ИЗВЕСТИЯ ВУЗОВ. ПРИКЛАДНАЯ ХИМИЯ И БИОТЕХНОЛОГИЯ Том 7 N 2 2017
ХИМИЧЕСКИЕ НАУКИ / CHEMICAL SCIENCES Оригинальная статья / Original article УДК 632.9: 547.835.5 DOI: 10.21285/2227-2925-2017-7-1 -16-20
СИНТЕЗ И БИОЛОГИЧЕСКИЕ ИСПЫТАНИЯ НА ПЕСТИЦИДНУЮ АКТИВНОСТЬ ПРОИЗВОДНЫХ 1,2,3,4,5,6,7,8,9,10-ДЕКАГИДРОАКРИДИНДИОНА-1,8
© Д.Н. Пырко
Международный государственный экологический институт имени А.Д. Сахарова
Белорусского государственного университета,
Республика Беларусь, 220070, г. Минск, ул. Долгобродская, 23/1.
Целью работы является синтез и испытание на пестицидную активность производных декагид-роакридиндиона, которые могли бы стать основой средств защиты растений. Исследованные соединения получены трехкомпонентной гетероциклизацией первичных аминов, ароматических альдегидов и димедона. Синтезированные соединения были испытаны на некоторые виды инсектицидной (против toxoptera graminum, musca domestica,meloidogyne incognita, heliothis virescens, diabrotica undecimpunctata howardi, caenorhabditis elegans), фунгицидной (против drechslera, erysiphe, puccinia, peronospora) и гербицидной активности (против amaranthus retroflexus, brassica rapa, abutilon theophrasti, alopecurus myosuroides, avena fatua, echinochloa crus galli). Все соединения проявили инсектицидную активность против toxoptera graminum. Три соединения проявили гербицид-ную активность против amaranthus retroflexus. Только одно соединение из шести проявило фунги-цидную активность против drechslera.
Ключевые слова: производные декагидроакридина, синтез, пестицидная активность
Формат цитирования: Пырко А.Н. Синтез и биологические испытания на пестицидную активность производных 1,2,3,4,5,6,7,8,9,10-декагидроакридиндиона-1,8 // Известия вузов. Прикладная химия и биотехнология. 2017. Т. 7, N 2. С. 16-20. DOI: 10.21285/2227-2925-2017-7-1-16-20
SYNTHESIS AND BIOLOGICAL TESTING FOR PESTICIDAL ACTIVITY OF 9-ARYL-N-ARYL, ALKYL-SUBSTITUTED 1,2,3,4,5,6,7,8,9,10-DECAHYDROACRIDINE-1,8-DIONE DERIVATIVES
© A.N. Pyrko
International Sakharov Environmental Institute Belarussian State University, 23/1, Dolgobrodskaya St., Minsk, 220070, Republic of Belarus.
The purpose of this work is the synthesis and pesticidal activity testing of 9-aryl-N-aryl, alkyl-substituted 1,2,3,4,5,6,7,8,9,10-decahydroacridine-1,8-dione derivatives which could become the basis of plant protection products. The substances investigated were obtained by three-component heterocyclization of primary amines with aromatic aldehydes and dimedone. The synthesized compounds were tested for certain types of insecticide (against toxoptera graminum, musca domestica, meloidogyne incognita, heliothis virescens, diabrotica undecimpunctata howardi, caenorhabditis elegans), fungicidal (against drechslera, erysiphe, puccinia, peronospora) and herbicidal (against amaranthus retroflexus, brassica rapa, abutilon theophrasti, alopecurus myosuroides , avena fatua, echinochloa crus galli) activities. All synthesized compounds have shown promising insecticidal activities against toxoptera graminum. 9-(4-methoxyphenyl)-, N-2-phenylethyl-substituted, 9-(3,4-methoxyphenyl)-, N-2-carboxyethyl-substituted and 9-(2-hydroxyphenyl)-N-octyl-substituted derivatives have shown significant herbicidal activities against amaranthus retroflexus. 9-phenyl-N-methyl-substituted derivative was active against amaranthus retroflexus, brassica rapa, and abutilon theophrasti. Only this compound showed antifungal activity against drechslera. Keywords: decahydroacridinedione derivatives, synthesis, pesticidal activity
For citation: Pyrko A.N. Synthesis and Biological Testing for Pesticidal Activity of 9-aryl-n-aryl, alkyl-substituted 1,2,3,4,5,6,7,8,9,10-decahydroacridine-1,8-dione Derivatives. Izvestiya Vuzov. Prikladnaya Khimiya I Biotekhnologia [Proceeding of Universities. Applied Chemistry and Biotechnology]. 2017, vol. 7, no. 2 , pp. 16-20 (in Russian). DOI: 10.21285/2227-2925-2017-7-2-16-20
INTRODUCTION
Decahydroacridinediones containing the 1,4-dihydropyridine fragment can be obtained by the Hantzsch synthesis [1-4]. These compounds reveal a broad spectrum of biological activities [5, 6]. The dyes of the decahydroacridine series have been studied to apply them as laser dyes and fluorescent marks [7].
The present paper describes the studies on synthesis and pesticide testing for decahydroacridinediones (Ia-f).
METHODS AND RESULTS
The substances under study were obtained based on the three-component heterocyclization of primary amines (IVa-e), aldehydes (IIIa-d) and dimedone (II). The cyclization is due to heating of equimolar quantities of dimedone and amine in the solution of glacial acetic acid with addition of aromatic acetaldehydes. The chemical structures of synthesized compounds were identified using physical, elemental and spectroscopic analyses. The results were summarized in Table 1.
Scheme 1
CHO
П
Ша-d
+ RNH2
IVa-e
Ia-f
X = H (IIIa, Ia,b), 3,4-OMe (IIIb, Ic,f), 4-OMe (IIIc, Id), 2-OH (IIId, Ie); R = Me (IVa, Ia), Ph (IVb, Ib,c), CH2CH2Ph (IVc, Id), (CH2)7Me (IVd, Ie), CH2CH2CO2H (IIId, If)
Table 1
Physical and chemical characteristics of synthesized compounds (Ia-e)
Compound R X Molecular formula Melting point from EtOH, oC Yield, % UV spectrum, EtOH, W, nm, (Ige)
Ia 9-phenyl-3,3,6,6,10-pentamethyl-1,2,3,4,5,6,7,8,9,10-decahydroacridine-1,8-dione
Me H C24H2gO2N 236-238 87 253 (4.23), 276 (4.15), 377 (3.81)
Ib 9,10-diphenyl-3,3,6,6-tetramethyl-1,2,3,4,5,6,7,8,9,10-decahydroacridine-1,8-dione
Ph H C2gH31O2N 235-237 85 254 (4.23), 271 (4.11), 378 (3.78)
Ic 9-(3,4-dimethoxyphenyl)-10-phenyl-3,3,6,6-tetramethyl-1,2,3,4,5,6,7,8,9,10-decahydroacridine-1.8-dione
Ph 3,4-OMe C31H35O4N 187-199 88 254 (4.41), 271 (4.12), 377 (3.85)
Id 9-(4-methoxyphenyl)-10-(2-phenylethyl)-3,3,6,6-tetramethyl-1,2,3,4,5,6,7,8,9,10- decahydroacridine-1,8-dione
CH2CH2Ph 4-OMe C32H37O3N 211-213 84 255 (4.25), 272 (4.38), 381 (3.92)
Ie 9-(2-hydroxyphenyl)-10-octyl-3,3,6,6-tetramethyl-1,2,3,4,5,6,7,8,9,10-decahydroacridine-1,8- dione
(CH2)7Me 2-OH C31H43O3N 116-118 82 254 (4.31), 272 (4.28), 379 (3.90)
If 9-(3,4-methoxyphenyl)-10-(2-carboxyethyl)-3,3,6,6-tetramethyl-1,2,3,4,5,6,7,8,9,10- decahydroacridine-1,8-dione
CH2CH2CO2H 3,4-OMe C2eH35O6N 215-217 83 253 (4.29), 273 (4.16), 378 (3.91)
General procedure for decahydroacri-dinediones (Ia-f) synthesis
A mixture of dimedone (2.80 g, 20 mmol) and amine (10 mmol) in 20 ml glacial acetic acid was being heated for 30 min, then benzaldehyde (10 mmol) was added, and the mixture was heated for additional
1.5 h. The solvent was boiled out, and the residue was recrystallized from ethanol.
Biological testing
Pesticide testing involved identification of insecticides (insect killers including adults, ova, and larvae) , fungicides and phytotoxins (herbicides).
Data on antifungal activ
Fungus greenhouse tests were carried out by spraying substances on plants which were further inoculated with drechslera, erysiphe, puccinia, peronospora.
The compound efficiency was assessed by comparing sprayed and non-sprayed plants. The results are shown in Table 2.
Insect pests are a major factor of agricultural crops loss. Insecticidal activity of compounds (Ia-f) toxoptera graminum, musca domesti-ca,meloidogyne incognita, heliothis virescens, diabrotica undecimpunctata howardi, caenorhabditis elegans was tested. The results are shown in Table 3.
Table 2
compound Dose, ppm Name of fungus and greenhouse test result
drechslera erysiphe puccinia peronospora
Ia 100.00 50 0 0 0
Ib 100.00 0 0 0 0
Ic 100.00 0 0 0 0
Id 100.00 0 0 0 0
Ie 100.00 0 0 0 0
note: 100 - The product is active. It causes more than 80% inhibition of fungus development;
50 - The product is slightly active. It causes 50-80% inhibition of fungus development;
0 - The compound is regarded as inactive. It causes less than 50% inhibition of fungus development.
Table 3
Data on insecticidal activity of synthesized compounds
Compound, biological plant days dose unites
effect Ia Ia Ib Ic Id Ie If
Toxoptera graminum, mixed sorghum 6 0.1 ppm 3 5 3 5 5 3
Musca domestica, pupae - 6 1.0 ug/well 1 1 1 1 1 1
Meloidogyne incognita, J2 - 5 5.0 ppm 1 1 1 1 1 1
Heliothis virescens, egg 8 0.6 ug/ 1 1 1 1 1 1
6 well 1 1 1 1 1 1
Diabrotica undecimpunctata howardi, egg cucumber 6 0.3 ppm 1 1 1 1 1 5
Caenorhabditis elegans, mixed E.coli 7 5.0 1 1 1 1 1 1
note: 1 - 0-29% observed insect death rate; 3 - 30-69% observed insect death rate; 5 - 70-100% observed insect death rate.
Table 4
Data on herbicidal activity of synthesized compounds
Plant Dose, ppm Compound, Biological effect, %
Ia Ib Ic Id Ie If
Amaranthus retroflexus 100 30 0 0 70 70 90
Brassica rapa 100 10 0 0 0 10 0
Abutilon theophrasti 100 30 0 0 0 0 0
Alopecurus myosuroides 100 0 0 0 0 0 0
Avena fatua 100 0 0 0 0 0 0
Echinochloa crus galli 100 0 0 0 0 0 0
Herbicidal activity of compounds against am-aranthus retroflexus, brassica rapa, abutilon the-ophrasti, alopecurus myosuroides, avena fatua, echinochloa crus galli was studied The results are shown in Table 4 and expressed in death rate percentage towards non-sprayed plants.
CONCLUSION
Thus, the present study described the method for synthesis of 9-aryl-N-aryl, alkyl-substituted 1,2,3,4,5,6,7,8,9,10-decahydroacridine-1.8-dione derivatives through the three-component hetero-cyclization of primary amines with aromatic alde-
1. Safaei-Ghomi J., Ghasemzadeh M. A., Zahedi S. ZnO nanoparticles: a highly effective and readily recyclable catalyst for the one-pot synthesis of 1, 8-dioxodecahydroacridine and diox-ooctahydroxanthene derivatives //Journal of the Mexican Chemical Society. 2013. V. 57, N. 1. P. 1-7.
2. Nakhi A., Srinivas P. T. V., Rahman M. S. Amberlite IR-120H catalyzed MCR: design, synthesis and crystal structure analysis of 1, 8-dioxodecahydroacridines as potential inhibitors of sirtuins //Bioorganic and Medicinal Chemistry Letters. 2013. V. 23, N. 6. P. 1828-1833.
3. Pyrko A.N. Synthesis and Transformations of New 1,2,3,4,5,6,7,8,9,10-Deca-hydroacridine-1,8-dione Derivatives // Russian Journal of Organic Chemistry. 2008. V. 44, N. 8. P. 1215-1224.
4. Kumar A., Sharma S. A grinding-induced catalyst- and solvent-free synthesis of highly func-
hydes and dimedone.
All synthesized compounds showed insecti-cidal activity against toxoptera graminum.. 9-(4-Methoxyphenyl)-, N-2-phenylethyl-substituted, 9-(3,4-methoxyphenyl)-, N-2-carboxyethyl-subs-tituted and 9-(2-hydroxyphenyl)-N-octyl-subs-tituted compunds showed significant herbicidal activity against amaranthus retroflexus. 9-Phenyl-,N-methyl-substituted derivative was active against amaranthus retroflexus, brassica rapa, and abutilon theophrasti. Only that compound showed antifungal activity against drechslera.
КИЙ СПИСОК
tionalized 1,4-dihydropyridines via a domino mul-ticomponent reaction // Green Chem. 2011. Vol. 13. P. 2017-2020.
5. To Q. H., Lee Y. R., Kim S. H. Efficient one-pot synthesis of acridinediones by indium(III) triflate-catalyzed reactions of p-enaminones, aldehydes, and cyclic 1,3-dicarbonyls // Bulletin of the Korean Chemical Society. 2012. Vol. 33, N. 4. P. 1170-1176.
6. Shchekotikhin Yu.M., Nikolaeva T.G., Shub G.M., Kriven'ko A.P.Synthesis and antibacterial activity of substituted 1,8-dioxo-decahydroacridines // Khim.-Farm. Zh. 2001. V. 35, N 4. P. 206-211.
7. Gutsulyak Kh. V., Manzhara V. S., Mel'nik M. V., Kalinc T. I. Relationship between the structure and photostability of decahydroacridine derivatives // J. Appl. Spectr. 2005. Vol. 72, No. 4. P. 488-494.
1. Safaei-Ghomi J., Ghasemzadeh M.A., Zahedi S. ZnO nanoparticles: a highly effective and readily recyclable catalyst for the one-pot synthesis of 1,8-dioxodecahydroacridine and dioxooc-tahydroxanthene derivatives. Journal of the Mexican Chemical Society. 2013, vol. 57, no. 1, pp. 17.
2. Nakhi A., Srinivas P.V., Rahman M.S. Amberlite IR-120H catalyzed MCR: design, synthesis and crystal structure analysis of 1,8-dioxodecahydroacridines as potential inhibitors of sirtuins. Bioorganic and Medicinal Chemistry Letters. 2013, vol. 23, no.6. pp. 1828-1833.
3. Pyrko A.N. Synthesis and Transformations of New 1,2,3,4,5,6,7,8,9,10-Deca hydroacridine-1,8-dione Derivatives. Russian Journal of Organic Chemistry. 2008, vol. 44, no. 8, pp. 1215-1224.
4. Kumar A., Sharma S. A grinding-induced catalyst- and solvent-free synthesis of highly func-
Критерии авторства
Пырко А.Н. выполнил экспериментальную работу, на основании полученных результа-
tionalized 1,4-dihydropyridines via a domino mul-ticomponent reaction. Green Chem. 2011, vol. 13, pp. 2017-2020.
5. To Q.H., LeeY.R., Kim S.H. Efficient one-pot synthesis of acridinediones by indium(III) tri-flate-catalyzed reactions of p-enaminones, aldehydes, and cyclic 1,3-dicarbonyls. Bulletin of the Korean Chemical Society. 2012, vol. 33, no. 4, pp. 1170-1176.
6. Shchekotikhin Yu.M., Nikolaeva T.G., Shub G.M., Kriven'ko A.P. Synthesis and antibacterial activity of substituted 1,8-dioxo-decahydroacridines. Khim.-Farm. Zh. 2001, vol. 35, no. 4, pp. 206-211.
7. Gutsulyak Kh.V., Manzhara M.V., Mel'nik V.S., Kalinc T.I. Relationship between the structure and photostability of decahydroacridine derivatives. J. Appl. Spectr. 2005, vol. 72, no. 4, pp. 488-494.
Contribution
Pyrko A.N. carried out the experimental work, on the basis of the results summarized the material
тов провел обобщение и написал рукопись. Пырко А.Н. имеет на статью авторские права и несет ответственность за плагиат.
Конфликт интересов
Автор заявляет об отсутствии конфликта интересов.
СВЕДЕНИЯ ОБ АВТОРАХ Принадлежность к организации
Анатолий Н. Пырко
Международный государственный экологический институт имени А.Д. Сахарова Белорусского государственного университета К.х.н., доцент кафедры биохимии и биофизики [email protected]
Поступила 21.09.2016
and wrote the manuscript. Pyrko A.N. have author's rights and bear responsibility for plagiarism.
Conflict of interests
The author declare no conflict of interests regarding the publication of this article.
AUTHORS' INDEX Affiliation
Anatolii N. Pyrko
International Sakharov Environmental Institute
Belarussian State University
Ph.D. (Chemistry),
Associate Professor
Received 21.09.2016