Научная статья на тему 'Soliton Solutions of the Negative Order Modified Korteweg – de Vries Equation'

Soliton Solutions of the Negative Order Modified Korteweg – de Vries Equation Текст научной статьи по специальности «Математика»

CC BY
0
0
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
negative order modified Korteweg – de Vries equation / soliton / inverse scattering transform / scattering data / potential / reflection coefficient / модифицированное уравнение Кортевега – де Фриза отрицательного порядка / солитон / обратная задача теории рассеяния / данные рассеяния / потенциал / коэффициент отражения

Аннотация научной статьи по математике, автор научной работы — Gayrat U. Urazboev, Iroda I. Baltaeva, Shoira E.Atanazarova

In this paper, we study the negative order modified Korteweg-de Vries (nmKdV) equation in the class of rapidly decreasing functions. In particular, we show that the inverse scattering transform technique can be applied to obtain the time dependence of scattering data of the operator Dirac with potential being the solution of the considered problem. We demonstrate the explicit representation of one soliton solution of nmKdV based on the obtained results.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Солитонообразные решения модифицированного уравнения Кортевега – де Фриза отрицательного порядка

Исследуется модифицированное уравнение Кортевега – де Фриза (мКдФ) отрицательного порядка в классе быстроубывающих функций. В частности, показано, что с помощью метода обратной задачи рассеяния можно получить временную зависимость данных рассеяния оператора Дирака с потенциалом, являющимся решением рассматриваемой задачи. Продемонстрировано явное представление односолитонного решения мКдФ отрицательного порядка на основе полученных результатов.

Текст научной работы на тему «Soliton Solutions of the Negative Order Modified Korteweg – de Vries Equation»

V- l™|■■■■ О

Серия «Математика»

2024. Т. 47. С. 63—77

Онлайн-доступ к журналу: http://mathizv.isu.ru

Research article УДК 517.957

MSC 35P25, 35P30, 35Q51, 35Q53, 37K15

DOI https://doi.org/10.26516/1997-7670.2024.47.63

Soliton Solutions of the Negative Order Modified Korteweg — de Vries Equation

Gayrat U. Urazboev1, IrodaI. Baltaeva1, ShoiraE. Atanazarova1'2^

1 Urgench State University, Urgench, Uzbekistan

2 Khorezm branch of V. I. Romanovski Institute of Mathematics, Uzbekistan Academy of Science, Urgench, Uzbekistan

И [email protected]

Abstract. In this paper, we study the negative order modified Korteweg-de Vries (nmKdV) equation in the class of rapidly decreasing functions. In particular, we show that the inverse scattering transform technique can be applied to obtain the time dependence of scattering data of the operator Dirac with potential being the solution of the considered problem. We demonstrate the explicit representation of one soliton solution of nmKdV based on the obtained results.

Keywords: negative order modified Korteweg - de Vries equation, soliton, inverse scattering transform, scattering data, potential, reflection coefficient

For citation: UrazboevG. U., BaltaevaI. I., AtanazarovaSh. E. Soliton Solutions of the Negative Order Modified Korteweg - de Vries Equation. The Bulletin of Irkutsk State University. Series Mathematics, 2024, vol. 47, pp. 63-77. https://doi.org/10.26516/1997-7670.2024.47.63

Научная статья

Солитонообразные решения модифицированного уравнения Кортевега — де Фриза отрицательного порядка

Г. У. Уразбоев1, И. И. Балтаева1, Ш. Э. Атаназарова1,2и

1 Ургенчский государственный университет, Ургенч, Узбекистан

2 Хорезмское отделение Института математики им. В. И. Романовского АН РУз,

Ургенч, Узбекистан И [email protected]

Аннотация. Исследуется модифицированное уравнение Кортевега - де Фриза (мКдФ) отрицательного порядка в классе быстроубывающих функций. В частности, показано, что с помощью метода обратной задачи рассеяния можно получить временную зависимость данных рассеяния оператора Дирака с потенциалом, являющимся решением рассматриваемой задачи. Продемонстрировано явное представление односолитонного решения мКдФ отрицательного порядка на основе полученных результатов.

Ключевые слова: модифицированное уравнение Кортевега - де Фриза отрицательного порядка, солитон, обратная задача теории рассеяния, данные рассеяния, потенциал, коэффициент отражения

Ссылка для цитирования: Urazboev G. U., Baltaeval. I., AtanazarovaSh. E. Soliton Solutions of the Negative Order Modified Korteweg - de Vries Equation // Известия Иркутского государственного университета. Серия Математика. 2024. Т. 47. C. 6377.

https://doi.org/10.26516/1997-7670.2024.47.63

1. Introduction

The Korteweg-de Vries equation is the classical example of the nonlinear equation yielding solitary wave solutions and describing waves on shallow water surfaces. The fundamental discovery of C.S. Gardner, J.M. Greene, M.D. Kruskal, R.M. Miura [7] presents the inverse scattering transform (1ST) for solving KdV equation with rapidly decaying initial data. P. Lax [11] noted the general character of the 1ST method showing that KdV can be derived as a compatibility condition related to the time evolution of scattering data of the Sturm-Liouville operator. Following such advances the development of 1ST motivated researchers to study positive-order nonlinear evolution equations and investigate their important properties [1; 10; 15; 19-21].

Another important equation that contributed to the development of the theory of solitary waves is a modified KdV equation which was first investigated by M.Wadati [23]. Numerous works devoted to investigate the positive order mKdV equation and properties of its solutions [3; 5; 6; 9; 26].

Recently, the investigation of negative-order nonlinear equations has become a substantial field of mathematical physics. It is remarkable that the study of negative order KdV equation (nKdV) is an effective tool for investigating the theory of cuspons (cusp soliton) and peakons (peaked solitons). The nKdV equation is related to recursion operators, firstly developed by P.J. Olver [12]. He generalized a recursion formula to describe

the process of creating infinitely many symmetries of evolution equations, which can be applicable for the KdV equation. Verosky applied Olver's approach in negative direction for constructing a sequence of equations of increasingly negative orders and derived the representation of the nKdV equation [22]

f ut = vx

\ vxxx + 4uvx + 2uxv = 0.

There is already considerable research related with nKdV equation. Particularly, it was discussed the explicit multisoliton and multikink wave solutons of the nKdV equation using bilinear Backlund transformations [14], derived the Lax representation to show the integrability of considered nKdV equation and obtained its classical solitons, periodic soliton, and kink solutions [13], derived quasiperiodic solutions of the nKdV hierarchy by means of the backward Neumann systems [4]. Besides, it was investigated such important problems such as the initial value problem for the nKdV equation by the Riemann-Gilbert method [16]; integrating the nKdV equation with a self-consistent source in the class of periodic functions [18]; inverse spectral problem for nKdV equation with a special source [17].

Research on the negative order nonlinear equations has expanded the possibilities of investigating other models of the KdV equation. In [24], similarly to Verosky's technique it was obtained the negative order modified KdV (nmKdV) equation

UxUxxxt + 4u2uxuxt + 12uu2ut - UxxUxxt - 4u2uxxUt = 0 using the relation Rut = ux, with the recursion operator R having the form R = -((d2 )x + 4u2 + 4uxd-1 (u)),

where dx denotes the total derivative with respect to x, and d-1 its integration operator. Introducing the notation (u2)t — pxxt, it was obtained the following nmKdV equation

\ pxx - U

\ Uxt + au + 2pxtu - 0

and constructed the breather solutions of this equation by applying Hirota's bilinear method, where a is a real constant [8].

Unlike the study [8], in this paper, we investigate the following system of equations

\ pxx = -U d D

[ uxt + au + 2pxtu -0,x G R, t > 0 v ' '

by the inverse scattering transform method. The system (1.1) is considered under the initial condition

u(x, 0) — uq(x),x G R, (1.2)

where the initial complexvalued function has the following properties:

1) J-r (! + M) kWI dx< to,

2) The operator

L(0) = i(f -Ud° )

possesses a finite number of eigenvalues, precisely, 2N simple eigenvalues 6(0), 6(0),. n (0) such that ImCk (0) > 0,Cn+k (0) = -6 (0),

k = 1,... ,N [2] and has no spectral singularities.

The function u = u(x,t) is complex valued and sufficiently smooth function of x and t, for all t > 0 satisfying the requirement

(1 + |«|) (lu(x,t)l + luxt(x,t)l) dx < to,

( p(0,t)=0, px(x,t) ^ 1, x y to (13)

\pxx(x,t) ^ 0, pxt(x,t) ^ 0, X y ±TO. (-)

The main goal of this study is finding solutions u(x,t), p(x,t) of the Cauchy problem (1.1)-(1.3) for the negative order mKdV equation by the inverse scattering technique for the Dirac operator

L(i) ='(? -1 )■

Note that in [23] it was integrated the positive order mKdV equation by 1ST.

2. Scattering problem

In this part of the work we provide some basic facts on direct and inverse scattering theory for the Dirac system of equation on the real axis

Vix = -i(yi + u{x)V2 (2 1)

V2x = + u(x)yi ( ' )

The scattering theory for the system (2.1) is studied in [25], [2]. In accordance with the condition (1.3), the system of equations (2.1) has the Jost solutions <fi(x,() and ^(x,£). These solutions are unique and the following asymptotics are valid for = 0

<(x, 0 J ) | 1(x, 0 ^f e*x

/ 0 \ \ , x ^ —to > 1 y > , x ^ + TO

<p(x, o ^ - J e^ J i(x, 0 ^ Q J

_ (2-2) Note, that here and hereafter < is not complex conjugate to <. Since the pair of vector-functions [1, ip} is linearly independent, it holds the relation

<(x, 0 = a(0ip(x, 0 + K01(x, 0, = 0. (2.3)

where a(£) = W[<, 1} = — <2h-

The Jost functions <(x, £) and 1(x, £) admit of analytical continuation into the upper half-plane > 0. Therefore, the function a(£) appearing in (2.3) analytically extends to the upper half-plane > 0 and for |£| ^

to, Im£ > 0 has the asymptotics a(£) = 1 + O ^||| j. In addition, a(£) may have a finite number of zeros £ = (k, k = 1,..., N, lying in the half-plane Im( > 0 and these zeros correspond to the points of the discrete spectrum of the operator L.

The operator L can have spectral singularities lying on the continuous spectrum. But in this study, we will assume that the operator L has no spectral singularities and all the eigenvalues are simple. Therefore,

<k (x) = Ck 1(x) (2.4)

is valid, where <k(x) = <(x, £k), 1k(x) = 1(x, (k) and the quantities ck are independent of x. The expression

r+(£) = 01) (2.5)

a( )

defines the reflection coefficient of the scattering problem (2.1).

Definition 1. The collection [r+(£), ck, &,k = 1,..., N} is called the set of scattering data.

The vector function ^ can be expressed in the integral representation

0 1

1 = ( 1 ) + J~ K(x, s)e^sds, (2.6) ( K (x v) \

where K (x, y) = I k (xy) ). The kernel K (x, v) does not depend on £ and has the relation with potential u(x) as follow

f ™ 2

u(x) = —2K (x,x), |u(s)|2 ds = —2K2(x,x). (2.7)

JX

The components K\(x, y), K2(x, y) of the kernel for y > x can be found by solving the Gelfand-Levitan-Marchenko system of integral equations

( K2(x,y) + Kl(x,s)F(s + y)ds = 0

\ Ki(x,y)+ F(x + y) + J™ K2(x,s)F(s + y)ds = 0,

where

i f+ж N

F(x) = — J r(0e*xd£ - г^с,e*x.

(2.8)

3 = 1

The direct scattering problem consists of determining the scattering data in terms of the given potential u(x) of the system (2.1), and, the inverse scattering problem is reconstructing the potential u(x) through the given scattering data.

3. Evolution of scattering data

The system (1.1) is equivalent to the following Lax equation

Lt + [L,B]=0, (3.1)

where [L,B]= LB - BL and

Щ = г( & -l), (3.2)

V a dx , /

*=£ (- 2 - )■ <3-3>

Let fo = fo(x,£) be any solution of the equation

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Lfo = £fo, A e R. (3.4)

Then, it is easy to show, that the function

50 = fo - Bfo (3.5)

satisfies of the equation (3.4). In fact, taking the derivative with respect to t in (3.4) we have

Lfo + Lfo = {fo, for £ e R.

Using (3.1) and (3.4) we deduce that LSo = (So. Proceeding in a similar manner, it can be shown that the functions

S+ = ф - Вф, S- = ф - Вф and ,5+ = ф - Вф (3.6)

are also solutions of equation (3.4), where 1 = 1(x,£, t) and < = <(x,£, t) are Jost solutions

Differentiating the integral representation (2.6) for the Jost solution 1(x, t) with respect to t and taking into account that, the function u(x, t) (2.7) belongs to the class of rapidly decreasing functions, we find that i ^ 0 on x ^ to. Analogously, for the Jost solution tp(x, t) we obtain < ^ 0 on x ^ —to

Remark 1. By virtue of (2.2), (2.3), (3.3) and the condition (1.3), we have the following asymptotic relations as x ^ to

as x —> —oo

s- K 7 D (0)= 0

and by the uniqueness of the Jost solutions we get

s+ = - s+ = 4^, s- = = 0.

Lemma 1. For all ( e R the following equality holds

dr+(£, t) ai + , , -An = 2£ ^,t], im = 0-

Proof. We introduce the function

5 = S- —a(0S+ — b(0S+. (3.7)

Inserting (3.6) into the expression (3.7) and using (2.3), it follows that

s = a(0i + b(01. (3.8)

Due to Remark 1, we get

ai

S = 2^6(01- (3.9)

Comparing the equality (3.8) with (3.9), we obtain

ai

a(0 = 0, b(0 = ^b(0.

By virtue of (2.5), we arrive at the result, which was required to show. □

Lemma 2. The zeros £ = (k, k = 1,..., N of the function a(£) do not depend on .

Proof. Let

L^k = 6 , (3.10)

where 0k(x,£,t) is the eigenfunction corresponding to the eigenvalue £k normalized by condition /_+TO ^kl^k2dx = 1. The equality (3.10) can be

rewritten in the form

/ ftki - y4k2 = -i£kfai (3 11) \ $k2 - u$ki = iÇk&k2 ( ' )

By the simple computing from the system (3.11), we can derive the following auxiliary relations necessary for further calculations

(0k1 0k2 )' = u(4ii + fk2), (3.12)

i ' 2i k2l - 4>2k2 = ^ ((0kl) + (0k2^ - YkU^kl0k2- (3.13)

Introducing the notation ^ = px + t2t, the system (1.1) takes the form

( ^ = -U\ (3.14)

[ Uxt + = 0.

Differentiating the system (3.11) with respect to t we obtain

i (p'kl - Ut0k2 - U<pk2 = -i£k fikl - iCk<Pk1 (3 15)

I <P'k2 - Utfikl - v4k1 = iik$k2 + iin<Pk2

Integrating the result of subtraction from the first equation of (3.15) multiplied by $k2 the second equation of this system multiplied by <fik1 yields

"+to /. \

$'k1$k2 + U^kl^nl + i£k^k1$k2) dx

- [ (ф'к2фк1 + ифк2фк2 - i(kфк2фк\) dx-J — со

' —to C+to

' cl +

f+TO f+TO

ut(^2k2 - 4>2kl)dx = -2i£k (^kl^k2) dx.

J — TO J—TO

Integrating by parts the first two integrals in the last equation and using the normalization condition it follows that

/+TO

Ut(<p2k2 - 4kl)dx = 2iik. (3.16)

-TO

Substituting (3.13) to the (3.16) and using the first equation of (3.14), we

get

r+TO

/ ut(4)2k2 - ^2kl)dx =

i f+c ' i f+c

— U ((<kl) + (<y) dx + J- Vxt<kl<k2dx'

S k J —CO S k J —CO

Integrating by parts the each integral in the right-hand side of the last expression we have

/+C

ut(<k2 — <kl)dx =

C

i f+c i f+c

— Wk J uxt ^(<kl) + (<k2^ dx — J M<k1<k2)/dx"

Using (3.12) and the second equation of (3.14), we deduce that ¡t = 0. Lemma is proved.

Lemma 3. For the function ck(t) it holds the following equation

^ = a^ck(t), k = 1,...,n. dt 2& kW' ' '

Proof. Similarly to the process for continuous spectrum for the discrete spectrum we construct the functions

S— = <k — B<k, S+ = ik — Bik (3.17)

and through these, we introduce the following function

Sk = S— — CkS+. (3.18)

Differentiating the equality (2.4) by t and in accordance with the Lemma 2 we have

d<k dCk , . #k nx

—-— = —-—ik + ck——. (3.19)

dt dt k dt v !

Using (3.19) and (3.17), the expression (3.18) turns into

Sk = ddk1k. (3.20)

Due to the analycity of Jost functions and Remark 1, we have S— = and S+ = — j^lk. Therefore, according to (2.4) we find that

ai

Sk = -rlkCk ■ (3.21)

2 k

Comparing the expression (3.20) with (3.21), we find the evolution on t of the norming constant. □

Thus we have proved the following theorem which is the main result of this study.

Theorem 1. If the functions u(x, t), p(x, t) are solutions to the problem (1.1) - (1.3), then the scattering data of the system (2.1) evolve in time according to the following differential equations,

dr + (£, t) ai . ,,

= 2ë' ^ = 0'

^ = 0, k = 1, 2,..,N, d

d Ck (t) ai

~dT = Ck (t)'

The above relations completely determine the evolution of scattering data for the operator L(t) which allows using the inverse scattering transform method to solve the Cauchy problem (1.1)-(1.3).

4. Construction of a soliton solution for the nmKdV equation

In this section, we apply the result of the Theorem for constructing a one-soliton solution of the system (1.1). For this purpose, we assume that

the system is considered under the initial condition

U0(X) = - ^ (41)

Solving the direct problem for the operator L(0) with potential (3.19) for N = 1 we have

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

r(x, 0) = 0, 6(0)= i, ci(0) = 2. (4.2)

Applying the Theorem1 for the case (3.20), we obtain the following values of scattering data

r(x, t) = 0,6(i) = 6(0) = i, Cl(t) = 2ef4, (4.3)

Solving the Gelfand-Levitan-Marchenko system of equations (2.8) with the

obtained results yields Kl(x, y) = 2l+e-4l+f . Then by the formula (2.7) we recover the potential

u(x, t) = -2i sec h (^2x - ^t j .

Consequently, due to the conditions (1.3) we find

p(x, t) = ln ch ^2x - 2t j - x - ln ch(J2t j .

Figure 1 shows the soliton solutions of the negative order modified Korteweg - de Vries equation.

5. Conclusion

In this paper, we have derived the time dependence of scattering data of the Dirac operator. The obtained results specify completely the evolution of the scattering data of the operator L( ) which allows applying the IST method to find the solution to the problem (1.1) - (1.3).

Table 1

u(x,t)

-4 -4

Figure 1. The solution of the negative order modified Korteweg - de Vries equation corresponding to the parameter a = 50.

References

1. Ablowitz M.J., Been J.B., Carr L.D. Fractional integrable and related discrete nonlinear Schrodinger equations. Physics Letter A, 2022, vol. 452, pp. 128459. https://doi.Org/10.1016/j.physleta.2022.128459

2. Ablowitz M.J., Kaup D.J., Newell A.C., Segur H. The Inverse Scattering Transform-Fourier Analysis for Nonlinear Problems. Studies in Applied Mathematics,1974, vol. LII, no.4, pp. 249-315.

74

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

Baltaeva I.I., Rakhimov I.D., Khasanov M.M. Exact traveling wave solutions of the loaded modified Korteweg-de Vries equation. The Bulletin of Irkutsk State University. Series Mathematics, 2022, vol. 41, pp. 85-95. https://doi.org/10.26516/1997-7670.2022.41.85

Chen J. Quasi-periodic solutions to the negative-order KdV hierarchy. Int. J. Geom. Methods Mod. Phys, 2018, vol. 15, no. 3, 1850040. https://doi.org/10.1142/S0219887818500408

Demontis F. Exact solutions of the modified Korteweg-de Vries equation. Theor. Math. Phys., 2011, vol. 168, pp. 886-897. https://doi.org/10.1007/s11232-011-0072-4

Urazboev G., Babadjanova A.K. On the integration of the matrix modified Korteweg-de Vries equation with a self-consistent source. Tamkang Journal of Mathematics, 2019, vol. 50, pp. 281-291. https://doi.org/10.5556/j.tkjm.50.2019.3355

Gardner C.S., Greene J.M., Kruskal M.D., Miura R.M. Method for Solving the Korteweg de Vries Equation. Physical Review Letters, 1967, vol. 19, pp. 1095-1097. http://dx.doi.org/10.1103/PhysRevLett.19.1095

Jingqun Wang, Lixin Tian, Yingnan Zhang. Breather solutions of a negative order modified Korteweg-de Vries equation and its nonlinear stability. Physics Letters A, 2019, vol. 383, pp. 1689-1697. https://doi.org/10.1016Zj.physleta.2019.02.042 Khasanov A.B., Allanazarova T.Zh. On the modified Korteweg-de Vries equation with loaded term. Ukrainian Mathematical Journal, 2022, vol. 73, pp. 1783-1809. https://doi.org/10.1007/s11253-022-02030-4

Khasanov A.B., Yakhshimuratov A.B. The Korteweg-de Vries Equation with a Self-Consistent Source in the Class of Periodic Functions. Theor. Math. Phys., 2010, vol. 164, pp. 1008-1015. https://doi.org/10.4213/tmf6535 Lax P.D. Integrals of nonlinear equations of evolution and solitary waves. Comm. Pure Appl.Math., 1968, vol. 21, pp. 467-490. https://doi.org/10.1002/cpa.3160210503

Olver P.J. Evolution equations possessing infinitely many symmetries. J.Math.Phys., 1977, vol. 18, pp. 1212-1215. https://doi.org/10.1063/1.523393 Qiao Z., Li J. Negative-order KdV equation with both solitons and kink wave solutions. Europhysics Letters, 2011, vol. 94, no. 5, 50003. https://doi.org/10.1209/0295-5075/94/50003

Qiao Z.J., Fan E.G. Negative-order Kortewe-de Vries equations. Phys. Rev., 2012, vol. 86, 016601. https://doi.org/10.1103/PHYSREVE.86.016601 Reyimberganov A.A., Rakhimov I.D. The soliton solution for the nonlinear Schrodinger equation with self-consistent source. The Bulletin of Irkutsk State University. Series Mathematics, 2021, vol. 36, pp. 84-94. https://doi.org/10.54708/23040122_2022_14_1_77

Shengyang Yuan, Jian Xu. On a Riemann-Hilbert problem for the negative - order KdV equation. Applied Mathematics Letters, 2022, vol. 132, 108106. https://doi.org/10.1016/j.aml.2022.108106

Urazboev G.U., Khasanov M.M., Baltaeva I.I. Integration of the Negative Order Korteweg-de Vries Equation with a Special Source. The Bulletin of Irkutsk State University. Series Mathematics, 2023, vol. 44, pp. 31-43. (in Russian) https://doi.org/10.26516/1997-7670.2023.44.31

Urazboev G.U., Khasanov M.M. Integration of the negative order Korteweg- De Vries equation with a self-consistent source in the class of periodic functions. Vest-nik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2022, vol. 32, pp. 228-239. https://doi.org/10.35634/vm210209

19

20

21

22

23

24

25

26

1

2

3

4.

5.

6

7

Urazboev G.U, Khasanov A.B. "Integrating the Korteweg-de Vries Equation with a Self-Consistent Source and "Steplike" Initial Data". Theoret. and Math. Phys., 2001, vol. 129, pp. 38-54. https://doi.org/10.4213/tmf518

Urazboev G.U., Babadjanova A.K., Zhuaspayev T.A. Integration of the periodic Harry Dym equation with a source. Wave Motion., 2022, vol. 113, 102970. https://doi.org/10.1016/j.wavemoti.2022.102970

Urazboev G.U., Baltaeva I.I. Integration of the Camassa-Holm equation with a self-consistent source. Ufa Mathematical journal, 2022, vol. 14, pp. 77-86. https://doi.org/10.54708/23040122_2022_14_1_77

Verosky J.M. Negative powers of Olver recursion operators. J. Math. Phys., 1991, vol. 32, pp. 1733-1736. https://ui.adsabs.harvard.edu/ link_gateway/1991JMP....32.1733V/doi:10.1063/1.529234

Wadati M. The modified Korteweg-de Vries equation. J. Phys. Soc. Jpn., 1973, vol. 34, pp. 1289-1296. https://doi.org/10.1143/JPSJ.34.1289 Wazwaz A.M., Xu G.Q. Negative order modified KdV equations: multiple soliton and multiple singular soliton solutions. Mathematical methods in the Applied Sciences, 2016, vol. 39. http://dx.doi.org/10.1002/mma.3507 Zakharov V.E., Shabat A.B. Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. Zh. Eksp. Teor. Fiz., 1971. vol. 61, pp. 118-134.

Zhang Da-Jun, Zhao Song-Lin, Sun Ying-Ying, Zhou Jhou. Solutions to the modified Korteweg-de Vries equation. Reviews in Mathematical Physics, 2014, vol. 26, 1430006. http://dx.doi.org/10.1142/S0129055X14300064

Список источников

Ablowitz M. J., Been J. B., Carr L. D. Fractional integrable and related discrete nonlinear Schrodinger equations // Physics Letter A. 2022. Vol. 452. P. 128459. https://doi.Org/10.1016/j.physleta.2022.128459

The Inverse Scattering Transform-Fourier Analysis for Nonlinear Problems / M. J. Ablowitz, D. J. Kaup, A. C. Newell, H. Segur // Studies in Applied Mathematics,1974, Vol. 52, N 4. P. 249-315.

Baltaeva I. I., Rakhimov I. D., Khasanov M. M. Exact traveling wave solutions of the loaded modified Korteweg-de Vries equation // Известия Иркутского государственного университета. Серия Математика. 2022. Т. 41. С. 85-95. https://doi.org/10.26516/1997-7670.2022.41.85

Chen J. Quasi-periodic solutions to the negative-order KdV hierarchy // Int. J. Geom. Methods Mod. Phys. 2019. Vol. 15. P. 1850040. https://doi.org/10.1142/S0219887818500408

Demontis F. Exact solutions of the modified Korteweg-de Vries equation // Theor. Math. Phys. 2011. Vol.168. P. 886-897. https://doi.org/10.1007/s11232-011-0072-4 Urazboev G., Babadjanova A. K. On the integration of the matrix modified Korteweg-de Vries equation with a self-consistent source // Tamkang Journal of Mathematics. 2019. Vol. 50. P. 281-291. https://doi.org/10.5556/j.tkjm.50.2019.3355

Method for Solving the Korteweg de Vries Equation / C. S. Gardner, J. M. Greene, M. D. Kruskal, R. M. Miura // Physical Review Letters. 1967. Vol. 19. P. 10951097. http://dx.doi.org/10.1103/PhysRevLett.19.1095

8. Jingqun Wang, Lixin Tian, Yingnan Zhang. Breather solutions of a negative order modified Korteweg-de Vries equation and its nonlinear stability // Physics Letters A. 2019. Vol. 383. P. 1689-1697. https://doi.org/10.1016/j.physleta.2019.02.042

9. Khasanov A. B., Allanazarova T. Zh. On the modified Korteweg-de Vries equation with loaded term // Ukrainian Mathematical Journal. 2022. Vol. 73. P. 1783-1809. https://doi.org/10.1007/s11253-022-02030-4

10. Хасанов А. Б., Яхшимуратов А. Б. Об уравнении Кортевега - де Фриза с самосогласованным источником в классе периодических функций // ТМФ. 2010. T. 164, № 2. C. 214-221. https://doi.org/10.4213/tmf6535

11. Lax P. D. Integrals of nonlinear equations of eVolution and solitary waves // Comm. Pure Appl. Math. 1968. Vol. 21. P. 467-490. https://doi.org/10.1002/cpa.3160210503

12. Olver P. J. EVolution equations possessing infinitely many symmetries // J. Math. Phys. 1977. Vol. 18. P. 1212-1215. https://doi.org/10.1063/L523393

13. Qiao Z., Li J. Negative-order KdV equation with both solitons and kink wave solutions // Europhysics Letters. 2011 Vol. 94. Art. N 50003. https://doi.org/10.1209/0295-5075/94/50003

14. Qiao Z. J., Fan E. G. Negative-order Kortewe-de Vries equations // Phys. Rev. 2012. Vol. 86. Art. N 016601. https://doi.org/10.1103/PHYSREVE.86.016601

15. Reyimberganov A. A., Rakhimov I. D. The soliton solution for the nonlinear Schrodinger equation with self-consistent source // The Bulletin of Irkutsk State University. Series Mathematics. 2021. Vol. 36. P. 84-94. https://doi.org/10.54708/23040122_2022_14_1_77

16. Shengyang Yuan, Jian Xu. On a Riemann-Hilbert problem for the negative -order KdV equation // Applied Mathematics Letters. 2022. Vol. 132. P. 108106. https://doi.org/10.1016/j.aml.2022.108106

17. Уразбоев Г. У., Хасанов М. М., Балтаева И. И. Интегрирование уравнения Кортевега - де Фриза отрицательного порядка с источником специального вида // Известия Иркутского государственного университета. Серия Математика. 2023. Т. 44. С. 31-43. https://doi.org/10.26516/1997-7670.2023.44.31

18. Уразбоев Г. У., Хасанов М. М. Интегрирование уравнения Кортевега - де Фриза отрицательного порядка с самосогласованным источником в классе периодических функций // Вестник Удмуртского университета. Математика. Механика. Компьютерные науки. 2022. Т. 32. С. 228-239. https://doi.org/10.35634/vm210209

19. Уразбоев Г. У, Хасанов А. Б. Интгерирование уравнения Кортевег - де Фриза с самосогласованным источником при начальных данных типа "ступеньки" // Теоретическая и математическая физика. 2001. Т. 129, № 1. С. 38-54. https://doi.org/10.4213/tmf518

20. Urazboev G. U., Babadjanova A. K., Zhuaspayev T. A. Integration of the periodic Harry Dym equation with a source // Wave Motion. 2022. Vol. 113. Art. N 102970. https://doi.org/10.1016/j.wavemoti.2022.102970

21. Urazboev G. U., Baltaeva I. I. Integration of the Camassa-Holm equation with a self-consistent source // Ufa Mathematical Journal. 2022. Vol. 14. P. 77-86. https://doi.org/10.54708/23040122_2022_14_1_77

22. Verosky J. M. Negative powers of Olver recursion operators // J. Math. Phys. 1991. Vol. 32. P. 1733-1736. https://ui.adsabs.harvard.edu/link_gateway/ 1991JMP32.1733V/doi:10.1063/1.529234

23. Wadati M. The modified Korteweg - de Vries equation //J. Phys. Soc. Jpn. 1973. Vol. 34. P. 1289-1296. https://doi.org/10.1143/JPSJ.34.1289

24. Wazwaz A. M., Xu G. Q. Negative order modified KdV equations: multiple soliton and multiple singular soliton solutions // Mathematical methods in the Applied Sciences. 2016. Vol. 39. http://dx.doi.org/10.1002/mma.3507

25. Zakharov V. E., Shabat A. B. Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media// Zh. Eksp. Teor. Fiz. 1971. Vol. 61. P. 118-134.

26. Solutions to the modified Korteweg-de Vries equation / Zhang Da-Jun, Zhao Song-Lin, Sun Ying-Ying, Zhou Jhou // Reviews in Mathematical Physics. 2014. Vol. 26. Art. N 1430006. http://dx.doi.org/10.1142/S0129055X14300064

Об авторах

Уразбоев Гайрат Уразалиевич,

д-р физ.-мат. наук, проф., Ургенчский государственный университет, Ургенч, 220100, Узбекистан, [email protected], https://orcid.org/0000-0002-7420-2516

Балтаева Ирода Исмаиловна,

канд. физ.-мат. наук, доц., Ургенчский государственный университет, Ургенч, 220100, Узбекистан, [email protected], https://orcid.org/0000-0001-5624-7529

Атаназарова Шоира Эркиновна,

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

магистр, мл. науч. сотр., Хорезмское отделение Института математики им. В. И. Романовского, АН РУз, Ургенч, 220100, Узбекистан, [email protected], https://orcid.org/0000-0003-2099-4391

About the authors Gayrat U. Urazboev, Dr. Sci.

(Phys.-Math.), Prof., Urgench State University, Urgench, 220100, Uzbekistan, [email protected], https://orcid.org/0000-0002-7420-2516

Iroda I. Baltaeva, Cand. Sci. (Phys.-Math.), Assoc. Prof., Urgench State University, Urgench, 220100, Uzbekistan, [email protected], https://orcid.org/0000-0001-5624-7529

Shoira E. Atanazarova, Master (Phys.-Math.), Junior Researcher, Khorezm Branch of V. I. Romanovski Institute of mathematics, Uzbekistan Academy of Science, Urgench, 220100, Uzbekistan,

[email protected], https://orcid.org/0000-0003-2099-4391

Поступила в 'редакцию / Received 22.06.2023 Поступила после рецензирования / Revised 19.10.2023 Принята к публикации / Accepted 21.11.2023

i Надоели баннеры? Вы всегда можете отключить рекламу.