Научная статья на тему 'Some values subfunctors of functor probalities measures in the categories Comp'

Some values subfunctors of functor probalities measures in the categories Comp Текст научной статьи по специальности «Математика»

CC BY
53
8
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
ВЕРОЯТНОСТНЫЕ МЕРЫ / РАЗМЕРНОСТЬ / Z-МНОЖЕСТВО / ГОМОТОПИЧЕСКИ ПЛОТНО / СИЛЬНОЕ ДИСКРЕТНОЕ АППРОКСИМАЦИОННОЕ СВОЙСТВО

Аннотация научной статьи по математике, автор научной работы — Zhuraev T.F., Rakhmatullaev A.Kh., Tursunova Z.O.

This article is dedicated to the preservation by subfunctors of the functor P of spaces of probability measures countable dimension and extensor properties of spaces of probability measures subspaces.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

СВОЙСТВА ПОДФУНКТОРОВ ФУНКТОРА ВЕРОЯТНОСТНЫХ МЕР В КАТЕГОРИЯХ COMP

Данная заметка посвящена сохранению подфункторами функтора P вероятностных мер пространств счетной размерности и экстензорным свойствам подпространств пространства вероятностных мер.

Текст научной работы на тему «Some values subfunctors of functor probalities measures in the categories Comp»

28

Вестник Самарского университета. Естественнонаучная серия. Том 24 № 2 2018

УДК 515.12 DOI: 10.18287/2541-7525-2018-24-2-28-32

T.F. Zhuraev, A.Kh. Rakhmatullaev, Z.O. Tursunova1

SOME VALUES SUBFUNCTORS OF FUNCTOR PROBALITIES MEASURES IN THE CATEGORIES COMP

This article is dedicated to the preservation by subfunctors of the functor P of spaces of probability measures countable dimension and extensor properties of spaces of probability measures subspaces.

Key words: probability measures, dimension, the Z-set, homotopy dense, strong discrete approximation properties.

Citation. Zhuraev T.F., Rakhmatullaev A.Kh., Tursunova Z.O. Some values subfunctors of functor probalities measures in the categories Comp. Vestnik Samarskogo universiteta. Estestvennonauchnaia seriia [Vestnik of Samara University. Natural Science Series], 2018, no. 24, no. 2, pp. 28-32. DOI: http://doi.org/10.18287/2541-7525-2018-24-2-28-32 [in Russian].

MSC: 54B15, 54B30, 54B35, 54C05, 54C15, 54C60, 54D30.

1. Introduction

Let X be a topological space. By C(X) is denoted the ring of all continuous real valued functions on the space X with the compact-open topology. The diagonal product of all mappings at C(X) is defined by the embedding of X intoRC(X).

If X is compact, then closed span of its images is a convex compact space which is denoted by P(X) [6]. On the other hand the probability measure functor P is covariant functor acting in the category of compact spaces and their continuous maps. P(X) is a convex subspace of a linear space M(X) conjugate to the space C(X) of continuous functions on X with the weak topology, consisting of all non-negative functional y (i.e.y (p) > 0) for every non-negative p € C (X) with unit norm [2,7]. For a continuous map f : X ^ Y the mapping

P (f): P (X) ^ P (Y) is defined as follows (P (f) (y)) p = y (f ◦ f).

The space P(X) is naturally embedded The base of neighborhoods of a measure y € P (X)

consists of all sets of the form O (y1, p1 ,p2,..., fk,e) = {y' € P (X) : |n (pi) — y! (fi)\ < £,i = l,k, } where e > 0, fi,p2,..,pk € C (X) are arbitrary functions.

2. About a topology on a subspace of the space of probability measures

Let F be a subfunctor of P with a finite support. Then the base of neighborhoods of a measure =

__s + 1

= m° • ... + m° • S(xs) € f (X) consists of sets of the form O < y0,U1, ...,US >= {y € F (X) : y = ^ },

i=i

where yi € M +(X) is the set of all non-negative functional and ||yi+1y < e, suppyi c U^HlyH — m°\ < e for i = 1,...,S, where U1,...,US — are neighborhoods of points x1,...,xS with disjoint closures.

!© Zhuraev T.F., Rakhmatullaev A.Kh., Tursunova Z.O., 2018

Zhuraev Tursunboy Faizievich ([email protected]), Department of General Mathematics, Tashkent State Pedagogical University named after Nizami, 27, Bunyodkor Street, Tashkent, 100070, Republik of Uzbekistan.

Rakhmatullaev Alimby Khasanovich ([email protected]), Department of Higher Mathematics, Tashkent Institute of Irrigation and Agricultural Mechanization Engineers, 39, Kari Niyazov Street, Tashkent, 100000, Republic of Uzbekistan.

Tursunova Zulayho Omonullaevna ([email protected]), Department of General Mathematics, Tashkent State Pedagogical University named after Nizami, 27, Bunyodkor Street, Tashkent, 100070, Republik of Uzbekistan.

In fact, first we show that the set 0 < jo,Ui, ...,US,e > contains a neighborhood of the measures jo in the weak topology. For each i = 1, ...,S we take the function fi : X ^ I, satisfying the conditions: fi([Ui]) = = 1,fj,(\} [Uj ]) = 0. Furthermore, we take the function fs+\_ : X ^ I so that fs+i (X\U |J ...UUS ) = 1,

j=i

and fs+1 ({x1,..., xs}) = 0. Now let us check the inclusion

O (j,fi,..,fs,fs+i,e/2) C O < (po,Ui,...Ua,e). (2.1)

We present a measure j G O (j0, f i,..., fs,fs+i, e/2) in the form j = ji + ...+js +js+i, where suppji C Ui for i = 1, ...,S,suppji C X\ (Ui U ... U Us). Then § > \j (fs+i) — j (fs+i) = \j (fs+i)|. But js+i < j, so Js+i (fs+i) < § at the same time, by definition of the function fs+\_ we have js+i (fs+i) = Js+i (1®) = = U^l So, Us+^l < § < e. To prove the inclusion (1) it remains to show that |||j|| — to°| < e. We have § > \jo (fi) — J (fi)\ > \jo (fi)\ — \j (fi)\ = to0 — \(ji + ... + j + Js+i) (fi)\ = fi /by definition of the function / = to° — J + js+i) (fi) = to0 — ji (f) — js+i (fi) = to0 — HjiH — js+i (fi). Consequently,

to

— Hull < § + js+i (fi) < § + Js+i (1®) = f + lljs+ill < f + § = e.

On the other hand, f > Hi (tyi) + Hs+i (tyi) —m0 = ||Hi|| — mi + Hs+i (tyi) thus ||hI| — m0 < f. The Inequality — m0\ < £ and the inclusion (1) are proved.

We now show that in every neighborhood of the base O (ho,tyi,tyf, ...,tyk,£) there is a neighborhood of the form O < h0,U1, ...,US,3 >. It is enough to consider the neighborhood of the form O (^0,ty,£),since the family of neighborhoods of the measure^ in the form O < h0,U1,..,Us,3 > is directed down by inclusion / intersection of a finite number of neighborhoods of this type contains a neighborhood of the same form /. This follows from the validity of the inclusion

1 2

The main part of checking is the following:

O < jo, Ui n U§ n ... n Ui n U§,- min {¿i, ¿§} >C O < Uo, U\,..., Ui,Si > nO < jo, U§,.., U§,02 > (2.2)

j(Uj) = j(Ui n u§) + j(Uj\Ui n u§) < j(Ui n u§) + j(X\ u (Ui n u§)) <

Ti n U§) + ,,(Uj \Ui n U§ ) ^ ,,(Ui n U§) + ,,(Y^ I (Ui I

e= i

< J (U/ D U§) + § min {¿i, ¿§} < jU D U§) + § ¿j. Therefore, for the measure j from the left side of proved inclusion (3.1) we have

jo(Uj) — j(Uj) < jo(Uj) — j(Ui n U§) = too — j(Ui n U§) < § min ^i, ¿2} < ¿j on the other hand

j(Uj ) — jo(Uj ) < j(Ui n U§) + § ¿j — too < § min {¿ij§} + § ¿j < ¿j. It remains to find a neighborhood of the form O < jo,Ui, ...,US^ > in the neighborhood O(jo,f,e). Since O(jo,Xf,Xe) = O(jo,f,e), for A > 0, we can assume that ||f|| < 1. Moreover, one can also assume that f > 0. For ¿ > 0 we take disjoint neighborhoods Ui of the points xi so that ocsillations of the function f on Ui was less than ¿.

Then \jo(f) — j(f)\ ^ \TOof(xi) — J fdj\ + ... + \TOoof(xs) — f fdj\ + \ J fdj\. Further

«1 us x\u1u...uus

\TOof(xi) — J fdj\ = \TOof(xi) — J f(xi)dj +f f(xi)dj —f fdj\ < TOof(xi) — f f(xH)dj +

Ui Ui Ui Ui Ui

+ H [f(xi) — f]dj\ < f(xi)\mo — Hjill\ + f \f(xi) — f\dj < f(xi)¿ + ¿H jiH < 2¿. Therefore, for ¿ < (§Sf+ i) the

Ui Ui

inclusion O < jo,Ui, ...,US^ >C O(jo,f,e) holds.

3. Basic notions and conventions

It is known that for an infinite compact space X, the space P(X) is homeomorphic to the Hilbert cube Q

[5], where Q = n —1,1] , —1,1] is the segment in the real line R. For a natural number n e N by Pn (X)

i= 1 i

we denote the set of all probability measures with support consisting of at most n points, i.e. Pn (X) = = {h e P (X) : \suppH\ < n}.The compact Pn (X) is convex combinations of

n

Dirac measures of the form: h = m 15xi + m25X2 +... + mn3Xn= 1,mi ^ 0,xi e X, 3Xi — is the Dirac

i=

oo

measure at the point xi. By 3 (X) we denote the set of all Dirac measures and Pu (X) = |J Pn (X). Recall

n=

that the space Pf (X) c P (X) consists of all probability measures in the form h = m 13Xl + mf3X2 + ... + + mk3Xk of finite supports, for each of which mi > k+i for some i [2,7]. For a natural n put Pf,n = Pf n Pn for the compact x. For compact X Pf,n (X) = {h ^ Pf (X) : \supp h\ ^ n} and hold. For the compact X by Pc(X) we denote the set of all measures h e P(X), support of each of which is contained to one of the components of the compact X [7].

We say that a functor F1 is a subfunctor (respectively ontofunctor) of a functor F2, if there is a natural transformation h : F1 ^ F1 such that for every object X the mapping h (X) : F1(X) ^ F2(X) is a monomorphism (epimorphism). By exp we denote the well known hyperspace functor of closed subsets. For example, the identity functor Id is a subfunctor of the functor expn, where expnX = {F G expX : |F| ^ n} and n— of n-degree is a ontofunctor of expn and SPg. A normal subfunctor F of the functor Pn is uniquely determined by its value F(n) on n where {n} denotes n-point set {0,1, ...,n — 1}. Note that Pn(n) is the (n —

— 1)-dimensional simplex an-1. Any subset of (n — 1) - dimensional simplex an-1 defines a normal subfunctor of the functor Pn, if it is invariant with respect to simplicial mappings to itself.

Definition [7]. A normal subfunctor Fof the functor Pn is locally convex if the set F(n) is locally convex. An example which is not a normal subfunctor of the functor Pn is the functor Pn of probability measures, whose supports contains in one of components of a space. One of the examples of locally convex subfunctors of the functor Pn is a functor SPn = SP^, where Sn is a group of homeomorphisms (permutation group) of n-point set.

w

Definition [1,8]. We say that a space X is countable dimension (shortly X G c■ d), if X = |J Xn, where

n=1

dimXn < ж for each n. In particular, X is a countable union of zero-dimensional spaces, i.e. dim Xi = 0 for every Xi.

Theorem 1. If X G c ■ d, then Pfn(X) G c ■ d for each n G N.

Proof. Let X G c ■ d. Then X is a countable union of finite-dimensional spaces dim Xi < ж in the sense

w w

of dim. In this case, Pf,n(X) is a countable union of Pf,n(Xi), i.e. Pf,n(X) = Pf,n(U Xi) = |J Pf,n(Xi).

i=1 i=1

By [9] for each i G N the compact Pf,n (Xi) is finite-dimensional in the sense of dim, i.e. dimPf,n (Xi) < ж, more accurately, dim Pfn (Xi) ^ n dimXi + dimPf n (n) = n dimXi + n — 1. In this case dim Pfn (n) = n —

— 1, since Pf,n (n) is a part of the (n — 1)-dimensional simplex Sn-1 spanned by the points {1, 2,...,n — 1}, i.e. for each i G N the space Pf,n (Xi) is finite-dimensional. Hence, Pf,n (X) is a countable union of finite-dimensional spaces. So Pf,n (X) G c■ d. If X is a countable union of zero-dimensional spaces dimXi = 0, then dimPf,n (Xi) = n — 1 for each i G N. In this case, Pf,n (X) is also a countable union of finite-dimensional

spaces, i.e. Pf,n (X) G c ■ d.Theorem is proved.

w

From the equation Pf (X) = U Pf,n (X), in the particular case we have.

n=1

Corollary 1. If the compact X is a c ■ d space, then Pf (X) G c ■ d.

Let X be a finite-dimensional compact. Then the space Pf,n (X) is also finite-dimensional. More accurately, dim Pf,n (X) ^ n dim X + n — 1 = n (dim X + 1) — 1. On the other hand, there is an open and closed mapping decreasing dimension of spaces. Fibers of the mappings rjn are similar cell, i.e. fibers are contractible to a point.

Theorem 2. Suppose ф : X ^ Y is a continuous surjective open mapping between the infinite compacts X and Y. Then the mapping Pf,n (ф) : Pf,n (X) ^ Pf,n (Y) is also open.

Proof. Let X and Y be infinite compacts and let the mapping ф : X ^ Y be surjective and open. Then by the normality of the functor Pf,n (ф) the mapping Pf,n ^)is surjective. In this case, we have the following commutative diagram

Pf,n (X) Pf,n (Y)

± fn ± fn (3Л)

S (X) [6 (ф)] S (Y)

where S (X) and S (Y) are Dirac measures on compacts X and Y. Let у (x) = m1Sxo + m2SX2 + ... + + mkSxk, r'X n (уо (X)) = 6x0, Pf,n (ф)(уо (x)) = m1SyO + m2Sy2 + ... + mkSyk.

From the fact that the mapping f n, S (ф) is open and the diagram (3) is commutative, it follows that the mapping Pf,n (ф) is open. Commutativity of diagram (3) follows from Lemma 2 of Uspensky's work [3]. Theorem 2 is proved.

Similarly as theorem 2, one can proof the following.

Theorem 3. For infinite compacts X and Y a surjective map is open if and only if the map Pf (ф) : Pf (X) ^ Pf (Y) is open.

Corollary 2. If X G c ■ d, then Pn (X) G c ■ d, Pu (X) G c ■ d and Pu (X) G A (N) R. Let X be a topological space and let A с X. A set A is called homotopy dense in X, if there is a homotopy h : X x [0,1] ^ X such that h (x, 0) = idx and h : (X x (0,1]) с A. A set A is called homotopy void if complement of A is homotopy dense in X. The set A с X is called the Z—set in X [4], if A is closed and for each cover U G cov (X) there is a map f : X ^ X such that (f, idx) ~< U and f (X) П A = 0. Theorem 4. For any infinite compact X and for each n G N the compact Pn (X)is the Z—set in Pu (X). Proof. By infinity of metric compact X the space Pu (X) is convex and a locally convex metric space. So, Pu (X) G A (N) R. On the other hand, the space is compact. It is obvious that Pn (X) is a subspace

of Pu (X), since the compact Pf,n (X) is a subset of the compact Pn (X). We fix a measure y0 = kSX1 +

+ k ¿X2 + ... + ~k ¿Xk .

Let [0,1] is the unit interval. We construct a homotopy h (y,t) : Pu (X) x [0,1] ^ Pu (X) getting h(y,t) = = (1 — t)y + tyo.

Obviously, h(y, 0) = y i.e. h(y, 0) = idP^X) and h(Pu(X) x (0,1]) c Pu(X)\Pn(X). This means that n € N for any subspace Pu(X)\Pn(X) homotopically dense in Pu(X). Then the set Pn(X) is homotopically small in Pu(X). Hence, by one of the results in [4], the subspace Pu(X)\Pn(X) € ANR and Pu (X) \Pn (X) are ANR-spaces. In this case, from theorem 1.4.4. [4] it follows that Pu (X) is the Z—set in Pu (X). Theorem 4 is proved.

Lemma 1. For any infinite compact X each compact subset A of Pu (X) is a Z—set, i.e. Pu (X) has the compact Z—property.

Proof. Let X be an infinite compact, A is compact subset, i.e. A c Pu (X). Consider the set AnPn (X) = = An. It's obvious that P1 (X) c P2 (X) c ... C Pn (X) c ... By theorem 4, the set is a Z—set in Pu (X)

for each n € N. Then A = |J An is a — Z—set and is closed in Pu (X). Then by one of the results in [4]

n=1

A is a Z—set in Pu (X). Lemma 1 is proved.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

From Theorem 4 and Lemma 1, in particular, the cases arise. Corollary 2. For any infinite compact X the followings hold:

a) The compact Pf,n (X) is a Z—set in Pu (X) for all n € N.

b) The compact Pf (X) is also Z—set in Pu (X). Corollary 3. For an arbitrary infinite compact X we have:

a) For each n € N the subspace Pu (X) \Pf,n (X) is an ANR space y homotopically dense in Pu (X).

b) The subspace Pu (X) \Pf,n (X) is ANR and homotopically dense in Pu (X).

We say that X has strongly discrete approximation property (shortly, SDAP) if for every map f : Q x x N ^ X and for every cover U € cov (X) there exists a mapping f : Q x N ^ X such that f, f) ~< U and the family f (Q x {n})} is discrete in X.

Let {x1,x2, ...,xn+1} be an (n+1)-point subset of the compact X. Fix the measure y0 = n+1 ¿X1 + n+1 ¿X2 + + ... + n+i¿Xn+1. It is clear that y0€Pn (X) and y0 € Pu (X). We construct a homotopy h (y,t) : Pu (X) x x [0,1] ^ Pu (X) getting h (y,t) = (1 — t) y+ty0. It is known that h (y, 0) = idP^(X) and h (y, (0,1])nPn (X) = = 0. By the structure of the space Pu (X) an by the definition of the homotopy this satisfies the condition of problem 10,1.4 of work [4], i.e. the set Pn (X) is a strongly Z-set in.

Therefore, Pu (X) is a strongly set and Pu (X) € ANR, i.e. the following is true.

Theorem 5. For any infinite compact X the space Pu (X) has strongly discrete approximation property, i.e. Pu (X) € SDAP.

References

[1] Addis D.F., Gresham I.H. A class of infinite - dimensional spaces: Part I: Dimension theory and Alexandroff's problem. Fund. Math., 101 (1978), no. 3, pp.195-205. DOI: 10.4064/fm-101-3-195-205 [in English].

[2] Zhuraev T.F. Some geometrical properties of the functor P of probability measures: Candidate's thesis. M.: MGU, 1989, 90 p. [in Russian].

[3] Uspensky V.V. Topological groups and Dugundji's compacts. Mat. sb., 1989, Volume 180, Number 8, pp. 1092-1118. DOI: http://dx.doi.org/10.1070/SM1990v067n02ABEH002098 [in English].

[4] Banakh T, Radul T., Zarichnyi M. Absorbing sets in infinite — dimensional manifolds. Lviv: VNTL Publishers, 1996. URL: https://books.google.ru/books/about/Absorbing_sets_in_infinite_dimensional_m.html?id= =NkrvAAAAMAAJ&redir_esc=y [in English].

[5] Fedorchuk V.V., Filippov V.V. General topology. Basic constructions. Moscow: Moscow University Press, 1988, p. 252 [in Russian].

[6] Schepin E.V. Functors and uncountable powers of compacta. Russian Math. Surveys, 36:3 (1981), 3-62. DOI: http://dx.doi.org/10.1070/RM1981v036n03ABEH004247 [in English].

[7] Fedorchuk V.V. Probability measures in topology. Uspekhi Mat. Nauk, 1991, Volume 46, Issue 1(277), Pages 41-80. DOI: http://dx.doi.org/10.1070/RM1991v046n01ABEH002722 [in English].

[8] Borst P. Some remarks concerning C-spaces. Topology and its Applications, 2007, 154, pp. 665-674 [in English].

[9] Basmanov V.N. Covariant functors, retracts, and the dimension. Dokl. Akad. Nauk SSSR, 1983, 271, pp. 1033-1036 [in English].

Т.Ф. Жураев, A.X. Рахматуллаев, З.О. Турсунова2

СВОЙСТВА ПОДФУНКТОРОВ ФУНКТОРА ВЕРОЯТНОСТНЫХ МЕР

В КАТЕГОРИЯХ COMP

Данная заметка посвящена сохранению подфункторами функтора P вероятностных мер пространств счетной размерности и экстензорным свойствам подпространств пространства вероятностных мер.

Ключевые слова: вероятностные меры, размерность, Z-множество, гомотопически плотно, сильное дискретное аппроксимационное свойство.

Цитирование. Zhuraev T.F., Rakhmatullaev A.Kh., Tursunova Z.O. Some values subfunctors of functor probalities measures in the categories Comp // Вестник Самарского университета. Естественнонаучная серия. 2018. Т. 24. № 2. С. 28-32. DOI: http://doi.org/10.18287/2541-7525-2018-24-2-28-32.

MSC: 54B15, 54B30, 54B35, 54C05, 54C15, 54C60, 54D30.

Статья поступила в редакцию 23/V/2018. The article received 23/V/2018.

This work is licensed under a Creative Commons Attribution 4.0 International License.

2Жураев Турсунбой Файзиевич ([email protected]), кафедра общей математики, Ташкентский государственный педагогический университет имени Низами, 100070, Республика Узбекистан, г. Ташкент, ул. Бунедкор, 27.

Рахматуллаев Алимбай Хасанович ([email protected] ), кафедра высшей математики, Ташкентский институт инженеров ирригации и механизации сельского хозяйства, 100000, Республика Узбекистан, г. Ташкент, ул. Кары-Ниязи, 39.

Турсунова Зулайхо Омонуллаевна ([email protected]), кафедра общей математики, Ташкентский государственный педагогический университет имени Низами, 100070, Республика Узбекистан, г. Ташкент, ул. Бунедкор, 27.

i Надоели баннеры? Вы всегда можете отключить рекламу.