Научная статья на тему 'RESULTS OF FATTY ACID ANALYSIS OF FLAXSEED OIL TREATED WITH AN ELECTRIC PULSE FIELD'

RESULTS OF FATTY ACID ANALYSIS OF FLAXSEED OIL TREATED WITH AN ELECTRIC PULSE FIELD Текст научной статьи по специальности «Техника и технологии»

CC BY
0
0
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
gas chromatography (GC) analysis / linolenic acid / electric pulse / diethyl ether / GOST / газовая хроматография (ГХ) анализ / линоленовая кислота / электрический импульс / диэтиловый эфир / ГОСТ

Аннотация научной статьи по технике и технологии, автор научной работы — Narziyev Mirzo, Ismatova Nafisa

This study investigates the impact of electric pulse field (EPF) treatment on the fatty acid composition of flaxseed oil. Flaxseed oil is known for its high content of omega-3 fatty acids, particularly alpha-linolenic acid (ALA), which is beneficial for cardiovascular health. The research evaluates how exposure to an electric pulse field affects the fatty acid profile of the oil, including the changes in the levels of polyunsaturated fatty acids (PUFAs), monounsaturated fatty acids (MUFAs), and saturated fatty acids (SFAs). The results demonstrate that EPF treatment induces significant alterations in the fatty acid composition, particularly increasing the concentration of beneficial omega-3 fatty acids while reducing saturated fat content. This process could offer an innovative approach to enhancing the nutritional val-ue of flaxseed oil without compromising its overall quality. The findings suggest potential applications for EPF in food processing, where the preservation of beneficial fatty acids and the reduction of less desirable components are crucial for improving health outcomes.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

РЕЗУЛЬТАТЫ АНАЛИЗА ЖИРНЫХ КИСЛОТ ЛЬНЯНОГО МАСЛА, ОБРАБОТАННОГО ЭЛЕКТРИЧЕСКИМ ИМПУЛЬСНЫМ ПОЛЕМ

Данное исследование посвящено анализу влияния обработки льняного масла с помощью электрического импульсного поля (ЭИП) на его состав жирных кислот. Льняное масло известно высоким содержанием омега-3 жирных кислот, в частности альфа-линоленовой кислоты (АЛК), которая полезна для сердечно-сосудистой системы. В работе оценивается, как воздействие электрического импульсного поля влияет на профиль жирных кислот масла, включая изменения уровня полиненасыщенных жирных кислот (ПНЖК), мононенасыщенных жирных кислот (МНЖК) и насыщенных жирных кислот (НЖК). Результаты показали, что обработка ЭИП вызывает значительные изменения в составе жирных кислот, в частности увеличивается концентрация полезных омега-3 жирных кислот, при этом уменьшается содержание насыщенных жиров. Этот процесс может стать инновационным подходом для улучшения питательной ценности льняного масла без ухудшения его общего качества. Полученные данные свидетельствуют о потенциальных приложениях ЭИП в пищевой промышленности, где сохранение полезных жирных кислот и снижение содержания нежелательных компонентов имеют важное значение для улучшения здоровья потребителей.

Текст научной работы на тему «RESULTS OF FATTY ACID ANALYSIS OF FLAXSEED OIL TREATED WITH AN ELECTRIC PULSE FIELD»

№ 3 (132)

март, 2025 г.

PROCESSES AND MACHINES OF AGROENGINEERING SYSTEMS

RESULTS OF FATTY ACID ANALYSIS OF FLAXSEED OIL TREATED WITH AN ELECTRIC PULSE FIELD

Mirzo Narziyev

Candidate of technical science, Associate Professor, Bukhara Engineering-Technological Institute, Uzbekistan, Bukhara

Nafisa Ismatova

PhD student,

Bukhara engineering technological institute, Republic of Uzbekistan, Bukhara E-mail: [email protected]

РЕЗУЛЬТАТЫ АНАЛИЗА ЖИРНЫХ КИСЛОТ ЛЬНЯНОГО МАСЛА, ОБРАБОТАННОГО

ЭЛЕКТРИЧЕСКИМ ИМПУЛЬСНЫМ ПОЛЕМ

Нарзийев Мирзо Саидович

канд. техн. наук, доцент, Бухарский инженерно-технологический институт, Республика Узбекистан, Бухара

Исматова Нафиса Нусратулла кизи

аспирант,

Бухарский инженерно-технологический институт, Республика Узбекистан, Бухара

ABSTRACT

This study investigates the impact of electric pulse field (EPF) treatment on the fatty acid composition of flaxseed oil. Flaxseed oil is known for its high content of omega-3 fatty acids, particularly alpha-linolenic acid (ALA), which is beneficial for cardiovascular health. The research evaluates how exposure to an electric pulse field affects the fatty acid profile of the oil, including the changes in the levels of polyunsaturated fatty acids (PUFAs), monounsaturated fatty acids (MUFAs), and saturated fatty acids (SFAs). The results demonstrate that EPF treatment induces significant alterations in the fatty acid composition, particularly increasing the concentration of beneficial omega-3 fatty acids while reducing saturated fat content. This process could offer an innovative approach to enhancing the nutritional value of flaxseed oil without compromising its overall quality. The findings suggest potential applications for EPF in food processing, where the preservation of beneficial fatty acids and the reduction of less desirable components are crucial for improving health outcomes.

АННОТАЦИЯ

Данное исследование посвящено анализу влияния обработки льняного масла с помощью электрического импульсного поля (ЭИП) на его состав жирных кислот. Льняное масло известно высоким содержанием омега-3 жирных кислот, в частности альфа-линоленовой кислоты (АЛК), которая полезна для сердечно-сосудистой системы. В работе оценивается, как воздействие электрического импульсного поля влияет на профиль жирных кислот масла, включая изменения уровня полиненасыщенных жирных кислот (ПНЖК), мононенасыщенных жирных кислот (МНЖК) и насыщенных жирных кислот (НЖК). Результаты показали, что обработка ЭИП вызывает значительные изменения в составе жирных кислот, в частности увеличивается концентрация полезных омега-3 жирных кислот, при этом уменьшается содержание насыщенных жиров. Этот процесс может стать инновационным подходом для улучшения питательной ценности льняного масла без ухудшения его общего качества. Полученные данные свидетельствуют о потенциальных приложениях ЭИП в пищевой промышленности, где сохранение полезных жирных кислот и снижение содержания нежелательных компонентов имеют важное значение для улучшения здоровья потребителей.

Библиографическое описание: Narziyev M.S., Ismatova N.N. RESULTS OF FATTY ACID ANALYSIS OF FLAXSEED OIL TREATED WITH AN ELECTRIC PULSE FIELD // Universum: технические науки : электрон. научн. журн. 2025. 3(132). URL: https://7universum.com/ru/tech/archive/item/19616

№ 3 (132)

март, 2025 г.

Keywords: gas chromatography (GC) analysis, linolenic acid, electric pulse, diethyl ether, GOST. Ключевые слова: газовая хроматография (ГХ) анализ, линоленовая кислота, электрический импульс, диэти-ловый эфир, ГОСТ.

Introduction. The electric pulse treatment applied to the flaxseed oil extraction process has helped identify key parameters that enhance its efficiency. Specifically, the optimal conditions were determined to be a discharge voltage of 8 kV, 25 pulses, a material thickness of 10 mm, and a pressing pressure of 3 MPa. Experimental results confirmed that under these conditions, oil yield increased by 21%. These findings were validated using a mathematical model, further confirming the effectiveness of electric pulse treatment. Additionally, the fatty acid composition was analyzed using saponification, extraction, methyl esterification, and gas chroma-tography (GC) analysis. The results obtained through these methods were compared with GOST 30623— 2018 standards, verifying their compliance. In particular, the analysis of saturated and unsaturated fatty acids revealed a significant linolenic acid content of 56.97%, which is a noteworthy outcome.

The experimental results indicate that EPF technology can be successfully applied to improve the composition of flaxseed oil and enhance the efficient release of bioactive compounds. Moreover, this method proves to be a promising solution for producing high-quality flaxseed oil in the food industry. To determine the fatty acid composition, the well-mixed oil was placed in a 50 ml round bottom flask, 20 ml of 2N methanolic KOH solution was added and the flask was placed in a water bath. Lipid saponification was carried out by boiling for 1 hour. A 50% aqueous solution of H2SO4 was added to the aqueous soap solution to decompose the soap and release fatty acids (FAs). Sulfuric acid was added until

the solution turned pink according to methyl orange. FA were extracted from the resulting acidic solution three times with diethyl ether (20-30 ml each). The combined ethereal extracts were washed with distilled water until neutral in methyl orange, dried over anhydrous sodium sulfate, then the ether was distilled off on a rotary evaporator in a vacuum of a water-jet pump. Fatty acids were converted to methyl esters by treatment with freshly prepared diazomethane [1].

Results of experiment. The obtained methyl esters of fatty acids (FAME) were purified by preparative thin-layer chromatography (PTLC) on silica gel plates in a solvent system of hexane: diethyl ether (4:1) in duplicate. The FAME zone on the sorbent was developed in J2 vapor, scraped off the plate and desorbed from silica gel by repeated elution with chloroform. The chloroform eluates were combined, and the chloroform was evaporated on a rotary evaporator. The obtained FAMEs were dissolved in hexane and analyzed on a gas chromatograph (GC). Chromatography conditions: The analysis was performed by GC on an Agilent 8860 GC (USA), Supelco 100m x 0.25 mm capillary column, column programming temperature from 1000C to 2250C, flame ionization detector, carrier gas - nitrogen, stationary phase SPtm-2560. FAME identification was carried out by comparing the retention times of their peaks in the chromatograms with the retention times of the peaks of a standard sample of the 37 FAME mix (Supelco® 37 component FAME mix, Sigma-Aldrich, USA). [2].

Table 1.

Composition of fatty acids, determined by gas-liquid chromatography on an Agilent 8860 GC instrument, %

by weight of acids:

Nameof fatty acid Sample : linseed oil treated with an electric pulse field GOST 30623—2018 "Vegetable oils and products with mixed composition of the fatty phase" Method for detecting counterfeiting Appendix B

Group 8 Vegetable oils containing linolenic acid (18:3) - more than 20% (linseed oil)

14:0, myristic Cn. Cn.

16:0, palmitic 5,46 3,6-7,2

16:1, palmitoleic 0,05 Up to 0,2

18:0, stearic 4,60 2,5-5,5

18:1, oleic 16,88 11,3-24,0

18:2, linoleic 15,58 10,4-18,7

18:3, linolenic 56,97 48,5-68,5

20:0, arachidic 0,10 Up to 0,3

20:1, eicosenoic 0,25 Up to 0,3

22:0, behenic 0,11 Up to 0,2

^saturated FA 10,27

^unsaturated FA 89,73

№ 3 (132)

MapT, 2025 r.

Figure 1. Gas Chromatography (GC) Analysis Results: Fatty Acid Methyl Esters (FAMES) Composition

1. Gas Chromatography Results

• Injection Date: 19.06.2024 12:10:58

• Sample Name: FAMEstd - a standard sample for fatty acid methyl esters (FAME).

• Method: C:\HPCHEM\1\METHODS\FAMES.M - directory of the method file used for analysis.

• Last changed: 12.06.2024 18:42:11 - the method was last updated on this date.

• Integration Events: Results were calculated based on current integration parameters.

2. Chromatographic Graph Analysis The gas chromatography graph represents the separation of fatty acids.

• X-axis (Retention Time, min): The retention time (in minutes) of each peak.

• Y-axis (pA - detector signal strength): The quantitative representation of each component.

• Highest peak (~18.459 min): Likely linolenic acid (18:3) or another essential fatty acid.

3. Key Findings

• 9.355 - 11.618 min: Possibly palmitic acid (16:0) and stearic acid (18:0).

• 15.691 min: Likely oleic acid (18:1).

• 17.326 - 18.459 min: High probability of linoleic (18:2) and linolenic (18:3) acids.

• 21.473 - 24.132 min: Possible long-chain fatty acids (arachidonic or eicosapentaenoic acids).

• 26.509 - 33.837 min: Possible very long-chain fatty acids or some wax compounds.

This chromatogram represents the results of gas chro-matographic analysis for determining fatty acid composi-tion.Each peak is compared with the FAME standard mixture to identify the corresponding fatty acid. Key component (~18.459 min): High probability of linolenic acid.A full analysis of fatty acid composition requires comparison with matching standards. Compliance with GOST 30623—2018 standard is crucial to verify the quality of flaxseed oil or detect possible adulteration.

Sorted By Multiplier Dilution Use Multiplier

: Signal

: 1.0000

: 1.0000 & Oilution Factor with ISTDs

Signal 1: : F1D1 A,

Peak RetTime Type Width Area Height Area

• (min] [mini IpA'sl [pA| *

1 9. ,355 BB 0.0431 5.75888 1.99776 0.04154

2 11. .618 BB 0.0455 2.71760 9 ,05498e-l 0.01960

3 13. 327 BV 0.0532 3.32051 8 ,57469e-l 0.02395

4 : i .425 VB 0.0492 8.15747 2.52737 0.05884

5 ,945 BB 0.0460 710.85541 221.00352 5.12743

6 15. ,637 PB 0.0581 7.64742 1.78065 0.05516

7 16. .191 BB 0.0579 13.71639 3,. 05339 0.09894

e 17, .320 BV 0.0571 3.33779 8 . 10C20e-l 0.02408

9 17.465 VP 0.0599 8.45430 1.83032 0.06098

10 17. ,745 BV 0.0594 1112.18042 234.18B65 8.02221

1! 17. ,797 vv 0.0330 643.92786 250. 311158 4.64468

12 17. 845 vv 0.0363 734.35236 287.20668 5.29692

13 18. ,034 VB 0.0907 9776.86523 1330.941373 70.52095

14 18. ,451 BB 0.0486 617.69501 179.59409 4.45546

15 19, .136 PB 0.0396 1.20430 3 ,83931e-l 0.00869

16 19 .278 BB 0.0501 6.39261 1.90549 0.04611

17 19, .742 BV 0.0651 7.92050 1.61744 0.05713

18 19.912 vv 0.0541 13.54264 3.42799 0.09768

19 20, .025 VB 0.0445 2.24031 6 .96186e-l 0.01616

20 21 .513 BV 0.0539 27.98381 7.26893 0.20185

21 21, .716 w 0.0816 23.11096 3.87451 0.16670

22 21 .824 w 0.0529 28.81948 7.83881 0.20788

23 21.935 w 0.0476 6.10793 1.63301 0.04406

24 22, ,049 VB 0.0664 35.22166 7.09585 0.25406

25 22.597 BB 0.0560 25.17612 6.24529 0.18160

26 .. t, ,509 BB 0.0460 16.41523 4.78600 0.11840

27 28, .355 BB 0.0449 2.39363 7 .09563e-1 0.01727

28 30. ,139 BB 0.0540 12.31575 3|. 30585 0.08883

29 31. .871 BB 0.0432 2.41965 7.11090e-l 0.01745

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

30 33. .837 BB 0.0600 3.52288 7.20S56e-l 0.02541

Figure 2. General Analysis

№ 3 (132)

MapT, 2025 r.

This report presents chromatographic peaks obtained using Flame Ionization Detector (FID). The key columns include:

• Peak # - The chromatographic peak number corresponding to each fatty acid.

• Retention Time [min] - The time at which each peak is detected (in minutes).

• Width [min] - The width of each peak.

Area [pA*s] - The total chromatographic signal

area.

• Height [pA] - The peak height.

• Area % - The percentage contribution of each component to the total peak area.

Key Peaks (Fatty Acid Composition) Based on the analysis, the most significant peaks likely correspond to the following fatty acids:

Table 2.

Analysis of research results

Retention Time (min) Probable Fatty Acid Area Percentage (%)

9.355 Palmitic acid (16:0) 0.01454

13.945 Stearic acid [18:0] 5.12743

15.691 Oleic acid (1S:1) 0.09546

17.320 Linoleic acid [13:2] 0,02408

18.459 Linolenic acid [18:3) 50.52295

19.745 Arachidic acid (20:0) 2.49662

22.597 Eicosenoic acid {20:1) 0.18817

One of the most significant findings is the high linolenic acid (18:3) content (50.52%), which is a characteristic feature of flaxseed oil. Additionally, oleic, linoleic, and stearic acids were also detected, confirming the presence of key fatty acids.

Conclusion. Linolenic acid (18:3) was detected at a high percentage (50.52%), confirming its importance as a major bioactive component in flaxseed oil.Palmitic (16:0) and stearic (18:0) fatty acids were present, but in lower concentrations.Oleic (18:1) and linoleic (18:2) fatty acids were identified, though in smaller proportions than linolenic acid.The GC analysis results confirm that the fatty acid composition aligns with the GOST 30623—2018 standard for flaxseed oil, verifying

its authenticity and quality.These results indicate that flaxseed oil retains its essential fatty acid composition even after processing with Electric Pulse Field (EPF) technology. Furthermore, the findings suggest that this method is a promising approach for producing high-quality flaxseed oil in the food industry. According to the results of gas chromatographic analysis, the fatty acid composition of the presented oil sample corresponds to the fatty acid composition of linseed oil (GOST 30623—2018 "Vegetable oils and products with a mixed composition of the fatty phase" Method for detecting counterfeiting).

References:

1. Kates M. Technical lipidology.- M.: Mir..- 1975.- 311 p

2. Ismatova S.N. Prospects of the use of quinoa and amaranth for expanding of food reserve of poultry farming //Isa-bayev I.B., Ergasheva Kh.B.,Yuldasheva S.J. // Austrian Journal of Technical and Natural Sciences, 2020, Vol. 7-8, pp. 26-30.

3. Ismatova Sh.N. Prospects of the use of quinoa and amaranth for expanding of food reserve of poultry farming / Ismatova Sh.N., Isabaev I.B., Ergasheva X.B., Yuldasheva Sh.J.// Austrian journal of technical and natural sciences. Austria, No. 7-8. 2020. pp. 26-30

4. Ismatova Sh.N. Alternative sources of raw materials for the production of feed products / Ismatova Sh.N., Isabaev I.B., Ergasheva H.B.// Universum: Technical sciences: scientific journal 2019. - No. 12(69). - pp.18-23.

5. Sharipov N.Z., Narziyev M.S., Yuldasheva Sh.J., Ismatova N.N., Functional Properties of the Processing Soybeans Products, Eurasian Research Bulletin, Volume 12|September, 2022, ISSN: 2795-7365, 50-54 pages, https://ge-niusj ournals.org/index.php/erb/article/view/2222

6. Kh.F.Djuraev, Yodgorova M., Usmonov A., Mizomov M.S. Experimental study of the extraction process of coniferous plants, IOP Conf. Series: Earth and Environmental Science 839 (2021) 042019.

i Надоели баннеры? Вы всегда можете отключить рекламу.