Научная статья на тему 'Состоятельность статистических оценок Терстоуна-Мостеллера'

Состоятельность статистических оценок Терстоуна-Мостеллера Текст научной статьи по специальности «Математика»

CC BY
290
36
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
АЛЬТЕРНАТИВА / КОЛЛЕКТИВНЫЙ ВЫБОР / ПРОЦЕДУРА ТЕРСТОУНА-МОСТЕЛЛЕРА / СОСТОЯТЕЛЬНОСТЬ ОЦЕНОК ПОЛЕЗНОСТЕЙ

Аннотация научной статьи по математике, автор научной работы — Бугаев Ю. В., Никитин Б. Е., Шурупова И. Ю., Бабаян М. К.

Традиционная методика анализа процедур коллективного выбора подразумевает три различных подхода: проверка оператора голосования на соответствие характеристическим условиям, исследование свойств функции выбора, анализ манипулируемости (оценка устойчивости процедуры голосования по отношению к негативным воздействиям со стороны избирателей или организатора манипулирования). Коллективом сотрудников кафедры ИТМиУ ВГУИТ предложен и реализуется четвертый подход исследование вероятностных характеристик (величины смещения математического ожидания оценки полезности конкретной альтернативы от ее истинного значения, среднеквадратичное отклонение оценки полезности альтернативы от ее истинного значения, вероятность правильного ранжирования альтернатив на выходе процедуры и т.д.) результатов выполнения процедур. В предлагаемой работе анализируется состоятельность оценок полезностей сравниваемых альтернатив, полученных посредством известной процедуры Терстоуна-Мостеллера и её обобщения, созданного авторами работы. В общем, под состоятельностью статистической оценки понимается уменьшающаяся до нуля погрешность оценивания при увеличении объёма выборки. Однако в зависимости от толкований понятия «погрешность» в науке выделяют следующие основные виды состоятельности: слабая состоятельность, опирающаяся на понятие сходимости случайной величины по вероятности; сильная состоятельность, опирающаяся на понятие сходимости с вероятностью к единице; состоятельность в среднем квадратичном. Дисперсия такой оценки стремится к нулю. В данной статье приводится доказательство теоремы, согласно которой при допущениях достаточно общего характера оценки полезностей ранжируемых альтернатив, полученных с помощью процедуры Терстоуна-Мостеллера, состоятельны в среднем квадратичном смысле. При этом из состоятельности в среднем квадратичном следует обычная, т.е. слабая состоятельность оценок полезностей альтернатив исходной выборки.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

The consistency of statistical estimates of Thurstone-Mosteller

The traditional method of analysis procedures of collective choice involves three different approaches: investigation operator voting against the characteristic conditions, investigation the properties of the function of choice, analysis on the possibility of manipulating (verification the stability of the voting process under the influence of negative impacts from voters or organizer). Research team of the department ITMU VSUET proposed and implemented a fourth approach, which is to research the probabilistic characteristics the results of the procedures (value of the displacement valuation of estimate the usefulness of specific alternative to its true value, the standard deviation of evaluating of estimate the usefulness of alternative from its true value, the probability of correct ranking of alternatives at the output the procedure of choice, etc.). This article is dedicated to the analysis of the consistency of estimates the usefulness to compare alternatives, obtained at the output of the traditional procedure Thurstone-Mosteller and its generalizations, created by the authors of. In the general, the term of consistency of estimator of statistical estimation assumes tending to zero error of estimation by increasing the sample size. However, depending on the interpretation of "calculation errors" in science are the following main types of consistency: the weak consistency of statistical estimation, based on the notion of convergence in probability of the random quantity; the strong consistency, based on the concept of convergence with probability to one; the consistency of statistical estimation in the mean square. The variance of this assessment tends to zero. This article provides a proof of the theorem, according to which the assumptions rather general nature of estimates the usefulness being ranked alternatives obtained using the procedure Thurstone-Mosteller satisfied the consistency of statistical estimation in the mean square. In this case, of the consistency of statistical estimation in the mean square follows the weak consistency of statistical estimation of estimates the usefulness alternatives of original sample.

Текст научной работы на тему «Состоятельность статистических оценок Терстоуна-Мостеллера»

УДК 519.81

Профессор Ю.В. Бугаев, доцент Б.Е. Никитин, доцент И.Ю. Шурупова, аспирант М.К. Бабаян

(Воронеж. гос. ун-т. инж. технол.) кафедра информационных технологий моделирования и управления. тел. (0732) 55-25-50 E-mail: [email protected]

Professor Yu.V. Bugaev, associate Professor B.E. Nikitin, associate Professor I.Ju. Shurupova, graduate M.K. Babayan

(Voronezh state university of engineering technologies) Department of information technologies for modeling and management. phone (0732) 55-25-50 E-mail: [email protected]

Состоятельность статистических оценок Терстоуна-Мостеллера

The consistency of statistical estimates of Thurstone-Mosteller

Реферат. Традиционная методика анализа процедур коллективного выбора подразумевает три различных подхода: проверка оператора голосования на соответствие характеристическим условиям, исследование свойств функции выбора, анализ манипулируемости (оценка устойчивости процедуры голосования по отношению к негативным воздействиям со стороны избирателей или организатора - манипулирования). Коллективом сотрудников кафедры ИТМиУ ВГУИТ предложен и реализуется четвертый подход - исследование вероятностных характеристик (величины смещения математического ожидания оценки полезности конкретной альтернативы от ее истинного значения, среднеквадратичное отклонение оценки полезности альтернативы от ее истинного значения, вероятность правильного ранжирования альтернатив на выходе процедуры и т.д.) результатов выполнения процедур. В предлагаемой работе анализируется состоятельность оценок полезностей сравниваемых альтернатив, полученных посредством известной процедуры Терстоуна-Мостеллера и её обобщения, созданного авторами работы. В общем, под состоятельностью статистической оценки понимается уменьшающаяся до нуля погрешность оценивания при увеличении объёма выборки. Однако в зависимости от толкований понятия «погрешность» в науке выделяют следующие основные виды состоятельности: слабая состоятельность, опирающаяся на понятие сходимости случайной величины по вероятности; сильная состоятельность, опирающаяся на понятие сходимости с вероятностью к единице; состоятельность в среднем квадратичном. Дисперсия такой оценки стремится к нулю. В данной статье приводится доказательство теоремы, согласно которой при допущениях достаточно общего характера оценки полезностей ранжируемых альтернатив, полученных с помощью процедуры Терстоуна-Мостеллера, состоятельны в среднем квадратичном смысле. При этом из состоятельности в среднем квадратичном следует обычная, т.е. слабая состоятельность оценок полезностей альтернатив исходной выборки.

Summary. The traditional method of analysis procedures of collective choice involves three different approaches: investigation operator voting against the characteristic conditions, investigation the properties of the function of choice, analysis on the possibility of manipulating (verification the stability of the voting process under the influence of negative impacts from voters or organizer). Research team of the department ITMU VSUET proposed and implemented a fourth approach, which is to research the probabilistic characteristics the results of the procedures (value of the displacement valuation of estimate the usefulness of specific alternative to its true value, the standard deviation of evaluating of estimate the usefulness of alternative from its true value, the probability of correct ranking of alternatives at the output the procedure of choice, etc.). This article is dedicated to the analysis of the consistency of estimates the usefulness to compare alternatives, obtained at the output of the traditional procedure Thurstone-Mosteller and its generalizations, created by the authors of. In the general, the term of consistency of estimator of statistical estimation assumes tending to zero error of estimation by increasing the sample size. However, depending on the interpretation of "calculation errors" in science are the following main types of consistency: the weak consistency of statistical estimation, based on the notion of convergence in probability of the random quantity; the strong consistency, based on the concept of convergence with probability to one; the consistency of statistical estimation in the mean square. The variance of this assessment tends to zero. This article provides a proof of the theorem, according to which the assumptions rather general nature of estimates the usefulness being ranked alternatives obtained using the procedure Thur-stone-Mosteller satisfied the consistency of statistical estimation in the mean square. In this case, of the consistency of statistical estimation in the mean square follows the weak consistency of statistical estimation of estimates the usefulness alternatives of original sample.

Ключевые слова: альтернатива, коллективный выбор, процедура Терстоуна-Мостеллера, состоятельность оценок полезностей.

Keywords: alternative, a collective choice, the Thurstone-Mosteller procedure, the consistency of estimates of usefulness.

© Бугаев Ю.В., Никитин Б.Е., Шурупова И.Ю., Бабаян М.К., 2015

Из-за большого количества существующих процедур коллективного выбора остро стоит проблема их сравнительного анализа и разработки рекомендаций по использованию в конкретных ситуациях на практике. Традиционная методика анализа подразумевает три различных подхода к этому вопросу: проверка оператора голосования на соответствие характеристическим условиям; исследование свойств функции выбора; анализ манипулируемости.

Коллективом сотрудников кафедры ИТМиУ ВГУИТ предложен и реализуется четвертый подход [3] - исследование вероятностных характеристик результатов выполнения процедур. В данном случае исследуется состоятельность оценок полезностей сравниваемых альтернатив, полученных посредством известной процедуры Терстоуна-Мостеллера и её обобщения, созданного авторами работы.

Напомним, что неформально под состоятельностью статистической оценки понимается уменьшающаяся до нуля погрешность оценивания при увеличении объёма выборки. Исходя из различных толкований понятия «погрешность», получают различные виды состоятельности. Наиболее часто встречаются следующие её виды:

1. Просто состоятельность или слабая состоятельность. Она опирается на понятие сходимости случайной величины по вероятности. Формально: Р{| an — а |> s} ^ 0 при n ^ ж для любого s > 0.

2. Сильная состоятельность. Она опирается на понятие сходимости с вероятностью к 1. Формально: Р| liman =а ( = 1.

3. Состоятельность в среднем квадратичном. Дисперсия такой оценки стремится к нулю. Формально: M[(an - а)2] ^ 0 при п ^ ж .

Многомерная статистика an состоятельно оценивает многомерный параметр а в каком-либо смысле 1-3, если соответствующая состоятельность имеет место для каждой координаты ai либо по некоторой норме ||-||.

Чаще всего используют слабую состоятельность, однако легче всего доказать состоятельность в среднем квадратичном. Тогда слабая состоятельность будет следовать из неравенства Чебышева:

Р{| an —а |> s} <

m [(an —а)2]

s

Имеют место следующие связи между различными видами состоятельности:

1. Состоятельность в среднем квадратичном и сильная состоятельность влекут слабую состоятельность.

2. Если нет дополнительной информации, нельзя доказать, что сильная состоятельность влечёт состоятельность в среднем квадратичном или наоборот.

Что же касается процедуры Терстоуна-Мостеллера, то в традиционном виде [1, 5] она представляет собой частный случай линейной модели парных сравнений, в рамках которой эксперту предъявляются пары альтернатив (А, А/) из исходного предъявления, состоящего из т вариантов (1 < 7 < / < т), и он для каждой пары должен определить лучшую, по его мнению, альтернативу: либо А, У А/, либо Aj У А7. Предполагается, что каждая альтернатива А(, 7—1,...,т, обладает «истинной полезностью» Vi, а эксперт способен дать лишь некоторую её оценку yi, которая, вообще говоря, отличается от Vi и принимается за случайную величину. Таким образом, по мнению эксперта, А{ превосходит А] (А, У А/) в том случае,

если у7 > у, (7,7=1,...,т). Также предполагается, что вероятность предпочтения Р(А, У А/) = щ = Р(у7 - у/ > 0) зависит от численного значения разности у7 - у/. Набор %, (7, ]=1,.,т) удовлетворяет линейной модели, если существует набор действительных чисел VI, (7, ] =1 ,.. .,т), таких, что щ = Н(Р7 - V), где Н(х) - симметричная относительно нуля функция распределения непрерывной случайной величины, монотонно возрастающая от Н(- да) = 0 до Н(+ да) = 1 и Н(- х) = 1 - Н(х).

В процедуре Терстоуна-Мостеллера делается допущение, что экспертная оценка полезности 7-ой альтернативы имеет нормальное распределение у7 ~ N^7, о2).

Метод поиска оценок для полезностей Vi (7 = 1, т), предложенный Ноезе, использует

т

дополнительное условие XV = 0 и состоит в

7=1

следующем:

1) определяются экспериментальные вероятности парных предпочтений по следующей формуле:

а/

= 17,

где щ - число случаев, когда эксперт предпочел:

А7 у А], а+ а7 = N (7, / = 1, т, 7 Ф /).

2) значения вероятностей ру = 0 и р^ = 1 заменяются р у = 1/(2п) и р у = 1 -1/(2п) соответственно и вычисляются:

dj = н"ЧРи ),

где Н ру) - функция, обратная функции

нормального распределения.

3) по методу наименьших квадратов производится минимизация по V, О = 1, т) величины:

$ = Е ^ у - (V- - Vу при условии, что

г* у

т

ТУ, = 0.

1=1

Авторами настоящей работы разработано обобщение традиционной процедуры Терстоуна-Мостеллера на случай использования экспертами для сравнения альтернатив более сильной шкалы, чем порядковая -лингвистической шкалы [4], применение которой позволяет значительно повысить точность статистических оценок полезностей. Тогда система предпочтений экспертов представляется системой неравенств вида:

Cw > 0, (1)

где w - вектор полезностей альтернатив выборки, С - структурная матрица экспертного ранжирования - прямоугольная матрица, содержащая т столбцов. Вид матрицы С определяется использованной шкалой; например, при линейном упорядочении выборки А Ь А2 Ат матрица имеет вид:

С =

(1 -1 0 0 1 -1

0 0 0

0 0 I 00

1 -1

В процессе экспертного ранжирования N экспертами обучающей выборки каждый эксперт должен ответить утвердительно или отрицательно на вопрос о выполнении каждого неравенства из системы (1). По результатам ранжирования определяются экспериментальные вероятности предпочтений по

следующей формуле: qi = — , где п, - число

N

случаев, когда эксперты проголосовали за выполнение /-го неравенства, / = 1, 2, ..., 5. Далее из условия минимума суммы:

Е [р, 9) - ч, ]

(2)

/=1

вычисляется 9N - статистическая оценка параметра 0. Здесь Р,(0^) - теоретическая вероятность выполнения /-го неравенства, если па-

раметр распределения экспертных оценок по-лезностей альтернатив равен Сформулируем теорему. Если:

1° существует конечное истинное значение параметра распределения экспертных оценок 9°,

2° система необходимых условий экстремума функции (2) замкнута в окрестности 9°,

то оценка 9N состоятельна в среднем квадратичном при N ^ да, т.е. выполняется соотношение:

\ 2"

[9

М 0 -9°

^ 0 при N ^ да.

Для доказательства нам понадобятся два известных соотношения.

1) Для любых вещественных а и Ь справедливо неравенство:

{а + Ь) 2 < 2а2 + 2Ь2. (3)

2) Для любой случайной величины справедливо соотношение [2]:

0 ^ М[|] > 0. (4)

Доказательство теоремы.

Обозначим Р,(9) - теоретическая вероятность выполнения /-го соотношения между по-лезностями альтернатив, вычисленная при произвольном значении параметра 9. Устремим N^да. Согласно известной теореме Бернулли [2], если проводится N независимых испытаний, в каждом из которых случайное событие А происходит с вероятностью р, то относительная частота появления события А при N ^ да сходится по вероятности к р. То есть:

У5>0 НтР

N ^да

т( А)

N

>5\ = 0.

где т(А) - число наступлений события А. В данном случае мы имеем дело с совокупностью случайных событий, каждое из которых означает выполнение /-го соотношения между полезностями альтернатив. К каждому из них теорема Бернулли применима. Следовательно:

У5> 0 Нт Р\

N ^да

N

7 - Рг 9 )

>5\ = 0,

иными словами, все оценки — слабо состоятель-

N

ны. Кроме того, согласно известным формулам:

т( А)

М

N

= р ;

М

т(А) - I 2 N

р(1 - р)

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

N

0 при N ^ <

оценки чг = ~ состоятельны также в среднем квадратичном. Преобразуем сумму:

п

2

п

QN = Е [р (дм) - Р д)]2 (5)

7=1

и применим неравенство (3) к каждому её слагаемому:

QN = Е [р (дм) - Р д)]2=

7=1

Е [р (вм ) - qI )+(д, - Р (0°))]2 <

7=1

< 2Е[Р(дм) - д, ]2 + 2£р.(д°) -д, ]2. Поскольку оценка 0м определяется из условия минимума суммы (2), то при любом наборе реализаций случайных величин д, справедливо неравенство:

Е[р(дм)-д,]2 <е[р(д°)-д,]2

Отсюда по (4):

Ер (дм ) - д7 ]21< м

M

т[р (0°) - J2 ] .

Следовательно:

M[Qn ] < 4M[z[p (0°) - д, ]:

Далее, в силу состоятельности , для

любого 5 > 0 и 7 можно подобрать номер м, (5), при котором неравенство:

2"

M

p (0) - N7

<

8 4 • 5

(6)

ЛИТЕРАТУРА

1 Тюрин Ю.Ю., Френкель Д.А. Статистические методы анализа экспертных оценок. М.: Наука, 1977. 384 с.

2 Королюк В.С., Портенко НИ., Скороход А.В. Справочник по теории вероятностей и математической статистике. М.: Наука, 1985. 640 с.

3 Бугаев Ю.В., Миронова М.С., Никитин Б.Е. Вероятностный метод анализа процедур построения коллективных экспертных оценок // Вестник ВГУ. Серия «Системный анализ и информационные технологии». 2011. №2. С. 130 - 135.

4 Бугаев Ю.В., Миронова М.С., Никитин Б.Е., Чайковский А.С. Система поддержки принятия решений на основе экстраполяции экспертных оценок методом максимального правдоподобия // Вестник БГТУ. Брянск. 2010. №1. С. 84-90.

5 Thurstone L.L. A law of comparative judgment // Psychol. Rev. 1927. V. 34. P. 273 - 286.

выполняется для всех N > N (5). Более того, в

Пг

силу конечности числа оценок qt =~, при

N > maxNi (5) неравенства (6) будут выпол-

i

няться для всех i одновременно. Значит, в силу аддитивности операции взятия математического ожидания, имеем:

M

Т [p (0n ) - P, (0°)]2

< 8

для всех достаточно больших м. Следовательно, для любого 7:

M [(p (0n ) - P (0° )):

<8.

Отсюда, в силу существования и непрерывности обратной функции Р(-1) (х) при Р(х) Ф 0, Р(х) Ф 1, т.е. при конечном х, а также в силу условия 2° получим:

2"

M

On -0°

<s

для всех достаточно больших N. Теорема доказана.

Как было сказано выше, из состоятельности в среднем квадратичном следует обычная, т.е. слабая состоятельность.

Работа поддержана грантом РФФИ № 14-01-00653-А «Разработка и исследование процедур коллективного выбора на необозримом для ЛПР множестве альтернатив».

REFERENCES

1 Tyurin Yu.Yu., Frenkel' D.A. Statistich-eskie metody analiza ekspertnykh otsenok [Statistical methods for the analysis of expert estimations]. Moscow: Nauka, 1977. 384 p. (In Russ.).

2 Korolyuk V.S., Portenko N.I., Skorokhod A.V. Spravochnik po teorii veroyatnostei i matematich-eskoi statistike [Handbook on probability theory and mathematical statistics]. Moscow: Nauka, 1985. P. 640. (In Russ.).

3 Bugaev Yu.V., Mironova M.S., Nikitin BE. The probabilistic method of analysis procedures for constructing collective expert estimates. Vestnik VGU. [Bulletin of the Voronezh State University. Series «System Analysis and Information Technologies»], 2011, no. 2, pp. 130 - 135. (In Russ.).

4 Bugaev Yu.V., Mironova M.S., Nikitin B.E., Chaikovskii A.S. Decision support system based on an extrapolation of expert estimates the maximum likelihood method. Vestnik BGTU. [Bulletin of Bryansk State Technical University], 2010, no. 1, pp. 84-90. (In Russ.).

5 Thurstone L. L. A law of comparative judgment [Psychol. Rev.], 1927, vol. 34, pp. 273 - 286.

i=1

i Надоели баннеры? Вы всегда можете отключить рекламу.