого газа метана, отходов жизнедеятельности человека и животных, а также бытового мусора.
Рассмотрим данные технологии применительно в производственно технологической единице, занимающейся добычей, переработкой и реализацией на внутреннем и международном рынке добытого и обогащенного продукта - угля. На ОАО «Шахта «Заречная».
Как было уже сказано в работе [1] проблему реализации отходов углеобогащения кека составляет его высокая зольность до 30%.
В состав кека входит угольная мелочь и шлам
0,1-13мм.
Кроме того, обогатительная фабрика ООО «Шахта «Заречная» - «Спутник» - постоянно работает в режиме переработки добытой горной массы, превышающей на 25-30% ее проектную мощность.
Мы предлагаем дополнительно с существующей обогатительной фабрикой смонтировать обогатительную модульную установку КИС, разработанную ООО «Кенес» [2]. Производительность установки 200 т/час. При обогащении высоко-
зольного угля класса 0-300мм на установке с сепаратором КНС зольность товарного угля составляет 17-20%. Класс +25-100мм в концентрате имеет зольность 10-12%, а класс 0-13(25) мм можно отправлять на вторую стадию переобогащения в сепараторе КНС специальной конструкции. На данной стадии предусмотрено также обогащение шлама 0,1-1мм в спиральных сепараторах или на установке, разработанной ООО «Кенес», состоящей из обогатительных гидроциклонов и шламового сепаратора КНС [2].
Установка по обогащению высокозольных углей может быть построена в две стадии:
Первое. Обогащение угля класса 0-300мм, а затем переобогащение класса 1-13 (25) мм и шлама класса 0,1-1мм. При этом численность трудящихся с введением второй стадии обогащения возрастает на 6 человек при первоначальной численности 30-35 человек [2].
Второе. В последние годы теплоэнергетические предприятия в массовом порядке переходят на сжигание твердого топлива с использованием «кипящего слоя». Существующая на сегодняшний день технология «кипящего слоя» имеет существенный недостаток.
Сжигание топлива в кипящем слое предусматривает подачу дутьевого воздуха через сопловое днище в топку котла. За счет этого частицы топлива находятся во взвешенном состоянии, полностью обтекаемые дутьевым воздухом. Интенсивность горения зависит от размеров частиц топлива, определяющих площадь поверхности соприкосновения кислорода и углеродных частиц.
С одной стороны, в топках со слоевым сжиганием твердого топлива интенсивность горения мала из-за низкой площади соприкосновения кислорода с кусковым углеродным топливом.
С другой стороны, в топках с пылеугольным сжиганием площадь соприкосновения углерода с кислородом весьма велика и интенсивность сгорания пылеугольных частиц углерода размером до 200 мкм имеет высокое значение, но из-за быстротечности процесса возможны неполное сгорание топлива и появление механического и химического недожога.
Международная Академия наук Экологии и безопасности жизнедеятельности (МАНЭБ), совместно с ОАО «МПНУ «Энерготехмонтаж», разработали оригинальную технологическую схему для сжигания высокозольных мокрых отходов углеобогащения, осадки сточных вод, отходов нефтеперерабатывающих заводов, бытовых отходов, отходов растительного происхождения и т.д. [3].
1
Рис. 1. Схема работы топочного устройства 1 - водогрейный котел; 2 - рециркуляционный газоход;3 - дутьевой вентилятор;
4 - кольцевой воздухонагревателъ;5 - сопловое днище; 6 - камера сгорания;
7 — вспомогательная топка для розжига; 8 - разгрузочные траншеи
Установка может использоваться также для типа ДКВР, дополнительно обеспечивая возмож-
переоборудования действующих газовых котлов ность их работы на мазуте и угольном топливе.
Ороситель Камера
Рис. 2. Схема устройства очистки и утилизации тепла отходящих дымовых газов
Рис. 3. Схема энерготехнологического комплекса сжигания осадка сточных вод:
1 - газопоршневая электростанция; 2 - топочное устройство, 3 - пневматический «нагель; 4 - осадительная камера; 5 - котел-утилизатор; 6 — электрофильтр
Разработчиками применены запатентованная конструкция топки кипящего слоя с улавливанием золы в боковых карманах топки и устройство очистки отходящих дымовых газов и утилизации их тепла (рис. 1 и 2).
Областью применения теплоэнергетических установок кипящего слоя являются:
- газовые котельные, в которых, в качестве резервного, используется жидкое угольное топливо;
- реконструируемые угольные котельные:
- современные угольные электростанции, в которых вместо пылеугольного сжигания применяется сжигание мелкофракционного угля в кипящем слое;
- углеобогатительные фабрики, где сжигаются гидрошламы зольностью 30-50 %;
- нефтеперерабатывающие заводы (при сжигании нефтешламов);
- мусоросжигательные заводы;
- энерготехнологические комплексы для сжигания осадков сточных вод.
В настоящее время МАНЭБ совместно с ГУП «Водоканал Санкт-Петербурга» ведут работы по созданию энерготехнологического комплекса для сжигания осадка сточных вод на Люберецких очистных сооружениях. Монтаж оборудования комплекса намечено осуществить силами ОАО «Энерготехмонтаж».
В технологической схеме комплекса (рис. 3) используют биогаз, вырабатываемый в метатенках
очистных сооружений.
Биогаз с теплотой сгорания 5000 ккал/м3 подают к мини-ТЭЦ с газопоршневыми агрегатами австрийской фирмы Jenbacher мощностью 1 МВт. Получаемая электроэнергия расходуется на собственные нужды Люберецкой станции, а выхлопные газы с температурой 500°С направляются в топку кипящего слоя для прогрева песка. Дополнительно для этих целей используют газовые горелки, также работающие на биогазе.
Для обеспечения устойчивого процесса горения необходимым количеством кислорода в сопловую камеру с помощью дутьевого вентилятора подают предварительно прогретый до температуры 500°С воздух.
После завершения пускового периода в топку кипящего слоя с помощью пневматического питателя вводят осадки
Преимущества данной технологии
1. Выхлопные газы газопоршневой мини-ТЭЦ с температурой 500°С стабилизируют процесс горения, обеспечивают мгновенное испарение влаги и создают условия для воспламенения углеродосодержащих вещества, входящих в состав осадка. Инертная зола, образующаяся в результате термообработки осадка сточных вод, экологически безопасна,
2. Применение топки кипящего слоя с температурой горения не более 900°С позволяет снизить
образование токсичных оксидов азота.
3. Выбросы оксидов серы в атмосферу подавляются за счет добавления в топку гашеной извести. Обогащение золы содержащими кальций веществами способствует также увеличению её вяжущих свойств.
4. Использование топки кипящего слоя снижает механический и химический недожог. Мельчайшие частицы золы, которые выносятся вместе с дымовыми газами, улавливаются в электрофильтре и системе мокрой газоочистки.
Экономический эффект от реализации установки утилизации осадка сточных вод оценивается примерно в 200 млн. руб. в год и складывается из экономии средств на перевозку и захоронение осадка, выработки электрической энергии десятью. газопоршневыми энергоблоками Jenbacher, работающими на биогазе, и 20 Гкал-ч тепловой энергии, получаемой при сжигании осадка сточных вод с использованием выхлопных газов двигателей мини-ТЭЦ.
Третье. Третьим направлением использование попутно добытых углеродов, т.е. газа метана, -очистка исходящей из шахты струи воздуха от газа метана (СН4) за счет применения термической регенеративной установки (рис. 4), разработанной и предлагаемой на рынке фирмой PGM-project German Mining GmbH [4].
Работа термической регенеративной установки происходит следующим образом: Исходящая вентиляционная струя поступает в канал (1) и далее через горелку (5) в керамические блоки, подогретые газом (6). При температуре 760-820°С происходит расщепление частей СН4 в С02 и водяной пар. После стартовой фазы установка переходит в автономный терморежим работы, если концентрация газа составляет минимум 0,25%. Т.е. Установка работает без дополнительной энергии.
Процесс термического расщепления газа метана (СН4) в С02 и водяной пар снижает воздействие СН4 (он является газом, вызывающим эффект воздействия на атмосферу Земли) в 21 раз больше, чем С02.
Четвертое. Если в работе [1] мы только предполагали, что при отработке на шахте ОАО «Шахта «Заречная» возникнет вопрос дегазации при ведении очистных работ, то при отработке первого выемочного столба по пл. Надбайкаим-скому необходимость проведения дегазационных работ подтвердилась и, чтобы отрабатывать очистной забой с нагрузкой свыше 5 тыс. тонн/сутки, необходимо проводить опережающую дегазацию выемочного столба.
Для обеспечения высокопроизводительной работы очистных забоев по пл. Надбайкаимскому,
Ве
Воздух с метаном (В+СН4) Очищенный воздух (Во,)
1. Вент. струя из шахты
2. Распределит, система воздуха
3. Стальной блок с вн\тр_ изоляцией
4. Отделение оксидации
5. Горелка
6. Керамнч. материал теплообменника
7. Вентилятор исх. струи
8. Выход очищенного воздуха
Рис. 4.
Рис. 5
Тип 2-90 2-150 2-229
м3/мин (макс) 90 150 229
Ар (мбар) 500 500 500
Р (кВт) 200 250 315
и (В) 400 400 400
а затем по пл. Байкаимскому необходимо вести предварительную подземную дегазацию выемочного столба и дегазацию нижней части выемочного столба со стороны конвейерного штрека скважинами, пробуренными в угольный пласт впереди очистного забоя на расстоянии 15-20м с интенсивным газоотсосом из них в зоне разгрузки угольного пласта в зоне опережающего впереди очистного забоя горного давления [4].
Для сокращения времени предварительной подземной дегазации выемочного столба необходимо предварительную дегазацию производить одновременно с проведением оконтуривающих выемочный столб горных выработок. Для бурения дегазационных выработок желательно использовать самоходные бурильные установки (например фирмы Fa.HazemagEPR).
Технология дегазации может быть принята со-
Мобильные установки по утилизации шахтного метана тип PGM-ETW работают с метаном с концентрацией от 30 до 100%. В установках применяются четырехтактные газовые моторы фирмы БЕИТ2, производящие до 1364 кВт электроэнергии. Генератор выравнивает напряжение постоянно на уровень 400В/50Гц. При работе нескольких агрегатов производится автоматическое выравнивание фаз. При оптимальном использовании тепла воды охлаждения и выхлопных газов, общий КПД установки может достигать 85,8%, что соответствует самым высоким стандартам.___________________________________________
Рис. 6. Мобильные утилизационные установки PGM-ETW1360 MG
гласно «Руководства по дегазации угольных пластов в шахтах опасных по выделению газа метана», 2007 [5].
Естественно, в создавшихся условиях необходимо оборудовать на поверхности дегазационную станцию с монтажом от нее дегазационного става через вертикальную скважину в шахту и монтаж дегазационного става по горным выработкам шахты (пласта Надбайкаимского).
В качестве дегазационных насосных установок рекомендуем применить ротационные вакуум-насосы производства фирмы PGM-Lennetal, которые эксплуатируются без применения воды.
Конструкция привода установки позволяет регулировать производительность работы насосов в зависимости от производственной необходимости (рис. 5).
Для утилизации добытого газа метана можно применить мобильные газогенераторные установки типа PGM-ETW 1360MG, которые работают на газе метане с концентрацией от 30 до 100% СН4. в установках применяются четырехтактные газовые моторы фирмы DEVTZ производящие до 1364 кВт электроэнергии. В зависимости от полученных объемов газа метана (СН4) данные установки можно комплектовать в группу установок. Внешний вид установок изображен на рис. 6.
Кроме описанных газогенераторных установок можно применять газовые электрогенератор-ные агрегаты серии GF-WK основными достоинствами, которых являются следующие показатели.
• Микропроцессорное управление
• Замкнутый цикл управления
« Разреженное горение__________________
• Интеллектуальное зажигание
• Самодиагностика неисправности
• Безопасная защита
• Множество импортных деталей
« Высококачественные узлы______________
и
• Высокое энергетическое свойство
• Хорошая экономичность
• Низкий отвод
• Простота операции
• Низкая неисправность
« Высокий уровень безопасности_________
Давление входящего воздуха перед входом составляет 3-5 кПа, содержание СН4 > 8%, температура входящего воздуха 35°С, в воздухе отсутствует свободная вода или другие свободные вещества, пылевые частицы менее 5 Ц г, и общая плотность не более 30 мг/м3.
В составе газового электрического генератора употребляются узлы и детали ведущих фирм США, Германии, Австрии.
Предполагаемые в статье способы эффективного использования отходов добычи угля, его переработки и использования попутно добытых газообразных углеродов позволяют в первую очередь снизить антропогенное воздействие на окружающую среду, а также повысить эффективность производства за счет производства электроэнергии тепла, а также продажи на мировом рынке квот на парниковые газы.
СПИСОК ЛИТЕРАТУРЫ
1. Дальнейшее повышение экономической эффективности производственной деятельности ОАО «Шахта «Заречная» /Харитонов В.Г., Ремезов А.В. // Вестн. КузГТУ. 2008. №1. С. 25-30.
2. Рекламный проспект фирмы ООО Кенес / www/kenes.ru/oborud/kns.shtml // 08/10/2007
3. Золотарев, М.Г. Технология «кипящего» слоя в экологических проектах / АКВА-ТЕРМ, 2007. -июль-август № 4(38). - С.102-104.
4. Извлечение метана из вентиляционной струи / Рекламный проспект PGM-Projekt German Mining GmbH
5. Методические рекомендации о порядке дегазации угольных шахт. Серия 05. Выпуск 1 / Колл. авт. - М.: Открытое акционерное общество «Научно-технический центр по безопасности в промышленности», 2007. - 255с.
□ Авторы статьи:
Харитонов Виталий Геннадьевич
- канд. техн. наук, ген. директор ОАО «Шахта «Заречная»
Ремезов
Анатолий Владимирович
- докт. техн. наук, проф. каф. разработки месторождений полезных ископаемых подземным способом