Научная статья на тему '基于轻量化卷积神经网络的 MAG 焊熔池分割方法研究'

基于轻量化卷积神经网络的 MAG 焊熔池分割方法研究 Текст научной статьи по специальности «Техника и технологии»

CC BY
0
0
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
深度学习 / 深度聚合神经网络 / 全卷积神经网络 / 熔池焊接 / deep learning / deep aggregation neural network / full convolution neural network / molten pool

Аннотация научной статьи по технике и технологии, автор научной работы — Ren Zhenghui

焊接过程中通过观察熔池形态, 可以监测焊接质量, 但存在的弧光, 飞溅等干扰会影响熔池形态的提取. 本文提出了一种基于轻量化卷积网络的熔池分割方法, 首先, 搭建了熔池图像标注平台, 标注了 292 张图像, 其次, 构建了轻量化全卷积神经网络 (FCN) 和深度特征聚合神经网络 (DFANet); 分别测试这两种网络对熔池图像的分割性能; 实验结果表明, FCN 模型中 FCN-8 分割性能最好, 使用深度特征聚合神经网络后, 其分割性能进一步提升, 该网络的准确率为 99.88%, 熔池类别准确率为 92.17%, 熔池交并比为 85.89%, 平均交并比为 92.89%; 较 FCN-8 在平均交并比指标上提升了 3.37%, 故使用 DFANet 进行熔池形态提取, 有实用推广价值.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по технике и технологии , автор научной работы — Ren Zhenghui

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Research on Weld Pool egmentation method for MAG Welding based on lightweight convolution Neural Network

During the welding process, the quality of the weld can be monitored by observing the morphology of the molten pool. However, interference such as arc light and spatter can affect the extraction of the molten pool morphology. This paper proposes a method for molten pool segmentation based on a lightweight convolutional neural network. First, a molten pool image acquisition platform was set up, and 292 images were collected. Secondly, a lightweight fully convolutional neural network (FCN) and a Deep Feature Aggregation Network (DFANet) were constructed. The experimental results show that among the FCN models, FCN-8 has the best segmentation performance. After using the Deep Feature Aggregation Neural Network, its segmentation performance was further improved. The accuracy of this network is 99.88%, the accuracy of the molten pool category is 92.17%, the intersection over union (IoU) for the molten pool is 85.89%, and the average IoU is 92.89%. Compared to FCN-8, it has improved by 3.37% in the average IoU metric. The use of DFANet for molten pool morphology extraction has practical promotion value.

Текст научной работы на тему «基于轻量化卷积神经网络的 MAG 焊熔池分割方法研究»

For citation: Ren Zhenghui. Research on Weld Pool egmentation method for MAG Welding based on lightweight convolution Neural Network // Grand Altai Research & Education — Issue 2 (22)'2024 (DOI: 10.25712/ASTU.2410-485X.2024.02) — EDN: https://elibrary.ru/HYHWHT

UDK 621.791

Research on Weld Pool Egmentation method for MAG Welding based on lightweight convolution Neural Network

авторы

1 School of Mechanical Engineering and Automation, Wuhan Textile University, Wuhan, 430073, China

E-mail: 19986541758@163.com

Abstract. During the welding process, the quality of the weld can be monitored by observing the morphology of the molten pool. However, interference such as arc light and spatter can affect the extraction of the molten pool morphology. This paper proposes a method for molten pool segmentation based on a lightweight convolutional neural network. First, a molten pool image acquisition platform was set up, and 292 images were collected. Secondly, a lightweight fully convolutional neural network (FCN) and a Deep Feature Aggregation Network (DFANet) were constructed. The experimental results show that among the FCN models, FCN-8 has the best segmentation performance. After using the Deep Feature Aggregation Neural Network, its segmentation performance was further improved. The accuracy of this network is 99.88%, the accuracy of the molten pool category is 92.17%, the intersection over union (IoU) for the molten pool is 85.89%, and the average IoU is 92.89%. Compared to FCN-8, it has improved by 3.37% in the average IoU metric. The use of DFANet for molten pool morphology extraction has practical promotion value.

Keywords: deep learning; deep aggregation neural network; full convolution neural network; molten pool

жтейдокя&н&ю MAG »тшшяшя

1 шхт^ шш^ш, йж, 430073

E-mail: 19986541758@163.com

Ш: ЖщМ+ЖЙЩШ«^, ШЮШШЙ, лтт

ш^ттттшшм. ij

ш, тттшштшш¥&, шт 292

(FCN) тШШШ^ШШШ (DFANet); ^МВШМШ

шхмтшшй^шт шшш, fcn fcn-8 ятштм, ш шш'ш&штш, шшшш-шя, шшжттъ

99.88%, ШШШШШ^ 92.17%, Шй^Ь^ 85.89%,

92.89%; Ш FCN-8 3.37%, ШШД DFANet ШШШ

ШП: ШВД; ШШ&ШШ;

0

тттхтАхттмшш, [1] ш

ж. ^нш^тшш, шшшш, шхттттх^х^ ±тшшх. ж^чяшшт^ш^, чтнтшттт^шш шм, шшшштшшшшм. ^шт тптх^ш, тштшш.

1.1 MAGjSffiX^fô^

mag ^ [2] тшхшт, ^«птешш^шй^, ш+ш

Ш&Ъ 12mm, 20# Mt^W, V M, V ШШШХШ

14mm, (Gas Metal Arc Welding,

GMAW), 600mm ЙЗД^ШтШШ,

птшх&штшхтп-ш, ш ^ mag шт^ш.

и

MAG

/Jn^

Figure 1. Schematic diagram of MAG welding pool

1.2 ШШ

Labelme Ш, # Python ЩЙФШЛ Labelme, тЖ

■ lAcl^c - □ X

tilt- E.-IH '¿е* №1р

\ J IK 9 к

. р-п

Ur-n [iL,

bbillirf » к

[>ЦУ

1141 l'ü^üür Lißtll 9 к

©

FdfLltt 9 к

SMlih rilfinpr

Iflbdme i-Urted.

Labelme^ffi Figure 2. LabelMe Interface

ш^штыш йлшш-ш, шшшыш, ^ашшшэ т

Ж, JPG+JSON т^, ШШ 6:2:2 Ш^УЯ^ШШ, ШШ

тшш, шш 292

щэ

Figure Э: Single Object Annotation Diagram

2 fcn ятт&яш

FCN (Fully Convolutional Networks, ±ШШМШ) ШЖШШШХЯШ1 [Э], ^

ш (fcn) щщ

ЖЙЙ, штжшшшш

ттШШ^гкШШМ. МТ-ШЯ^ CNN 1Ш, VGG т Resnet, ffi&ftm

^ softmax шшш^ш^м. шш

FCN-8 FCN-16 FCN-32

Figure 5. Comparison of network segmentation performance under different upsampling structures

®5 [5] FCN-8

ftm&MW^rn&mmi fcn-16 fcn-32 m^, bp fcn-8 m, (Miou), ^^

tt (Intersection over Union, IoU), (Class Pixel Accuracy, CPA), X

mm (Accuracy) mW^mU^K&W^ FCN ^ 1

FCN-8

Table 1. Comparison of Network Segmentation Performance

with Different Upsampling Structures

ACC (%) CPA (%) IoU (%) MIoU (%)

FCN-8 99.84 90.28 79.21 89.52

FCN-16 99.78 84.57 75.42 87.60

FCN-32

99.75

84.92

72.69

86.21

3 DFA'JJM^M

DFANet, gp Deep Feature Aggregation, ^E^^tT^

DFANet vttmm^xmmm^PT 8 ^it mm^T 2 tt ENet[6] i^mmm rnm^n^,

RRuminmrnrn^. s^, xception ^n fc a

attention, /AWM^feSf,

(DFA)

Ml^Xt DFANet DFANet (Deep Feature

Aggregation) IWS&

m R^T DFANet

m mmrn^mmmpFA) frm&m

Table 2. Segmentation Performance of Deep Aggregation

Neural Network (DFA)

ACC (%) CPA (%) IoU (%) MIoU (%)

DFA 99.88 92.17 85.89 92.89

Figure 6. Segmentation results of the molten pool by DFANet

4 mMrn

DFANet ^ttt^m "fft, FCN-8

m&fäT FCN-16, FCN-32, ÄÄ CPA

5.71% ^ 5.36%, Ä MIOU 1.92% ^ 3.31%,

^ftftft, FCN-8 IM^ÖÖ^f'Jtt

Ä&, DFANet ^fiJttf^Mt, DFANet IM^

FCN-8, ÄÄ CPA FCN-8 IM^Ä 1.89%, Ä MIOU

FCN-8 Ä 3.37%. ^Xttt, DFANet

DFANet IM^lMÄÄ'h -MÄäBffi®!, it

im^i^iM»^,

BISNET [7], STDC IM^IM,

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

it, ä

-^fött&Ätt CNN №ÄÄÄ MAG ^^fiJ + Ö«

ÄÄ^Ä^fe^Ä MAG MMMÖRTOÄ

[1] ?L«, «P, m. I^ttft^, 2024, 45(08):64-68. D01:10.16086/j.cnki.issn1000-0380.2022080090.

[2] ifät, I^Äfg. MAG XÄfrJf^, 2024, 37(09):110-112.

[3] ^gffi, m.

[J/OL]. f^^Ä^'J^^^, 1-16[2024-10-27]. https://doi.Org/10.13196/j.cims.2023.0729.

[4] 3BM&, i^m Ä m. FCN

2024, 40(04):5-10. D0I:10.20171/j.cnki.23-1419/n.2024.04.011.

[5] wää, mmm, m. ÄÄ yolov8 a^wfe

2024, 47(20):141-147. D0I:10.16652/j.issn.1004-373x.2024.20.022.

[6] mm ^M^, m. Ä«Ä ENet ^ißöx^^mtßö^^w^m.

M^PiH^fe^, 2023, 19(17):98-100. D0I:10.14004/j.cnki.ckt.2023.0927.

[7] ^mm, ^M, m. SX BiSNet ööMA^mitx^ii^em. MM

2021, 42(02):22-28. D0I:10.13435/j.cnki.ttc.003123. References

[1] Kong Weicheng, Sun Han, Li Silin, et al. Design of Local Autonomous Intelligent Welding Robot System [J]. Automation Instrumentation, 2024, 45(08): 64-68. DOI: 10.16086/j.cnki.issn1000-0380.2022080090.

[2] Wang Zhizhong, Chen Wentao. Analysis of Electrical Signals in MAG Welding Process [J]. Industrial Control Computer, 2024, 37(09): 110-112.

[3] Han Songjie, Liu Yinhua, Li Yanzheng, et al. Semi-supervised Semantic Segmentation Method for Hig-h-density Point Cloud Data in Car Body Welding Scenario [J/OL]. Computer Integrated Manufacturing Sy-stems, 1-16 [2024-10-27]. https://doi.org/10.13196/j.cims.2023.0729.

[4] Zou Xiand, He Xiaoli, Yu Qian, et al. An Improved FCN-based Method for Pneumonia Image Segme-ntation [J]. Journal of Qiqihar University (Natural Science Edition), 2024, 40(04): 5-10. DOI: 10.20171/j.cnki.23-1419/n.2024.04.011.

[5] Zhao Huipeng, Cao Jingsheng, Pan Dijin, et al. Small Target Detection of Traffic Signs with Improve-d YOLOv8 Algorithm [J]. Modern Electronic Technology, 2024, 47(20): 141-147. DOI: 10.16652/j.issn.1004-373x.2024.20.022.

[6] Lian Bobo, Zang Mengte, Fu Xianjun, et al. Foreign Object Detection Method in Industrial Belt Conv-eyor Based on Improved ENet Algorithm [J]. Computer Knowledge and Technology, 2023, 19(17): 98-100. DOI: 10.14004/j.cnki.ckt.2023.0927.

[7] Li Pengcheng, Chen Haidong, Li Shipeng, et al. Intelligent Health Monitoring of Aerospace Engine R-otor Based on BiSNet [j]. Remote Sensing and Control, 2021, 42(02): 22-28. DOI: 10.13435/j.cnki.ttc.003123.

i Надоели баннеры? Вы всегда можете отключить рекламу.