_НАУКИ ОБ АТМОСФЕРЕ И КЛИМАТЕ / ATMOSPHERIC AND CLIMATE SCIENCES_
DOI: https://doi.org/10.23670/IRJ.2023.137.135 RESEARCH OF ICE-FORMING PROPERTIES OF AD-1 PYROTECHNIC COMPOSITION
Research article
Zalikhanov M.C.1, Khuchunaev B.M.2, Gekkieva S.O.3, Budaev A.K.4 *
1 ORCID : 0000-0002-5248-521X;
2 ORCID : 0000-0002-6606-5996;
3 ORCID : 0000-0002-8369-812X;
4 ORCID : 0000-0003-3481-8663;
1 2' 3' 4 High-Mountain Geophysical Institute, Nalchik, Russian Federation
* Corresponding author (budayalim[at]yandex.ru)
Abstract
Active impacts on cloud processes in order to ensure the well-being of mankind are one of the main tasks of meteorology. In the practice of active influences on cloud processes, the standard AD-1 pyrotechnic composition is widely used. It is part of the fuel charges of the main rocket engines, filled with reagent for equipping anti-hail missiles. The AD-1 pyrotechnic composition contains 8% silver iodide (AgI) and has a crystallizing efficiency threshold of -3 °C and collapses at temperatures above 554 °C. Currently, silver iodide remains the most effective ice-forming reagent. The specific yield of active nuclei per unit mass of AgI significantly exceeds the corresponding yields for all other reagents of this type at all activation temperatures. In this regard, experimental studies of the mechanisms of ice formation on particles of the AD-1 pyrotechnic composition seem to be an urgent task. The aim of the work is to study the processes of ice formation on particles of the AD-1 pyrotechnic composition. The main research methods are laboratory modeling of the processes of interaction of the cloud environment with reagent particles, as well as methods of mathematical statistics for analyzing the results obtained. During the research, the equipment and methodology for the study of ice formation processes were developed for the first time, ice crystals formed on particles of the AD-1 pyrotechnic composition were studied for the first time. As a result of the experiments, laboratory simulations of the formation of ice crystals on particles of the AD-1 pyrotechnic composition were obtained, which showed that ice crystals of optimal sizes are formed on particles of the AD-1 pyrotechnic composition, which increases the efficiency of this reagent compared to analogues.
Keywords: weather modification, pyrotechnic composition, reagent, ice-forming particles, temperature, surface area, growth rate.
ИССЛЕДОВАНИЯ ЛЬДООБРАЗУЮЩИХ СВОЙСТВ ПИРОТЕХНИЧЕСКОГО СОСТАВА АД-1
Научная статья
Залиханов М.Ч.1, Хучунаев Б.М.2, Геккиева С.О.3, Будаев А.Х.4' *
1 ORCID : 0000-0002-5248-521X;
2 ORCID : 0000-0002-6606-5996;
3 ORCID : 0000-0002-8369-812X;
4 ORCID : 0000-0003-3481-8663;
i, 2, 3, 4 Высокогорный геофизический институт, Нальчик, Российская Федерация
* Корреспондирующий автор (budayalim[at]yandex.ru)
Аннотация
Активные воздействия на облачные процессы с целью обеспечения благополучной жизнедеятельности человечества являются одной из основных задач метеорологии. В практике активных воздействий на облачные процессы широко используется штатный пиротехнический состав АД-1. Он входит в состав топливных зарядов маршевых ракетных двигателей, начиненных реагентом для оснащения противоградовых ракет. Пиросостав АД-1 содержит 8% иодистого серебра (AgI) и имеет порог кристаллизующей эффективности -3°С и разрушается при температуре выше 554 °С. В настоящее время иодид серебра остается самым эффективным льдообразующим реагентом. Удельный выход активных ядер на единицу массы AgI существенно превосходит соответствующие выходы для всех других реагентов этого типа при всех температурах активации. В связи с этим экспериментальные исследования механизмов образования льда на частицах пиротехнического состава АД-1 представляются актуальной задачей. Целью работы является исследование процессов льдообразования на частицах пиротехнического состава АД-1. Основными методами исследования являются лабораторное моделирование процессов взаимодействия облачной среды с частицами реагента, а также методы математической статистики для анализа полученных результатов. При проведении исследований впервые разработана аппаратура и методика для исследования процессов льдообразования, впервые исследованы ледяные кристаллы, формирующиеся на частицах пиротехнического состава АД-1. В результате проведения экспериментов получены лабораторного моделирования образования кристаллов льда на частицах пиротехнического состава АД-1, которые показали, что на частицах пиросостава АД-1 образуются кристаллы льда оптимальных размеров, что повышает эффективность данного реагента по сравнению с аналогами.
Ключевые слова: активные воздействия, пиротехнический состав, реагент, льдообразующие частицы,температура, площадь поверхности, скорость роста.
Introduction
Currently, much attention is paid to the development of methods and tools for managing cloud processes. Carrying out work on active effects requires solving a number of methodological issues, in particular, how, where, when and with what reagents active effects should be carried out in order to achieve optimal success.
When developing methods for managing cloud processes, a special place belongs to laboratory modeling of the key moments of active impacts. One of such key moments of active influences on cloud processes is the processes of ice crystal growth on reagent particles.
Modern concepts of active influences are based on changing the microphysical structure of clouds through reagents with specified physicochemical properties [7], [9]. The reagents used are mainly substances with ice-forming and condensation properties [18].
The issue under study is in the field of cloud microphysics and precipitation. Since the first half of the 20th century, scientific work has been carried out in Russia and abroad to find effective reagents to combat hail, drought and to artificially cause precipitation. In these works, the effectiveness of reagents was investigated, weather modification tools were developed [1], [8], [17], [20]. But none of the studies touched upon the characteristics of ice crystals formed on reagent particles. The research is based on the specific yield of ice-forming nuclei. The specific yield of ice-forming nuclei and the temperature threshold of crystal formation are currently used as a measure of the effectiveness of reagents. The specific yield is the number of ice crystals formed in a cloud or fog at a given temperature per unit mass of the introduced substance or from one means of exposure [6].
At the same time, the characteristics of its surface play an important role in the efficiency of water crystallization on a reagent particle [19]. However, the area of the crystals formed plays an important role. In this paper, the crystal area and specific yield are considered as an indicator of the effectiveness of reagents.
Research methods and principles
The aim of the work is to study the processes of ice formation on particles of the AD-1 pyrotechnic composition. Achieving this goal required solving the following tasks:
1. Development of a complex of equipment for obtaining particles of AD-1 pyrotechnic composition in a cloud environment.
2. Development of a methodology for studying the ice-forming properties of the AD-1 pyrotechnic composition.
3. Investigation of ice crystals formed on particles of the AD-1 pyrotechnic composition using a mathematical apparatus. The main research methods are laboratory modeling of the processes of interaction of the cloud environment with reagent
particles, as well as methods of mathematical statistics for analyzing the results obtained. During the research, the equipment and methodology for the study of ice formation processes were developed for the first time, ice crystals formed on particles of the pyrotechnic composition AD-1 were studied for the first time.
The scheme of the equipment complex is shown in Figure 1. The equipment complex includes: a large cloud chamber, a reagent sublimation device, an ultrasonic steam generator, scales, an optical microscope and a computer (Figure 1).
Figure 1 - A set of equipment for studying the ice-forming properties of AD-1 pyrocomposition DOI: https://doi.org/10.23670/IRJ.2023.137.135.!
The large cloud chamber is a refrigerated cabinet with a working volume of 6.16 m3. Inside the chamber there are fans for mixing water vapor and reagents. The inside of the chamber is lined with a metal sheet of galvanized iron and is cooled by a refrigeration unit. An electronic thermometer and a fan for mixing water vapor and reagent are placed inside the chamber. The chamber is equipped with a temperature control system with a screen on which the thermometer readings are displayed. The
temperature in the chamber can be maintained from 0° to -20 °C. On the front wall there is an observation window and an opening for changing substrates with crystals.
The ultrasonic steam generator is placed inside a plastic container with a volume of 100 liters. The container is connected to a large chamber by a rubber pipe, a fan is installed on the lid of the container to create a steam flow into the chamber.
The device for sublimation of the reagent is a graphite substrate sandwiched between electrodes. An electric current of about 180-200 A is supplied to the electrodes, the substrate is heated to temperatures of the order of 1000 °C and the reagent sublimes.
Thermostatic substrates for collecting crystals are small metal discs with diameter d = 4 cm, covered with clean glasses. The glasses are covered with lids that were opened at the moment of the appearance of crystals. Crystals settling at the bottom of the cloud chamber fall on the glass. Ice crystals are counted using an automated system.
Substrates are studied using an automated system, which consists of an optical microscope, a personal computer and specialized software. The calculation of the sizes and areas of ice crystals in different temperature ranges is carried out.
Main results
A series of experiments were carried out to study the ice-forming properties of particles of the AD-1 pyrotechnic composition. The experiments were carried out in the temperature range from -3 to -14 °C.
Table 1 and Figure 2 present data on the area of ice crystals that formed on particles of the AD-1 pyrotechnic composition in different temperature ranges. The ratios of crystals for different size ranges, ncr/n, % are given.
Table 1 - Dependence of the size of ice crystals formed on the particles of the pyrotechnic composition of AD-1 on the
temperature
DOI: https://doi.org/10.23670/IRJ.2023.137.135.2
S, ^m2 Crystal ratio at different temperature values, ncr/n, %
-12...-14 °C -9.-11 °C -6...-8 °C -3.-5 °C
0-2000 26,7 40,0 78,2 29,5
2000-4000 26,7 25,0 21,8 39,3
4000-6000 23,3 16,7 0,0 24,6
6000-8000 6,7 6,7 0,0 3,3
8000-10000 6,7 1,7 0,0 1,6
10000-12000 3,3 1,7 0,0 0,0
12000-14000 1,7 3,3 0,0 0,0
14000-16000 0,0 1,7 0,0 1,6
16000-18000 1,7 3,3 0,0 0,0
18000-20000 1,7 0,0 0,0 0,0
20000-22000 1,7 0,0 0,0 0,0
Specific yield, r-1 4,84012 3,54012 3,0-1012 7,040u
Der/D, % 80.0
Figure 2 - The area of ice crystals that formed on particles of the AD-1 pyrotechnic composition in different temperature ranges
DOI: https://doi.org/10.23670/IRJ.2023.137.135.3
Table 2 and Figure 3 present data on the accumulated frequency ratios of crystals that formed on particles of the AD-1 pyrotechnic composition in different temperature ranges, nCT/n, %.
Table 2 - Cumulative frequencies of crystal ratios formed on particles of AD-1 pyrotechnic composition DOI: https://doi.org/10.23670/IRJ.2023.137.135.4
S, ^m2 Crystal ratio at different temperature values, ncr/n, %
-12...-14 °C -9.-11 °C -6...-8 °C -3.-5 °C
0-2000 26,7 40,0 78,2 29,5
2000-4000 53,4 65,0 100,0 68,8
4000-6000 76,7 81,7 100,0 93,4
6000-8000 83,4 88,4 100,0 96,7
8000-10000 90,1 90,1 100,0 98,3
10000-12000 93,4 91,8 100,0 98,3
12000-14000 95,1 95,1 100,0 98,3
14000-16000 95,1 96,8 100,0 100,0
16000-18000 96,8 100,0 100,0 100,0
18000-20000 98,5 100,0 100,0 100,0
20000-22000 100,0 100,0 100,0 100,0
Dtr/n, %
0 5000 10000 15000 20000 25000
Figure 3 - Cumulative frequencies of crystal ratios formed on particles of AD-1 pyrotechnic composition
DOI: https://doi.org/10.23670/IRJ.2023.137.135.5
As can be seen from the above data, up to 90% of ice crystals formed on particles of the AD-1 pyrocomposition have a surface area of up to 104 ^m2 at temperatures from -9 to -14°C. At temperatures of the order of -3...-5 °C, the proportion of ice crystals with a surface area of up to 8-103 ^m2 reaches 95%. At temperatures of the order of -6...-8 °C, the smallest crystals are formed, having a surface area not exceeding 4-103 ^m2.
When sublimating the AD-1 pyrotechnic composition, particles are formed with a diameter from 20 nm to 400 nm with a modal value of 70 nm. In this case, almost 100% activity of silver iodide is observed in the presence of particles with a diameter of 50 nm [21].
Table 3 and Figure 4 the total area of crystals that formed on particles of the AD-1 pyrotechnic composition in different temperature ranges.
Table 3 - The total area of crystals formed on the particles of the AD-1 pyrotechnic composition in different temperature ranges
DOI: https://doi.org/10.23670/IRJ.2023.137.135.6
S, ^m2 Crystal area, •lO2 ^m2
-12.-14 °C -9.-11 °C -6...-8 °C -3.-5 °C
0-2000 12,74 14,00 23,46 2,07
2000-4000 38,21 26,25 19,62 8,25
4000-6000 55,57 29,23 0,0 8,61
6000-8000 22,37 16,42 0,0 1,62
8000-10000 28,76 5,36 0,0 1,01
10000-12000 17,32 6,55 0,0 0,0
12000-14000 10,54 15,02 0,0 0,0
14000-16000 0,0 8,93 0,0 1,68
16000-18000 13,79 19,64 0,0 0,0
18000-20000 15,41 0,0 0,0 0,0
20000-22000 17,03 0,0 0,0 0,0
- Total area, -1016 ^m2
2,317 1,414 0,431 0,232
25
0 n— --
-14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 Temperature, °C
Figure 4 - Distribution of the total area of crystals formed on particles of the AD-1 pyrotechnic composition by temperature
DOI: https://doi.org/10.23670/IRJ.2023.137.135.7
Previously, the authors conducted studies of the ice-forming properties of the pyrotechnic composition of AD-1, as a result of which the influence of the thermodynamic and electrical characteristics of the cloud on the ice-forming efficiency of the reagent was studied [10], [12], [16], [22]. The study of ice crystals formed on the particles of the pyrolysis of AD-1 is being carried out for the first time. There are no studies of these characteristics of the ice-forming reagent in the scientific articles of Russian and foreign authors.
Conclusion
In the course of laboratory experiments, a method for studying the ice-forming properties of the AD-1 pyrotechnic composition has been developed.
When the AD-1 pyrotechnic composition is sublimated, particles with a diameter from 20 nm to 400 nm with a modal value of 70 nm are formed. Almost 100% activity of silver iodide is observed in the presence of particles with a diameter of 50 nm.
Up to 90% of the ice crystals formed on the particles of the AD-1 pyrocomposition have a surface area of up to 10 4 ^m2 at temperatures from -9 to -14°C. At temperatures of the order of -3...-5°C, the proportion of ice crystals with a surface area of up to 8-103 ^m2 reaches 95%. At temperatures of the order of -6...-8°C, the smallest crystals are formed, having a surface area not exceeding 4-103 ^m2.
Most methods of hail prevention, artificial precipitation increase and fog dispersion are based on the following physical concepts:
- complete crystallization of the supercooled part of the cloud;
- competition theory;
- enlargement of droplets with their subsequent freezing;
- dynamic impact in order to suppress the upward flow;
- lowering the trajectory of hailstones;
- acceleration of sedimentation in the formation zone of hail generation conditions.
The impact of particles of the AD-1 pyrotechnic composition on the supercooled cloud environment leads to the formation of ice crystals having dimensions sufficient for the combined implementation of the above concepts. Therefore, the use of this reagent in weather modification is effective and widespread.
Конфликт интересов
Не указан.
Рецензия
Все статьи проходят рецензирование. Но рецензент или автор статьи предпочли не публиковать рецензию к этой статье в открытом доступе. Рецензия может быть предоставлена компетентным органам по запросу.
Conflict of Interest
None declared.
Review
All articles are peer-reviewed. But the reviewer or the author of the article chose not to publish a review of this article in the public domain. The review can be provided to the competent authorities upon request.
Список литературы / References
1. Аверкина А.С. Получение гибридных порошковых материалов AgI-SiO2, их свойства и применение в качестве осадкопреобразующих реагентов / А.С. Аверкина, Н.Б. Кондрашова, В.А. Вальцифер // Вестник Технологического университета. — 2022. — Т. 25. — № 7. — С. 31-37.
2. Байбородин О.А. О статистической оценке физического эффекта активных воздействий на градовые процессы / О.А. Байбородин, Е.И. Жилинская, Х.М. Калов [и др.] // Активные воздействия на градовые процессы и перспективы усовершенствования льдообразующих реагентов для практики активных воздействий: труды Всесоюзного семинара.
— 1991. — С. 152-160.
3. Berthoumieu J.F. The concept of cloud base seeding with hygroscopic salts flares for hail prevention and rain precipitation. An actualization / J.F. Berthoumieu // Proc 9th Int. Sci. Conf. — Casablanca: WMO, 2003. — P. 263-267.
4. Частухин А.В. Лабораторные исследования механизмов действия порошкообразных реагентов, перспективных для применения в активных воздействиях на облака и туманы / А.В. Частухин, Н.С. Ким, В.П. Корнеев [и др.] // Инновационные методы и средства исследований в области физики атмосферы, гидрометеорологии, экологии и изменения климата. — Ставрополь. — C. 179-182.
5. Chernikov A.A. New Russian pyrotechnic aids for seeding supercooled clouds / A.A. Chernikov, N.O. Plaude, N.S. Kim // Proc. VIII WMO Scintific Conf.on Weather Modification (co-sposored by IAMAS). — Casablanca, 2003. — Р. 479480.
6. Данелян Б.Г. РД 52.11.850-2016. Термины и определения в области активных воздействий на гидрометеорологические процессы и явления / Б.Г. Данелян, М.Т. Абшаев, А.М. Абшаев [и др.]. — Введ. 2016-07-04.
— М.: ЦАО, 2016. — 44 с.
7. Деннис А. Изменение погоды засевом облаков / А. Деннис; Пер. с англ. А.В. Лысака, Е.Д. Стукина. — М.: Мир, 1983. — 272 с.
8. Guo X. Advances in Cloud Physics and Weather Modification in China / X. Guo, D. Fu, X. Li [et al.] // Advances in Atmospheric Sciences. —2015. — Vol. 32(2). — P. 230-249. — DOI: 10.1007/s00376-014-0006-9.
9. Качурин Л.Г. Физические основы воздействия на атмосферные процессы / Л.Г. Качурин. — Л.: Гидрометеоиздат, 1978. — 455 с.
10. Хучунаев Б.М. Экспериментальные исследования льдообразующей эффективности пиротехнического состава АД-1 с добавками цинка / Б.М. Хучунаев, Х.-М.Х. Байсиев, С.О. Геккиева [и др.] // Труды Главной геофизической обсерватории им. А.И. Воейкова. — 2020. — № 597. — С. 51-60.
11. Хучунаев Б.М. Аппаратура, методика и предварительные результаты измерения удельного заряда на частицах реагента, образующихся при возгонке пиротехнических составов / Б.М. Хучунаев, С.О. Геккиева, А.Х. Будаев // Труды Главной геофизической обсерватории им. А.И. Воейкова. — 2020. — № 599. — С. 128-139.
12. Хучунаев Б.М. Методы определения льдообразующей эффективности противоградовых изделий на лабораторных установках / Б.М. Хучунаев, С.О. Геккиева, А.Х. Будаев // Наука. Инновации. Технологии. — 2021. — №3. — С. 105-118.
13. Хучунаев Б.М.Активация кристаллизующих растворов хладореагентами / Б.М. Хучунаев, С.И. Степанова, З.К. Карданов // Доклады научно-практической конференции, посвященной 40-летию начала производственных работ по защите сельхозкультур от градобитий / Под ред. М.Т. Абшаева. — 2011. — С. 274-275.
14. Хучунаев Б.М. Лабораторные исследования взаимодействия реагента с облачной средой / Б.М. Хучунаев, А.А. Ташилова, Н.В. Теунова [и др.] // Доклады Всероссийской открытой конференции по физике облаков и активным воздействиям на гидрометеорологические процессы, посвященной 80-летию Эльбрусской высокогорной комплексной экспедиции АН СССР. — 2015. — С. 226-231.
15. Хучунаев Б.М. Экспериментальное исследование взаимодействия реагента AgI с искусственной облачной средой / Б.М. Хучунаев, А.А. Ташилова, Н.В. Теунова [и др.] // Труды Высокогорного геофизического института. — 2014. — № 99. — С. 23-30.
16. Khuchunaev B. The preliminary results of measuring specific charge on the particles of reagent forming by sublimation of AD-1 pyrotechnical composition / B. Khuchuaev, S. Gekkieva, A. Budaev // IOP Conference Series: Earth and Environmental Science. — 2021. — 840. — P. 012014.
17. Kim N.S. Equipment and results of testing aystallizing efficiency of reagents used in cloud seeding for hail suppression / N.S. Kim // Programme on Physics and chemistry of clouds and Weather modification research, WMP, Report series No. 41, Hail Suppression Research, Report No. 6, Meeting of experts of WMO on hail suppression. Nalchik, Russian Federation, 27 September - 2 October 2003, WMO/TD. — № 1233. — P. 121-123.
18. Колосков Б.П. Методы и средства модификации облаков, осадков и туманов / Б.П. Колосков, В.П. Корнеев, Г.Г. Щукин. — СПб., 2012. — 341 с.
19. Никулин В.Н. Экспериментальные установки для исследования образования льда в атмосфере / В.Н. Никулин, В.В. Чукин, А.Ф. Садыкова // Ученые записки РГГМУ — 2015. — № 38. — С. 102-112.
20. Saunders C.P.R. Laboratory studies of the effect of cloud conditions on graupel/crystal charge transfer in thunderstorm electrification. Quart 1 / C.P.R. Saunders, H. Bax-Norman, C. Emersic [et al.] // J. Roy. Meteor. Soc. — 2006. — Vol. 132. — P. 2653-2673.
21. Шилин А.Г. Возможности увеличения эффективности пиротехнических генераторов льдообразующего аэрозоля / А.Г. Шилин, Б.М. Хучунаев // Наука. Инновации. Технологии. — 2022. — № 1. — С. 87-110.
22. Шилин А.С. Влияние растворимых соединений йода на эффективность льдообразующего аэрозоля / А.С. Шилин, Б.М. Хучунаев, А.Х. Будаев // Труды ГГО. — 2021. — №602. — C. 92-103.
Список литературы на английском языке / References in English
1. Averkina A.S. Poluchenie gibridnyh poroshkovyh materialov AgI-SiO2, ih svojstva i primenenie v kachestve osadkopreobrazuyushchih reagentov [Obtaining hybrid powder materials Agi-Sio2, their properties and application as sedimentary reagents] / A.S. Averkina, N.B. Kondrashova, V.A. Valcifer // Vestnik Tekhnologicheskogo universiteta [Bulletin of the Technological University]. — 2022. — Vol. 25. — № 7. — P. 31-37. [in Russian]
2. Bayborodin O.A. O statisticheskoj ocenke fizicheskogo effekta aktivnyh vozdejstvij na gradovye processy [On statistical evaluation of the physical effect of active influences on hail processes] / O.A. Bayborodin, E.I. Zhilinskaya, H.M. Kalov [et al.] // Aktivnye vozdejstviya na gradovye processy i perspektivy usovershenstvovaniya l'doobrazuyushchih reagentov dlya praktiki aktivnyh vozdejstvij [Active effects on hail processes and prospects for improving ice-forming reagents for the practice of active effects]: proceedings of the All-Union Seminar. — 1991. — P. 152-160. [in Russian]
3. Berthoumieu J.F. The concept of cloud base seeding with hygroscopic salts flares for hail prevention and rain precipitation. An actualization / J.F. Berthoumieu // Proc 9th Int. Sci. Conf. — Casablanca: WMO, 2003. — P. 263-267.
4. Chastukhin A.V. Laboratornye issledovaniya mekhanizmov dejstviya poroshkoobraznyh reagentov, perspektivnyh dlya primeneniya v aktivnyh vozdejstviyah na oblaka i tumany [Laboratory studies of the mechanisms of action of powdered reagents promising for use in active effects on clouds and fogs] / A.V. Chastushkin, N.S. Kim, V.P. Korneev [et al.] // Innovacionnye metody i sredstva issledovanij v oblasti fiziki atmosfery, gidrometeorologii, ekologii i izmeneniya klimata [Innovative methods and means of research in the field of atmospheric physics, hydrometeorology, ecology and climate change]. — Stavropol. — P. 179-182. [in Russian]
5. Chernikov A.A. New Russian pyrotechnic aids for seeding supercooled clouds / A.A. Chernikov, N.O. Plaude, N.S. Kim // Proc. VIII WMO Scintific Conf.on Weather Modification (co-sposored by IAMAS). — Casablanca, 2003. — P. 479480.
6. Danelyan B.G. RD 52.11.850-2016. Terminy i opredeleniya v oblasti aktivnyh vozdejstvij na gidrometeorologicheskie processy i yavleniya [RD 52.11.850-2016. Terms and definitions in the field of active impacts on hydrometeorological processes and phenomena] / B.G. Danelyan, M.T. Abshaev, A.M. Abshaev [et al.]. — Introduction. 2016-07-04. — Moscow: CAO, 2016. — 44 p. [in Russian]
7. Dennis A. Izmenenie pogody zasevom oblakov [Changing the weather by seeding clouds] / A. Dennis; transl. by A.V. Lysak, E.D. Stukin. — M.: Mir, 1983. — 272 p. [in Russian]
8. Guo X. Advances in Cloud Physics and Weather Modification in China / X. Guo, D. Fu, X. Li [et al.] // Advances in Atmospheric Sciences. —2015. — Vol. 32(2). — P. 230-249. — DOI: 10.1007/s00376-014-0006-9.
9. Kachurin L.G. Fizicheskie osnovy vozdejstviya na atmosfernye processy [Physical bases of influence on atmospheric processes] / L.G. Kachurin. — L.: Hydrometeoizdat, 1978. — 455 p. [in Russian]
10. Khuchunaev B.M. Eksperimental'nye issledovaniya l'doobrazuyushchej effektivnosti pirotekhnicheskogo sostava AD-1 s dobavkami cinka [Experimental studies of the ice-forming efficiency of the pyrotechnic composition AD-1 with zinc additives] / B.M. Kchuchunaev, Kh.-M.Kh. Baisiev, S.O. Gekkieva [et al.] // Trudy Glavnoj geofizicheskoj observatorii im. A.I. Voejkova [Proceedings of the Main Geophysical Observatory named after A.I. Voeikov]. — 2020. — № 597. — P. 51-60. [in Russian]
11. Khuchunaev B.M., Gekkieva S.O., Budaev A.Kh. Equipment, methodology and preliminary results of measuring the specific charge on reagent particles formed during the sublimation of pyrotechnic compositions. Proceedings of the Main Geophysical Observatory named after A.I. Voeikov. — 2020. — № 599. — P. 128-139.
12. Khuchunaev B.M. Metody opredeleniya l'doobrazuyushchej effektivnosti protivogradovyh izdelij na laboratornyh ustanovkah [Methods for determining the ice-forming efficiency of anti-hail products on laboratory installations] / B.M. Khuchunaev, S.O. Gekkieva, A. Kh. Budaev // Nauka. Innovacii. Tekhnologii [Science. Innovation. Technologies]. — 2021. — № 3. — P. 105-118. [in Russian]
13. Khuchunaev B.M. Aktivaciya kristallizuyushchih rastvorov hladoreagentami [Activation of crystallizing solutions by refrigerants] / B.M. Khychunaev, S.I. Stepanova, Z.K. Kardanov // Doklady nauchno-prakticheskoj konferencii, posvyashchennoj 40-letiyu nachala proizvodstvennyh rabot po zashchite sel'hozkul'tur ot gradobitij [Reports of a scientific and practical conference dedicated to the 40th anniversary of the start of production work on the protection of crops from hail storms] / Ed. by M.T. Abshaev. — 2011. — P. 274-275. [in Russian]
14. Khuchunaev B.M. Laboratornye issledovaniya vzaimodejstviya reagenta s oblachnoj sredoj [Laboratory studies of reagent interaction with cloud environment] / B.M. Khuchunaev, A.A. Tashilova, N.V. Teunova [et al.] // Doklady Vserossijskoj otkrytoj konferencii po fizike oblakov i aktivnym vozdejstviyam na gidrometeorologicheskie processy, posvyashchennoj 80-letiyu El'brusskoj vysokogornoj kompleksnoj ekspedicii AN SSSR [Reports of the All-Russian Open Conference on Cloud Physics and Active Impacts on Hydrometeorological Processes, dedicated to the 80th anniversary of the Elbrus High-altitude Complex Expedition of the USSR Academy of Sciences]. — 2015. — P. 226-231. [in Russian]
15. Khuchunaev B.M. Eksperimental'noe issledovanie vzaimodejstviya reagenta AgI s iskusstvennoj oblachnoj sredoj [Experimental investigation of the interaction of the AgI reagent with an artificial cloud environment] / B.M. Khuchunaev, A.A. Tashilova, N.V. Teulova [et al.] // Trudy Vysokogornogo geofizicheskogo instituta [Proceedings of the Highland Geophysical Institute]. — 2014. — № 99. — P. 23-30. [in Russian]
16. Khuchunaev B. The preliminary results of measuring specific charge on the particles of reagent forming by sublimation of AD-1 pyrotechnical composition / B. Khuchuaev, S. Gekkieva, A. Budaev // IOP Conference Series: Earth and Environmental Science. — 2021. — 840. — P. 012014.
17. Kim N.S. Equipment and results of testing crystallizing efficiency of reagents used in cloud seeding for hail suppression / N.S. Kim // Programme on Physics and chemistry of clouds and Weather modification research, WMP, Report series No. 41, Hail Suppression Research, Report No. 6, Meeting of experts of WMO on hail suppression. Nalchik, Russian Federation, 27 September - 2 October 2003, WMO/TD. — № 1233. — P. 121-123.
18. Koloskov B.P. Metody i sredstva modifikacii oblakov, osadkov i tumanov: monogr. [Methods and means of modification of clouds, precipitation and fogs: monogr.] / B.P. Koloskov, V.P. Korneev, G.G. Shchukin. — St. Petersburg, 2012. — 341 p. [in Russian]
19. Nikulin V.N. Eksperimental'nye ustanovki dlya issledovaniya obrazovaniya l'da v atmosfere [Experimental installations for the study of ice formation in the atmosphere] / V.N. Nikulin, V.V. Chukin, A.F. Sadykova // Uchenye zapiski RGGMU [Scientific notes of RSMU]. — 2015. — № 38. — P. 102-112. [in Russian]
20. Saunders C.P.R. Laboratory studies of the effect of cloud conditions on graupel/crystal charge transfer in thunderstorm electrification. Quart 1 / C.P.R. Saunders, H. Bax-Norman, C. Emersic [et al.] // J. Roy. Meteor. Soc. — 2006. — Vol. 132. — P. 2653-2673.
21. Shilin A.G. Vozmozhnosti uvelicheniya effektivnosti pirotekhnicheskih generatorov l'doobrazuyushchego aerozolya [Possibilities of increasing the efficiency of pyrotechnic generators of ice-forming aerosol] / A.G. Shilin, B.M. Khuchunaev // Nauka. Innovacii. Tekhnologii [Nauka. Innovation. Technologies]. — 2022. — № 1. — P. 87-110. [in Russian]
22. Shilin A.S. Vliyanie rastvorimyh soedinenij joda na effektivnost' l'doobrazuyushchego aerozolya [The effect of soluble iodine compounds on the effectiveness of an ice-forming aerosol] / A.S. Shilin, B.M. Khuchunaev, A.Kh. Budaev // Trudy GGO [Proceedings of the MGO].— 2021. — №602. — P. 92-103. [in Russian]