Актуальные проблемы авиации и космонавтики - 2015. Том 2
UDK 550.388
RESEARCH OF INFLUENCE OF THE IONOSPHERE ON THE DEFINITION OF THE PSEUDORANGE OF NAVIGATION SPACECRAFT SRNS IN THE POLAR REGIONS USING NEU GLONASS/GPS
K. (A.) Drevin Scientific supervisor - V. (M.) Vladimirov Foreign language supervisor - T. (V.) Strekaleva
Reshetnev Siberian State Aerospace University 31, Krasnoyarsky Rabochy Av., Krasnoyarsk, 660037, Russian Federation
This research represents the results of investigation of ionospheric delay to determine the pseudorange of navigation spacecraft Satellite Radio-navigation System (SRNS) received during the experiment in northern latitudes (Khatanga). The total electron content (TEC) along the path of the radio signal has been calculated. The results obtained along with the dual-frequency method for determining ionospheric delay allow making diagnostic measuring of influence of ionosphere on the propagation signal.
Keywords: GLONASS/GPS, pseudorange, ionospheric layer, ionospheric delay, total electron content.
ИССЛЕДОВАНИЕ ВЛИЯНИЯ ИОНОСФЕРЫ НА ОПРЕДЕЛЕНИЕ ПСЕВДОДАЛЬНОСТИ НКА СРНС В ПОЛЯРНЫХ РАЙОНАХ С ИСПОЛЬЗОВАНИЕМ НАП ГЛОНАСС/GPS
К. А. Древин Научный руководитель - В. М. Владимиров Руководитель по иностранному языку - Т. В. Стрекалёва
Сибирский государственный аэрокосмический университет имени академика М. Ф. Решетнева
Российская Федерация, 660037, г. Красноярск, просп. им. газ. «Красноярский рабочий», 31
Представлены результаты исследования влияния ионосферной задержки на определение псевдодальности НКА СРНС, полученной в ходе проведения эксперимента в северных широтах (п. Хатанга). Также произведен расчет полного электронного содержания (в английской транскрипции Total Electron Content TEC) вдоль пути распространения радиосигнала НКА. Полученные результаты и двухчастотный метод определения ионосферной задержки позволят произвести оценку степени влияния ионосферы на распространения радиосигнала НКА в северных широтах.
Ключевые слова: ГЛОНАСС/GPS, псевдодальность, ионосферный слой, ионосферная задержка, полное электронное содержание.
In recent years, efforts of numerous researchers from different countries aimed at improving the accuracy of coordinate measurements being performed using global navigation satellite systems. There are different navigation systems. For instance, satellite navigation system GPS, which was developed in the USA; Russian satellite navigation system GLONASS and European satellite navigation system GALILEO (in the process of development). The interest of the scientists to the issue of accuracy of radio-navigation systems (SRNS) can be explained by their wide application in geodesy, geophysics, navigation, monitoring of the environment.
One of the main factors limiting the accuracy of SRNS, is the influence of the earth's atmosphere on the radio propagation characteristics. The main sources of error measurement in this case are additional delay of signal in the ionosphere and refractive curvature of the trajectory, where it spreads. The impact of ionosphere can be compensated by the introduction of relevant corrections at processing of the results of measurements, or by hardware - using measurement information, obtained directly during the measurement [1].
Ionospheric delay is one of the component errors of determining the pseudorange of a navigation spacecraft, as well as measurement of SRNS. It has the greatest effect on the measurement error of the pseu-
Секция «Актуальнее на учнье проблемы в мире (глазами молодьш исследователей)»
dorange system GLONASS and GPS. One of the methods allowing to determine the signal delay in the ionosphere is a dual-frequency method of determining the signal delay in the systems GLONASS and GPS in ionosphere by the difference between the increments of pseudorange, measured by the ranging code of carrier frequencies L1, L2 [2].
The aim of this work is to study the effect of ionospheric delay in northern latitudes on the determination of the pseudorange of satellite radio-navigation system GLONASS/GPS.
To carry out the research we used the results of expeditions held in the settlement Khatanga in December, 2013 at 03-06 and in November, 2012 at 14.20. The observation and the recording of parameters were carried out using a dual-frequency navigation receiver MRK-33 and American navigation receiver JAVAD. Next, on according to the recorded information we determined vertical signal delay of the navigation satellite in the ionosphere and diurnal variation of the total electron content (TEC) along the path of the radio signal in the ionosphere. The total electron content is measured in units TECU. 1 TECU = 1016 elec-tron/m2 [3].
Picture 1. The diurnal variation of the total electron
content in the ionosphere, results are from the navigation receiver JAVAD. December, 2013
Picture 2. The diurnal variation of the total electron content in the ionosphere, results are from the navigation receiver MRK-33. November, 2012
3:00:00 7:48:00
12:36:00 17:24:00 22:12:00 Брегмш (V1CK] ч
4
i0,5 0
4:4fi 9:36 14:24 19:12 Q:DD
Время (MCK), ч
Picture 3. Error estimation for pseudorange measurements, results are from the navigation receiver JAVAD. December, 2013
Picture 4. Error estimation for pseudorange measurements, results are from the navigation receiver MRK-33. November, 2012
Experiments were carried out on the polar night in a quiet geomagnetic condition index Kp < 4. In the pictures 1 and 2 we can see the absence of clearly expressed diurnal variation of the ionosphere, which is characteristic for polar regions in the period of polar day and night. Thus, vertical signal delay in the ionosphere pictures 3 and 4 varies slightly and corresponds to the value of the error declared in the Interface Control Document (IKD) GLONASS/GPS. The obtained results and dual-frequency method of determining ionospheric delay allow us to evaluate the degree of influence of the ionosphere on the radio signal propagation of the navigation spacecraft in the northern latitudes.
References
1. Karlashchuk V. I., Karlashuk S. V. Satellite Navigation. M. : Solon-Press, 2006. 176 p. (in Russ.).
2. Perov A. I., Kharisov V. N. GLONASS. Principles of construction and operation. M. : Radioengineering, 2010. 800 p. (in Russ.).
3. Montenbruck O., Gill E. Ionospheric correction for GPS tracking of LEO satellites // The journal of navigation. 2002. № 55, pp. 293-304.
© Drevin K. (A.), 2015