СЕКЦИЯ № 4
ТЕХНОЛОГИИ ТУШЕНИЯ ПОЖАРОВ И СПАСЕНИЯ ЛЮДЕЙ
СИСТЕМА РАБОТЫ ЗВЕНА ГДЗС НА ОСНОВЕ ПЕРЕДОВЫХ
ТЕХНОЛОГИЙ
А.А. Апарин, курсант, О.Г. Волков, преподаватель, А.Н. Бочкарев, преподаватель, Д.Ю. Захаров преподаватель, Ивановская пожарно-спасательная академия ГПС МЧС России,
г. Иваново
В самом начале пути Человечества огонь стал для людей, как незаменимым помощником, так и лютым врагом. Его добывали самостоятельно, но в тоже время остерегались. Ему поклонялись как божеству и одновременно пытались защититься от него. Ведь огонь без контроля со стороны человека способен сам вершить историю, стирая с лица Земли города, народы и цивилизации. Спутником огня является дым, который в свою очередь может быть куда опаснее для здоровья людей, чем пламя.
Среди задач, связанных с разработкой и совершенствованием способов и средств противопожарной защиты объектов экономики, а также с повышением эффективности работы пожарных, вопросы борьбы с дымом занимают одно из основных мест [1].
Целью работы явилась инновационная концепция работы звена ГДЗС в сильно задымленной среде, на основе усовершенствованного шлема пожарного и способов обнаружения людей в НДС, которые могут быть исполнены в конструкции данного оснащения пожарного.
Работая в непригодной для дыхания среде, личному составу федеральной противопожарной службы (далее - ФПС), то есть звену ГДЗС необходимо обладать большим количеством информации, нужной для выполнения поставленных задач с наибольшей эффективностью. Особый контроль за происходящим в НДС должен осуществлять командир звена, которого и предлагается оснастить технологически новым устройством - инновационным шлемом пожарного.
Осуществляя работу в помещениях на пожаре, в условиях порой нулевой видимости, звену ГДЗС важно работать сообща, не теряя друг друга под воздействием опасных факторов пожара (далее - ОФП). Поэтому, в целях обеспечения безопасной работы звена целесообразно использовать специальные датчики, функционирующие на основе технологии Wi-Fi, либо глобальной навигационной спутниковой системы - ГЛОНАСС. Плюсом, которой является большая продолжительность автономной работы и компактность исполнения, чтобы не нагружать избыточным весом шлем, предлагается поместить источник сигнала, в специально оборудованный карман на боевой одежде пожарного. Смысл применения данной технологии заключается в том, что данные о
перемещении звена (звеньев) направляется на компьютер специальному оператору в штаб тушения пожара, который по радиосвязи подсказывает командиру звена возможные направления действия.
Так как газодымозащитники работают в дыхательных аппаратах, то это затрудняет возможность их общения, поэтому следует оборудовать шлем обычного пожарного звуковым сигнализатором, который при удалении на определенную дистанцию пожарных друг от друга срабатывал с разной интенсивностью по мере удаления и приближения. Использование обычных шлемов у газодымозащитников, за исключением командира звена обусловлено тем, что основные решения при работе в НДС принимал только командир звена.
Такая мистическая возможность в обыденной жизни как «видеть сквозь дым», в пожарном искусстве делает работу газодымозащитника более эффективной и безопасной для него самого. На данный момент в широком диапазоне используются мобильные тепловизоры, выполненные из термостойких материалов. Данные устройства позволяют пожарному определять более или менее нагретые участки конструкций, а также ориентироваться в пространстве при плохой видимости и находить в сильно задымленных помещениях пострадавших. Единственное неудобство переносного тепловизора заключается в том, что пожарный входя в НДС оснащается пожарно-техническим оборудованием: средствами индивидуальной защиты органов дыхания и зрения (далее - СИЗОД), средствами связи, приборами освещения, путевым тросом, средствами тушения (рабочей рукавной линией, с примкнутым к ней перекрывным стволом), инструмент для проведения специальных работ на пожаре. Вследствие чего компактное размещения тепловизора на пожарном шлеме освобождает руки работающего. В данной ситуации также актуально использовать технологию Wi-Fi для передачи данных с тепловизора оператору в штаб тушения пожара или на пост безопасности.
Связь обеспечивается в соответствии со стандартами IEEE802.11b и IEEE802.11g. В стандарте Wi-Fi передача данных производится на частоте 2.4~2.5 ГГц со скоростью до 108 Мбит/c на расстоянии 25- 30 км [2].
Информация, поступая на определенный компьютер, при помощи специализированного программного обеспечения обрабатывается и сохраняется, создавая тем самым карту местности в особом видении в видении спектра инфра красного излучения, в итоге получаем тепловизионную карту местности. На основе этого оператор посредством радиосвязи подсказывает командиру звена о возможных опасностях на пути следования, о незамеченных пострадавших или наиболее нагретых частях строительных конструкций.
В дальнейшем, основываясь на созданных и обработанных специальными программами тепловизионных картах объектов, можно создавать учебные тепловизионные карты для типовых зданий и сооружений.
Как уже говорилось ранее, в боевой одежде пожарного должен находиться источник сигнала Wi-Fi. Поэтому стоит рассказать о перспективности использования совершенно новой технологии, разработанной на базе Массачусетского технологического института, но скоро ожидаемой и в России -инновационное программное обеспечение, делающее возможность визуализации
силуэтов людей, находящихся за стенами помещений, посредством технологии Wi-Fi. Данный софт получил название RF-Capture. На сайте института отмечается, что с его помощью можно не только различать силуэты, но и определять частоту сердцебиения на расстоянии. Это устройство также можно будет интегрировать с боевой одеждой пожарного, путем компактного размещения в безопасном для датчика месте.
К сожалению, обычные пожарные части еще не скоро будут оснащены инновационным пожарным оборудованием. Учеными были проведены исследования, в результате которых была получена математическая вероятность обнаружения пострадавших под завалами или при работе в сильно задымленных помещениях в условиях нулевой видимости без использования специального оборудования. Итак, вероятность обнаружения 2 из 6 пострадавших, находящихся без сознания составила всего P= 0,546 [3].
Целесообразно инвестировать государственные средства в развитие научно - технического оснащения пожарных. Это были бы прямые инвестиции в спасение жизней и безопасности работы самих сотрудников (работников) ФПС.
Список использованной литературы
1. Грачев В.А., Теребнев В.В., Покровский Д.В. Газодымозащитная служба: Учеб.-метод. пособие. - Изд. 2-е, перераб. и доп. - М.:ООО «Издательство «Калан», 2012. - 280 с.
2. Пахомов С. Анатомия компьютерных средств// КомпьютерПресс. 2002. №7. С. - 167-175.
3. Мокшанцев А.В. Модели и алгоритмы поддержки принятия управленческих решений при поиске пострадавших по завалами: автореф.- М.: Академия ГПС МЧС России, 2013. - 23 с.