УДК 676:262.054.1:532.135
РЕОЛОГИЧЕСКИЕ СВОЙСТВА МЕЛОВАЛЬНЫХ СУСПЕНЗИЙ.
3. ТЕМПЕРАТУРНО-КОНЦЕНТРАЦИОННАЯ ИНВАРИАНТНОСТЬ*
© Р.З. Пен , Л.В. Чендылова, И.Л. Шапиро
Сибирский государственный технологический университет, пр. Мира, 82, Красноярск, 660049 (Россия) e-mail: [email protected]
Установлено существование температурной и концентрационной инвариантности (в форме функционала Бьюкки) нормированной эффективной вязкости меловальной суспензии на основе мела, талька и поливинилацетатного латекса.
Неоднократно было показано [1-3], что логарифмические анаморфозы полных кривых течения многих неньютоновских жидкостей симметричны относительно точки перегиба и по форме похожи на интегральные кривые нормального распределения между предельными значениями ньютоновской вязкости - начальной % и конечной Это послужило основанием для введения понятия нормированной логарифмической вязкости
где Пэ - эффективная вязкость неньютоновской жидкости. Поскольку кривая Ф ~ 1^, отображающая зависимость нормированной вязкости от градиента скорости сдвига, также симметрична относительно своей точки перегиба и По >> П«, эффективная вязкость однозначно определяется удаленностью структурного состояния изучаемой жидкости от его состояния в жидкости с неразрушенной структурой. Следовательно, величина п0 может быть использована в качестве единственного параметра, нормирующего вязкостные свойства большинства неньютоновских жидкостей.
Одним из замечательных свойств нормированной вязкости является возможность конструирования на ее основе функций, инвариантных относительно некоторых физических параметров системы.
Бьюкки [4] предложил метод представления результатов измерения вязкости растворов полимеров в форме, инвариантной относительно их концентрации и температуры, на основе функционала
Введение
ф = lgПэ - !gПо, lg П0 - lg По
(1)
(2)
где ф - объемная доля полимера в растворе; Т - абсолютная температура.
* Предыдущее сообщение: Пен Р.З., Чендылова Л.В., Шапиро И. Л. Реологические свойства меловальных суспензий.
2. Температурные зависимости // Химия растительного сырья. 2004. №1. С. 15-17.
Автор, с которым следует вести переписку.
20
Р.З. Пен, Л.В. Чендылова, И.Л. Шапиро
Экспериментальная часть
Инвариантные свойства функции (2) изучены на примере меловальной суспензии со следующим соотношением компонентов (по массе): тальк 42%, мел 42%, поливинилацетат 14,4%, глицерин 0,7%, №-полифосфат 0,9% [5]. Анализ выполнен на основании 9 серий измерений реологических свойств: при температуре 20 оС и различных концентрациях суспензии (5 уровней в диапазоне 22,3...45,0% по массовой доле сухого вещества); при концентрации суспензии 45,0% и различных температурах (5 уровней в диапазоне 15...35 °С). Каждая серия включала измерение напряжений сдвига т на ротационном вискозиметре КИейеБ! типа ЯУ-2 с коаксиальными цилиндрами при 12 фиксированных градиентах скорости сдвига установившегося течения Б в диапазоне 1,5... 1310 с-1. Условия опытов приведены в таблице. Значения начальных ньютоновских вязкостей дисперсионной среды пш и дисперсной фазы %2 взяты из предыдущего сообщения [6].
Условия эксперимента и вычисленные параметры
Номера серий Температура, оС Концентрация, % Вязкость, Па-с
С С1 С2 П01 П02 П0
1 20 42,4 35,6 6,8 2,32 5,48 7,80
2 20 36,6 30,7 5,9 0,65 1,42 2,07
3 20 28,8 24,2 4,6 0,25 0,40 0,65
4 20 22,3 18,7 3,6 0,07 0,75 0,82
5 15 45,0 37,8 7,2 3,91 9,98 13,89
6 20 45,0 37,8 7,2 2,41 5,18 7,59
7 25 45,0 37,8 7,2 1,99 4,60 6,59
8 30 45,0 37,8 7,2 1,71 5,79 7,50
9 35 45,0 37,8 7,2 1,39 5,53 6,92
Обсуждение результатов
Величину начальной ньютоновской вязкости суспензии в целом вычисляли как сумму
П0 = П01 + П02. (3)
На рисунке 1 представлена зависимость (2) с заменой ф на массовую долю С сухих веществ (пигментов и полимера) в суспензии. Эта зависимость температурно-инвариантна: все точки, принадлежащие сериям измерений при различных температурах, но при одной концентрации (серии 5.. .9), образуют одну кривую. Концентрационная инвариантность наблюдается только при достаточно высоких концентрациях суспензии - выше 30% (серии 1 и 2). Точки зависимости (2) при концентрациях 28,8 % (серия 3) и 22,3 % (серия 4) заметно отклонились от кривой, общей для остальных серий.
Поскольку ранее [5] кривые течения п ~ т удалось разделить на две составляющие, соответствующие вязкостям дисперсионной среды П1 и дисперсной фазы п2, это предоставляет возможность раздельно оценить инвариантные свойства этих групп компонентов суспензии.
На рисунке 2 приведены функции вида (2) для дисперсионной среды, а на рисунке 3 - аналогичные зависимости (с заменой индексов 1 на 2) для дисперсной фазы.
18 -Ш- = ^ -Б101 ^ (4)
"Л01 I С1т
Функционал Бьюкки в форме (3) обладает свойством температурно-концентрационной инвариантности по отношению к дисперсионной среде: зависимость ^ (^/Пш) ~ 1ё Бпм/СТ представлена на рисунке 2 единственной кривой для всех девяти серий наблюдений.
В отношении дисперсной фазы (см. рис. 3) функционал вида (3) обладает свойством температурной инвариантности во всем изученном диапазоне температур (серии 5.9) и свойством концентрационной инвариантности - при достаточно высоких концентрациях пигмента (для обсуждаемой системы - при С2 > 35%, серии 1, 2 и 6). Разбавление суспензии приводит к нарушению концентрационной инвариантности (серии 3 и 4). Очевидно, этим обстоятельством объясняется отмеченная выше особенность концентрационной зависимости нормированной вязкости суспензии в целом.
Рис. 1. Функция Бьюкки для меловальной суспензии
Рис. 2. Функция Бьюкки для дисперсионной среды меловальной суспензии
Рис. 3. Функция Бьюкки для дисперсной фазы меловальной суспензии
Выводы
Существование температурной и концентрационной инвариантности нормированной эффективной вязкости (в форме функционала Бьюкки) предоставляет возможность интерполяции и экстраполяции реологических свойств меловальной суспензии в широком диапазоне температур и концентраций.
Список литературы
1. Белкин и.М., Виноградов Г.В., Леонов А.и. Ротационные приборы. измерение вязкости и физикомеханических характеристик материалов. М., 19б7. 272 с.
2. Umstatter H. Einfuhrung in die Viskometrie und Rheometrie. Berlin, 1932. S. 24.
3. Wright W.A., Crouse W.W. A new concept in generalizing non-Newtonian fluid flow data // Report at the
ASLE/ASME Lubrication Conference. Washington, 19б4.
4. Bueche F. Physical properties of polymers. N.Y.: Interscience Publishers, 19б2.
3. Пен Р.З., Чендылова Л.В., Шапиро и. Л. Реологические свойства меловальных суспензий. 1. Аппроксимация
кривых течения // Химия растительного сырья. 2004. №1. С. 11-14.
б. Пен Р.З., Чендылова Л.В., Шапиро и.Л. Реологические свойства меловальных суспензий. 2. Температурные зависимости // Химия растительного сырья. 2004. №1. С. 13-17.
Поступило в редакцию 4 февраля 2004 г.