A, UNiVERSUM:
№ 12 (129)_ТЕХНИЧЕСКИЕ НАУКИ_декабрь. 2024 г.
METALLURGY AND MATERIALS SCIENCE
DOI - 10.32743/UniTech.2024.129.12.19013
RESEARCH OF FUNCTIONAL PROPERTIES OF HETEROCOMPOSITE POLYMER MATERIALS OF NEW COMPOSITION FOR APPLICATION IN ENGINEERING
Lutfillo Bakirov
PhD, Professor,
Andijan Economics and Construction institute Vice-rector for academic affairs,
Andijan Economics and Construction institute,
Uzbekistan Andijan E-mail: [email protected]
Khasanboy Tuychiev
PhD student, Andijan machine-building institute, Uzbekistan Andijan E-mail: xasanboy. toychiyev.toxirogli@,gmail. com
ИССЛЕДОВАНИЕ ФУНКЦИОНАЛЬНЫХ СВОЙСТВ ГЕТЕРОКОМПОЗИТНЫХ ПОЛИМЕРНЫХ МАТЕРИАЛОВ НОВОГО СОСТАВА ДЛЯ ПРИМЕНЕНИЯ В МАШИНОСТРОЕНИИ
Бакиров Лутфилло Юлдашалиевич
PhD, профессор, Вице-ректор по академической работе, Андижанский институт экономики и строительства, Республика Узбекистан, г. Андижан
Туйчиев Хасанбой Тохиругли
базовый докторант, Андижанский машиностроительный институт, Республика Узбекистан, г. Андижан
ABSTRACT
This study explores the development of heterocomposite polymer materials (HCPMs) incorporating industrial kaolin, graphite, and silk waste for enhanced mechanical engineering applications. The methodology included material optimization through Lagrange interpolation, analyzing adhesion strength, impact resistance, and microhardness. Results demonstrated that the optimal HCPM composition achieved superior tribotechnical and mechanical properties, including increased adhesion (33.2 MPa) and impact strength (32.2 kJ/m2). Infrared spectroscopy confirmed effective bonding within the polymer matrix. The findings highlight HCPMs' potential to improve reliability in engineering applications, offering an innovative, resource-efficient alternative to traditional materials. Future work should explore scaling and broader industrial applications.
АННОТАЦИЯ
В данном исследовании исследуется разработка гетерокомпозиционных полимерных материалов (ГКПМ) с использованием промышленных отходов каолина, графита и шелка для применения в машиностроении. Методика включала оптимизацию материалов с помощью интерполяции Лагранжа, анализ прочности адгезии, сопротивления удару и микротвердости. Результаты показали, что оптимальный состав ХЦПМ обладает превосходными триботехническими и механическими свойствами, в том числе повышенной адгезией (33,2 МПа) и прочностью на удар (32,2 кДж/м2). Инфракрасная спектроскопия подтвердила эффективность связи внутри полимерной матрицы. Полученные результаты свидетельствуют о потенциале ГХПМ в повышении надежности в инженерных приложениях, предлагая инновационную, ресурсосберегающую альтернативу традиционным материалам. В дальнейшей работе следует исследовать масштабы и более широкие промышленные применения.
Библиографическое описание: Bakirov L.Yu., Tuychiev Kh.T. RESEARCH OF FUNCTIONAL PROPERTIES OF HETEROCOMPOSITE POLYMER MATERIALS OF NEW COMPOSITION FOR APPLICATION IN ENGINEERING // Universum: технические науки : электрон. научн. журн. 2024. 12(129). URL: https://7universum.com/ru/tech/archive/item/19013
A UNIVERSUM:
№ 12 (129)_¿Л ТЕХНИЧЕСКИЕ НАУКИ_декабрь. 2024 г.
Keywords: composite polymer materials (CPM), fillers, dispersion, microhardness, impact strength, operational properties, mechanical properties.
Ключевые слова: композиционные полимерные материалы (КПМ), наполнители, дисперсность, микротвердость, ударная вязкость, эксплуатационные свойства, механические свойства.
Introduction
In the world, it is of great importance to improve modern mechanical engineering, create competitive and import-substituting world-class technologies, new advanced devices and equipment for various industries, conduct deep fundamental research, and solve current scientific and technical problems. Also, the purposeful use of high-performance composite polymer materials to ensure the reliability of cotton processing machines is one of the urgent scientific and technical problems that need to be solved to reduce the negative impact of technological equipment on cotton surfaces through the use of new materials. In this regard, the research centres in developed countries, including United States, Germany, Japan, Russia, China, Turkey and other
countries, paying special attention to the promotion of resource-saving in the manufacture of products from polymer composites.
Tables 1 and 2 below show that for the proposed epoxy resin (epociddian ED-20) coating based on the technological binder, the use of antifriction and wear proof heterocomposite and local raw materials kaolin, electrically conductive graphite with low abrasive structure, reinforcing silk processing waste, from their analogues with superior physico-mechanical and tribotechnical properties.
Materials and methods
Based on the analysis of the above results, new heterocomposite polymer material (HCPM) components were developed (Table 1).
Table 1.
Composition and mechanical properties of heterocomposite materials for anti-friction wear-resistant coatings
Composition and properties of composites for coatings Composite mass fraction.
1-sample 2- sample 3- sample 4- sample 5- sample
ED-20 (epociddian) 100 100 100 100 100
Dibutyl Phthalate (DBPh) 10 10 10 10 10
polyethylene polyamine (PEPA) 10 10 10 10 10
Graphite 2,0 2,25 2,5 2,75 3,0
Angren's kaolin 20 25 30 40 50
Silk processing waste 1,0 1,5 2,0 2,5 3,0
Chlorinated polyethylene 0,5 1,0 1,5 2,0 2,5
Microhardness Hm, MPa 210 216 212 205 195
Adhesion strength (tear-off) CTad, MPa 32,5 33,2 28,2 26,6 25,1
Impact strength CTud, 22 25,2 28,1 31,1 32,2
Table 2.
Surface and tribotechnical properties of anti-friction wear-resistant epoxy coatings
Non-friction coating samples Structure parameters: Width for coating ps (Ohm), and Rz1(mkm) Triboparameter *
primary polished developed F Оэ-105 Кл/м2 50 Irelative
1-sample 5,4 108/4,5 4,6105/3,8 4,8-103/7,2 0,22 16,5 0,41 2,58
2- sample 8,6-108/3,2 6,2-102/2,5 3,5-102/5,8 0,29 24,6 0,46 2,52
3- sample 3,5-108/4,5 6,2-104/4,2 1,3 103/6,4 0,225 13,1 0,35 2,51
4- sample 6,6-107/3,8 9,2 103/4,1 2,8 103/6,1 0,23 12,2 0,38 2,62
5- sample 7,6-108/3,9 8,9103/3,6 2,6-103/5,2 0,235 11,1 0,40 2,68
* note: factor pu = 0.10 MPam/s under the influence of energy (exploitation) factor; development time = 2 s; relative to the prototype S0 and Irelative
Results
The adhesion strength of the h3 layer of the heterocomposite polymer coating was flawless and no coating migration was observed. Tribotechnical properties (according to UzDSt 2822-2014) ft/ f2, I1/I2 and 501/802, respectively 1,35; 5,6 and 0,36, respectively. The obtained results confirm the importance of the technological equipment we have chosen [1-2].
Optimization by type and quantity of material components providing the required operational properties is based on mathematical planning and is based on the reliability of scientific research results using the following Lagrange interpolation formulas.
Optimization of the newly created components and their physical-mechanical and operational properties was carried out using the Lagrange interpolation formula (Figure 1).
Figure 1. Quantitative graph of the main components and masses of HCPM
1-Angren's kaolin; 2- Silk processing waste; 3 Microhardness (MPa); 4 Adhesion strength (MPa); 5 Impact strength; 6-PEPA; 7-DBPh; 8-ED-20 [3].
We determine and evaluate the results using the Lagrangian interpolation formula on the defined points:
L(xi ) = f (xi ) i = 0,1,2,..., mm = 3 (1)
we introduce a m-level polynomial:
! _ (x - x0 )-"(x - xk-1 Xx - Xk+1 )-"(x - xm )
(xk - x0 )'"(xk - xk-1 )(xk - xk+1 )'"(xk - Xm )
(2)
This polynomial has a value 1 if x = xk and if x = xi, i ^ k it has a value 0. Using the above
properties of the Lagrange polynomial, we write the polynomial in the following form:
m
L(x )=£ f (xk )lk (x ).
(3)
k=0
This equation is called Lagrange's interpolation formula if it satisfies all the requirements of the first condition. It is known that a polynomial ^ (x) can
be written in its simplest form by entering the following notation:
a(x) = (x - x0 )(x - x1 ). . .(x - xm ). (4)
The nodes of this polynomial interpolation are converted to 0 at the points x0, xx,..., xm .
№ 12 (129)_науки_декабрь. 2024 г.
(x - x0 )...(x - ^- )...(x - ^+1 )...(x - xm ) = , (x * xk ) , (5)
x xk
(x - xo )...(x - x,- )...(x - x,+, )...(x - xm ) = lim = lim ^(x)-4*k ) (6)
x^xi x - x^ x^xi x - xk
Depending on the number of given points of the argument, that is m = 3 , the Lagrange interpolation formula given above can be written as follows:
L(x ) = Ë f (x, X, (x ) = f (xo )/x - x'ïx - x2 \ + f (x, ),(x ' x° lx ' x2 ' + f (x2 )r(x ' xo *x ' x2 \ =
k=0 (x0 xi )(x0 x2) (xi x0 )(xi x2) (x2 x0 )(x2 xi)
- f(x°) [(x - x, )(x - x2 )]+, f (* ) , [(x - x, )(x - x2 )]+, f(x2 ) ^ [(x - x0 )(x - x2 )]
(X0 x1 )(x0 X2 ) (x1 x0 )(x1 X2 ) (X2 x0 )(x2 x1 )
1. Angren Kaolin
Material x0 x^ x 2
Graphite 3 2,0 2,25 2,5 2,75 3
Angren Kaolin 20 20 25 30 40 50
. . m . . . . (x-2,5)(x-3) (x-2)(x-3) (x-2)(x-2,5)
L (x) = Ë f (xk )lk (x) = 20-^-^-f + 25—^-^-+ 50-^-^-^ =
Ë (2 - 2,5)(2 - 3) (2,5 - 2)(2,5 - 3) (3 - 2)(3 - 2,5) (8)
= 40x2 -170x + 200 = 0
4x2-17x + 20 = 0 x12 = IZl^21 (9)
' 8
2. Silk processing waste
Material x0 x^ x2
Graphite 3 2,0 2,25 2,5 2,75 3
silk processing waste 20 1,0 1,5 2,0 2,5 3,0
/ ч m / ч / ч (x-2,5)(x-3) (x-2)(x-3) (x-2)(x-2,5)
L (x) = Y f (xk)lk (x) = I)--+ 2^-£-+ 3^-£-4-
\) Y J\k>k\) (2 - 2,5)(2 - 3) (2,5 - 2)( 2,5 - 3) (3 - 2)(3 - 2,5)
k=0
= 4 x2 -18x + 21 = 0
3. Microhardness H, MPa
Material x0 x^ x2
Graphite 3 2,0 2,25 2,5 2,75 3
Microhardness H, MPa 181 210 216 212 205 195
. . m . . . . (x-2,5)(x-3) (x-2)(x-3) (x-2)(x-2,5)
L(x) = Y f (xk)lk (x) = 210}--f + 212—^-£-+195^-^-=
Y (2 - 2,5)( 2 - 3) (2,5 - 2)(2,5 - 3) (3 - 2)(3 - 2,5) (11)
= -38x2 - 955x-1743 = 0
Figure 2. Spatial graph of the main components of HCPM and their optimization [3]
9 + ¿V255
(10)
4. Adhesion strength MPa
4
Material x0 xi x2
Graphite 3 2,0 2,25 2,5 2,75 3
Adhesion strength MPa 24,5 32,5 33,2 28,2 26,6 25,1
/ X m / X / X (x-2,5)(x-3) (x-2)(x-3) (x-2)(x-2,5)
L(x) = Y f (xk)lk (x) = 32,5^-^-+ 28,2—^-^-+ 25,1}-^-^ =
M k'kW ' (2-2,5)(2-3) (2,5-2)(2,5-3) (3-2)(3-2,5) (12)
= 2,4x2 -81x + 59,2 = 0
5. Impact strength
Material x0 xi x2
Graphite 3 2,0 2,25 2,5 2,75 3
Impact strength 18,5 22 25,2 28,1 31,1 32,2
/ X m / X / X (x-2,5)(x-3) (x-2)(x-3) (x-2)(x-2,5)
L(x) = Y f (x, )l. (x) = 32,5^--f + 28,2^-^-+ 25,1^-Q-'-I =
TOJKk>kK> , (2-2,5)(2-3) , (2,5-2)(2,5-3) , (3-2)(3-2,5) (13)
= -4x2 + 159x - 22,4 = 0
Conclusion
During analyzing the IR spectra of the newly proposed HCPM structure (Fig. 3), it can be observed that the branching reaction in the structure progresses rapidly, while the remaining substances are accelerators and fillers of the reaction processes. Therefore, partial reaction may occur in composites formed with fillers, but the addition of silk processing waste, consisting of waste polymer composites, we suggest, increases the physical and mechanical properties of silk processing waste from other similar composites. specific groups and the bonds that form other additives were studied.
The IR spectrum shows that the absorption line of the epoxy oligomer forming the basis of the obtained
composites is asymmetric in the valence region of the bonds -CH- epoxy groups 2920-3050 cm-1 and also asymmetric in the structure 1234, cm-1 -C-H and 1176, 1115, 1077 cm-1 -C-H generates symmetric valence oscillations. 2868 cm-1 IR- spectroscopy has lines from vibrations in the fields to the end bonds of -CN2- epoxy groups as well as to the 752 cm-1 -CH2- aliphatic bonds. The absorption lines in the 1340cm-1 fields belong to the groups holding carbon and hydrogen. It can be seen from the IR spectra that there are absorption lines in the 3000-3500 cm-1 and 3346-3214 cm-1 areas, which are characteristic of the NH2 group. For the primary amines C-N, 1251, 1200, 1178, 1160, 1135 and 1066 cm-1 symmetrical valence bonds can be seen to be suitable.
'3930' ' ' ' 3000' ' ' '2500' ' ' '2000' ' ' ' 1800 ' ' 'l600' ' ' ' 1400* ' ' 'l200' ' ' '1000' ' ' ' 800' SOI
Wave n umbei
Figure 3. IR spectrum analysis of the proposed composition HCPM
The absorption lines in the 970, 912 cm-1 areas belonging to the epoxy ring (CH2CHO-) can be seen to be characteristic of the asymmetric valence oscillation of the ring.
The aromatic rings in the epoxy resin show absorption lines in the 1607, 1506, 1452, 825 cm-1 areas.
Absorption lines in the 450-550 cm-1 regions of the IR spectra can be seen in the -C-C- groups, and in the
500-1000 cm-1 regions, the bonds between the metals partially formed by kaolin and wollastonite can be seen (Fig. 3). The main difference is that with the increase in the proportions of fillers added to them, the absorption lines are mainly in the 450-550cm-1 areas of the IR spectrum and in the 500-1000 cm-1 areas and in the 3000-3500 cm-1 areas due to hydroxides [4-8].
References:
1. Patent RUz № IAP 04774. Antifriction-resistant polymer composition / Ziyamuhamedova U.A., Djumabaev D.A., Khabibullaev A.X., Dustkobilov EN, Karaev F.J., Shaymardanov B.A., Djumabaev AB, Shakamalov A.// Official Gazette, 2013, №11. B.64-65.
2. Patent RUz № IAP 04645. Antifriction polymer composition / Ziyamuhamedova U.A., Djumabaev D.A., Khabibullaev A.X., Karaev F.J., Eshkobilov O.X., Shaymardanov B.A.// Official newsletter , 2013, №2. B.45
1. 3. A.M Erkaev, F.N. Nurkulov, A.T. Djalilov, X.S. Beknazarov F.Nurqulov. Composite materials on the basis of epoxy binders // "New composite and nanocomposite materials: structure, properties and application" Res.ilmiy.tex.anjumani. April 5-6 Tashkent - 2018. -S. 370-371.
3. Nurkulov F.N. Issledovanie IK-spectrov sintezirovannogo chlor- sulfirovannogo polyethylene // Uzbekskiy khimich-eskiy zhurnal, - Tashkent, №6, 2012. -S.27-29. (02.00.00; № 6).
4. Nurkulov F.N. Ximicheskie stoykie kompozitsionntie materialy na osnove xlorsulfirovannogo polyethylene // Xi-miya i ximicheskaya teknologia. -Tashkent, №1, 2013. -S. 50-52. (02.00.00; № 3).
5. Qurat-ul-Ain, MF Wani, R Sehgal, Analyzing structural and tribological characteristics of different materials at micro- and nano-level using molecular dynamics simulations: An overview "IOP Conference Series: Materials Science and Engineering, volume 561, p .012052, 2019
6. Ziyamuxamedova U.A., 2Sobirov B.A., 3Bakirov L.Yu. Casting development of working parts of primary processing machines for cotton from heterocomposite polymer materials. International scientific and scientific-technical conference "Resource and energy-saving innovative technologies in the field of foundry" April 13-15, 2021, Tashkent 334338.
7. M Jebran Khan, Himanshu Gandotra, S Shahid Saleem and M F Wani," Correlating the effect of material hardness, counterface hardness and load on the friction and wear of virgin and glass filled Polytetrafluoroethylene (PTFE) using Taguchi approach and statistical analysis"Jurnal of Physics: Conference Series, Volume 1240, 2019.