Научная статья на тему 'Развитие представлений об инициировании свёртывания крови от А. А. Шмидта до Д. М. Зубаирова'

Развитие представлений об инициировании свёртывания крови от А. А. Шмидта до Д. М. Зубаирова Текст научной статьи по специальности «Фундаментальная медицина»

CC BY
509
121
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
СВЁРТЫВАНИЕ КРОВИ / ФАЗОВАЯ ПЕРЕСТРОЙКА КЛЕТОЧНЫХ МЕМБРАН / БИОИМИТИРУЮЩИЙ ПРОТЕОЛИЗ / ТРОМБОГЕННЫЕ ФОСФОЛИПИДНЫЕ МИКРОВЕЗИКУЛЫ / BLOOD COAGULATION / PHASE ALTERATION OF CELLULAR MEMBRANES / BIOIMITATING PROTEOLYSIS / THROMBOGENIC PHOSPHOLIPID MICRO VESICLES

Аннотация научной статьи по фундаментальной медицине, автор научной работы — Тимербаев Владимир Нуреевич, Киселёв Сергей Васильевич

Цель статьи — освещение формирования современного понимания молекулярного механизма инициирования свёртывания крови. Оно обеспечено главным образом исследованиями профессора Д.М. Зубаирова и руководимого им коллектива. Начиная с 1963 г., он установил, что начало свёртывания крови не связано с явлением смачивания сосудистой стенки и активацией факторов контактного комплекса. Исследование распределения тромбопластической активности в клетках тканей, крови и фосфолипидных микрочастицах плазмы позволило заключить, что свёртывание крови инициируется долгосрочной экспрессией тканевого фактора и быстротекущей массивной перестройкой клеточных мембран. Это было подтверждено обнаружением обращённых мезофаз фосфолипидов в препаратах тканевого тромбопластина и неоднородностью связывания с ним витамин K-зависимых факторов. По результатам исследований разработана функциональная концепция инициирования свёртывания крови фазовой перестройкой бислойной структуры клеточных мембран в мезоморфную структуру. Она вызывается различными агонистами через рецептор-зависимые Са 2+-мобилизующие сигнальные системы клетки или массивным поступлением ионов кальция в клетку при её повреждении. На гетерофазной фосфолипидной поверхности происходят затравочный биоимитирующий неферментативный протеолиз витамин K-зависимых факторов и массивная ферментативная активация их в ансамблях ферментных комплексов. Тромбообразование ограничивается макрофагами крови и тканей, удаляющих из циркуляции клетки и фосфолипидные частицы с гетерофазной поверхностью, а также действием факторов противосвёртывающей системы. Исходя из идеологии данной концепции, в исследованиях выявлена патогенетическая роль возникающих при трансформации клеточных мембран тромбогенных микровезикул в развитии синдрома диссеминированного внутрисосудистого свёртывания, инфаркта миокарда, лейкозов, аутоиммунных и инфекционных заболеваний. Выяснение в основных чертах механизма инициирования свёртывания крови ставит Д.М. Зубаирова в один ряд с учёными, заложившими основы современной биологии и медицины.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по фундаментальной медицине , автор научной работы — Тимербаев Владимир Нуреевич, Киселёв Сергей Васильевич

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

THE DEVELOPMENT OF THE BLOOD CLOTTING INITIATION CONCEPTIONS: FROM A.A. SCHMIDT TO D.M. ZUBAIROV

The objective of the review is to cover the formation of modern understanding of molecular mechanisms of blood coagulation initiation. It was provided mainly by the research of Professor D.M. Zubairov and his colleagues. Since 1963, he has established that blood coagulation initiation is not connected to the phenomenon of vascular wall moistening and contact complex factors activation. Research of the thromboplastic activity distribution in tissue cells, blood and in the serum phospholipid microparticles allowed to conclude that blood coagulation is initiated by long-term expression of tissue factor and rapid massive alterations in cellular membranes. This was confirmed by the detection of the turned phospholipids mesophases in tissue thromboplastin preparations and heterogeneity of vitamin К-depending factors binding. Based on the results of the research, a functional conception of blood coagulation initiation by phase alteration of bilayer structure of cellular membranes to a mesomorphic structure was developed. It is caused by different agonists through receptor dependant Ca 2+-mobilizing cell signal systems or by massive migration of calcium ions into the cell at its damage. An initial bioimitating non-enzymatic proteolysis vitamin of К-dependant factors and their massive enzymatic activating in the ensembles of enzymatic complexes takes place on heterophase phospholipids surface. Clotting is limited by blood and tissue macrophages, removing cells and phospholipids particles with heterophase surface from cell circulation, and also by anticoagulant factors action. Based on this conception, the researches revealed the pathogenetic of role thrombogenic micro vesicles originating form the cellular membranes transformation in the development of disseminated intravascular coagulation syndrome, myocardial infarction, leucosis, autoimmune and infectious diseases. Finding out the basic concepts of blood coagulation initiation mechanism puts D.M. Zubairov in one row with scientists, pawning the bases of modern biology and medicine.

Текст научной работы на тему «Развитие представлений об инициировании свёртывания крови от А. А. Шмидта до Д. М. Зубаирова»

УДК 577.1: 612.115: 616.151.5 (091) НО28

РАЗВИТИЕ ПРЕДСТАВЛЕНИЙ ОБ ИНИЦИИРОВАНИИ СВЁРТЫВАНИЯ КРОВИ ОТ А.А. ШМИДТА ДО Д.М. ЗУБАИРОВА

Владимир Нуреевич Тимербаев, Сергей Васильевич Киселёв*

1Казанский государственный медицинский университет

Реферат

Цель статьи — освещение формирования современного понимания молекулярного механизма инициирования свёртывания крови. Оно обеспечено главным образом исследованиями профессора Д.М. Зубаирова и руководимого им коллектива. Начиная с 1963 г., он установил, что начало свёртывания крови не связано с явлением смачивания сосудистой стенки и активацией факторов контактного комплекса. Исследование распределения тромбопластической активности в клетках тканей, крови и фосфолипидных микрочастицах плазмы позволило заключить, что свёртывание крови инициируется долгосрочной экспрессией тканевого фактора и быстротекущей массивной перестройкой клеточных мембран. Это было подтверждено обнаружением обращённых мезофаз фосфолипидов в препаратах тканевого тром-бопластина и неоднородностью связывания с ним витамин К-зависимых факторов. По результатам исследований разработана функциональная концепция инициирования свёртывания крови фазовой перестройкой бислойной структуры клеточных мембран в мезоморфную структуру. Она вызывается различными агонистами через рецептор-зависимые Са2+-мобилизующие сигнальные системы клетки или массивным поступлением ионов кальция в клетку при её повреждении. На гетерофазной фосфолипидной поверхности происходят затравочный биоимитирующий неферментативный протеолиз витамин К-зависимых факторов и массивная ферментативная активация их в ансамблях ферментных комплексов. Тромбообразование ограничивается макрофагами крови и тканей, удаляющих из циркуляции клетки и фосфо-липидные частицы с гетерофазной поверхностью, а также действием факторов противосвёртывающей системы. Исходя из идеологии данной концепции, в исследованиях выявлена патогенетическая роль возникающих при трансформации клеточных мембран тромбогенных микровезикул в развитии синдрома диссеминированного внутрисосудистого свёртывания, инфаркта миокарда, лейкозов, аутоиммунных и инфекционных заболеваний. Выяснение в основных чертах механизма инициирования свёртывания крови ставит Д.М. Зубаирова в один ряд с учёными, заложившими основы современной биологии и медицины.

Ключевые слова: свёртывание крови, фазовая перестройка клеточных мембран, биоимитирующий протеолиз, тромбогенные фосфолипидные микровезикулы.

THE DEVELOPMENT OF THE BLOOD CLOTTING INITIATION CONCEPTIONS: FROM A.A. SCHMIDT TO D.M. ZUBAIROV V.N. Timerbaev, S.V. Kiselev. Kazan State Medical University, Kazan, Russia. The objective of the review is to cover the formation cf modern understanding of molecular mechanisms of blood coagulation initiation. It was provided mainly by the research of Professor D.M. Zubairov and his colleagues. Since 1963, he has established that blood coagulation initiation is not connected to the phenomenon of vascular wall moistening and contact complex factors activation. Research of the thromboplastic activity distribution in tissue cells, blood and in the serum phospholipid microparticles allowed to conclude that blood coagulation is initiated by long-term expression of tissue factor and rapid massive alterations in cellular membranes. This was confirmed by the detection of the turned phospholipids mesophases in tissue thromboplastin preparations and heterogeneity of vitamin K-depending factors binding. Based on the results of the research, a functional conception of blood coagulation initiation by phase alteration of bilayer structure of cellular membranes to a mesomorphic structure was developed. It is caused by different agonists through receptor dependant Ca2+-mobilizing cell signal systems or by massive migration of calcium ions into the cell at its damage. An initial bioimitating non-enzymatic proteolysis vitamin of K-dependant factors and their massive enzymatic activating in the ensembles of enzymatic complexes takes place on heterophase phospholipids surface. Clotting is limited by blood and tissue macrophages, removing cells and phospholipids particles with heterophase surface from cell circulation, and also by anticoagulant factors action. Based on this conception, the researches revealed the pathogenetic of role thrombogenic micro vesicles originating form the cellular membranes transformation in the development of disseminated intravascular coagulation syndrome, myocardial infarction, leucosis, autoimmune and infectious diseases. Finding out the basic concepts of blood coagulation initiation mechanism puts D.M. Zubairov in one row with scientists, pawning the bases of modern biology and medicine. Keywords: blood coagulation, phase alteration of cellular membranes, bioimitating proteolysis, thrombogenic phospholipid micro vesicles.

В первых научных исследованиях свёртывания крови наш соотечественник А.А. Шмидт установил, что в основе этого процесса лежит образование сгустка из белка фибрина, который вместе с клетками крови закрывает повреждение сосуда [28]. Фибрин образуется из своего предшественника — фибриногена — под действием фермента тромбина, возникающего из протромбина. Фибриноген и протромбин постоянно находятся в крови в растворённом состоянии. Свёртывание начинается в момент повреждения сосуда вследствие превращения протромбина в тромбин под действием поступающего в кровь из повреждён-

Адрес для переписки: [email protected]

ных тканей вещества. Моравитц установил, что это вещество — тромбокиназа — также является ферментом [23]. Позднее было установлено, что для свёртывания крови необходимо присутствие растворимых солей кальция [21] и липидного компонента [19]. Во второй половине прошлого века было установлено, что в свёртывании принимают активное участие клетки крови, эндотелий сосудов, белки межклеточного матрикса, а также ряд ранее неизвестных белков плазмы. Выяснилось, что свёртывание крови происходит в результате реакций сосудисто-тромбоцитарного и плазменного гемостаза. В сосудисто-тромбоци-тарном, или первичном, гемостазе под влиянием

различных воздействий (механической травмы, бактериальных токсинов, адреналина, тромбина, аденозиндифосфата и др.) возникает спазм сосудов, и клетки крови и тканей формируют прокоагулянтную фосфолипидную поверхность. Далее в реакциях плазменного гемостаза на фос-фолипидной поверхности происходит последовательная активация витамин К-зависимых белковых факторов, заканчивающаяся образованием тромбина, свёртывающего фибриноген. Первоначально считали, что активация плазменных факторов свёртывания может осуществляться по двум путям — внутреннему и внешнему [22]. Во внутренней системе активация происходит на фосфолипидах тромбоцитов и запускается факторами контактного суперкомплекса (фактор XII, прекалликреин, высокомолекулярный кининоген, фактор XI) при соприкосновении крови с чужеродной поверхностью. Во внешней системе активация осуществляется особым мембранным белком — тканевым фактором, экспонируемым вместе с необходимыми фосфолипидами на поверхности внешних по отношению к крови тканей.

До выяснения последовательности реакций плазменного гемостаза считали, что сохранение жидкого состояния крови в организме обусловлено несмачиваемостью внутренней стенки сосудов [17], вследствие чего в крови не активируется контактный фактор. Однако в 1963 г. Д.М. Зубаиров с сотрудниками показали, что сосудистый эндотелий смачивается кровью [3] и, следовательно, инициирование свёртывания крови не связано с чисто физическим явлением смачивания поверхности. Значение контактного суперкомплекса как необходимого элемента инициирования свёртывания крови было подвергнуто Д.М. Зубаировым сомнению после того, как он установил, что активация фактора XII происходит на многих отрицательно заряженных поверхностях, а также вызывается различными органическими веществами, в частности катехоламинами [29]. Действительно, позднее многие исследователи подтвердили, что контактная активация не является собственно механизмом инициирования свёртывания крови. Факторы контактного суперкомлекса являются компонентами целого ряда защитных систем организма — свёртывающей, фибринолитической, калликреин-кининовой, системы комплемента и других, и контактная активация служит для сопряжения системы гемокоагуляции с различными регуляторными системами организма.

В 80-е годы прошлого века было установлено, что в условиях организма свёртывание крови инициируется главным образом по внешнему пути — тканевым фактором. Он представляет собой специфический мембранный белок вместе с окружающими фосфолипидами, необходимый для проявления активности фактора VII. До выяснения ведущей роли этого белка различными методами (по тромбопластической активности, активности сопутствующего фермента экто-5’-

нуклеотидазы) было изучено распределение тканевого фактора в различных клетках и тканях [1, 14]. Выяснилось, что тканевой фактор в норме отсутствует на поверхности нестимулированных клеток крови и сосудистого эндотелия и обнаруживается в клетках адвентиция сосудов. Эти данные вместе с аналогичными данными других исследователей позволили Д.М. Зубаирову сделать вывод, что инициирование свёртывания крови связано с предшествующим экспонированием тканевого фактора в результате стимуляции (активации) макрофагов крови и тканей, эндотелиальных клеток сосудов и трансформацией их мембран. Этот вывод следовал также из предшествующих исследований Д.М. Зубаиро-ва и сотрудников. В них было установлено, что тканевой тромбопластин представляет микрочастицы клеточных мембран [4], и что мембраны тромбоцитов и клеток сосудов проявляют проко-агулянтные свойства [5]. Однако оставалось непонятным, почему во многих случаях, несмотря на доказанную экспрессию белкового компонента тканевого фактора (апопротеина III) в клетках, соприкасающихся с кровью, свёртывания крови не происходит.

Ещё при изучении состава ферментных комплексов, участвующих в свёртывании крови, было установлено, что для нормального свёртывания необходимо соприкосновение крови с поверхностью, сформированной смесью естественных фосфолипидов с обязательным присутствием некоторого количества фосфати-дилсерина [20, 24]. Фосфолипиды связывают витамин К-зависимые факторы свёртывания через ионы Са2+, и сама фосфолипидная поверхность необходима для проявления полной активности ферментных комплексов этих факторов. В то же время выяснилось, что нативным клеточным мембранам присуще асимметричное распределение фосфолипидов в бислое [18]. Фосфатидилсе-рин почти полностью отсутствует на наружной поверхности плазматических мембран. Он находится на их внутриклеточной поверхности благодаря активному переносу аминофосфолипи-дов из внешнего слоя мембраны во внутренний специальной ферментной системой. Наружный слой сформирован в основном нейтральными фосфолипидами — фосфатидилхолином и сфин-гомиелином. В связи с этим представлялось очевидным, что для свёртывания крови необходимо нарушение исходной асимметрии фосфолипид-ного состава нативных клеточных мембран. Исходя из этого, R. Zwaal и соавт. [30] выдвинули представление об инициировании свёртывания фосфолипидами внутриклеточной поверхности плазматических мембран, приходящей в соприкосновение с кровью при повреждении клеток. Более детально это представление было разработано Д.М. Зубаировым [6]. Он учёл возможность образования смешанных хелатных комплексов из фосфолипидов, ионов Са2+ и остатков у-карбоксиглутаминовой кислоты витамин К-зависимых факторов и на основе структур-

ных расчётов указал на необходимость взаимно упорядоченного расположения фосфолипидов в обрывках мембран для инициирования свёртывания (матричная теория свёртывания).

Сформировавшееся на основе упомянутых выше собственных исследований понимание критически важной роли тканевого фактора и перестройки клеточных мембран в инициировании свёртывания крови вполне логично побудило Д.М. Зубаирова обратиться к изучению структуры тканевого тромбопластина. Тромбопластин представляет промытый ацетоном порошок мозга. Он сохраняет все интегральные белки (в частности, апопротеин III) и фосфолипиды исходных клеточных мембран и является наиболее мощным активатором свёртывания крови. Было установлено, что тромбопластин — конгломерат липопротеиновых комплексов, в котором сохранено немного фрагментов клеточных мембран с типично бислойной структурой. По данным спектроскопии ядерно-магнитного резонанса на ядрах 31Р и 1Н фосфолипиды в водной суспензии тромбопластина организованы в гексагональную лиотропную мезофазу, в водную среду экспонировано 10-20% полярных головок фосфолипидов [7]. Казалось несомненным, что организация фосфолипидов в тромбопластине воспроизводит все существенные черты структуры, необходимой клеточным мембранам в организме для инициирования свёртывания крови. Для выяснения значения структуры фосфолипидной поверхности в обеспечении тромбогенности клеточных мембран было изучено связывание с тромбо-пластином протромбина человека, продуктов его активации и фактора X, меченых 125! [8, 10, 13]. Выяснилось, что витамин К-зависимые факторы свёртывания связываются с тромбогенной фосфолипидной поверхностью через ионы Са2+ №концевым участком своих молекул (доменом у-карбоксиглутаминовой кислоты). Связывание неоднородно, происходит по высоко- и низкоаффинным центрам. Обнаружение двух типов центров Са2+-опосредованного связывания витамин К-зависимых факторов с тканевым тромбо-пластином позволило объяснить каталитическое действие фосфолипидной поверхности при свёртывании крови. Низкоаффинные центры представляют собой кластеры фосфатидилсерина. На них происходит подвижное связывание факторов, обеспечивающее их концентрирование на поверхности и латеральную диффузию к высокоаффинным центрам. Высокоаффинные центры представляют также кластеры фосфатидилсери-на, но находящиеся на границах мицеллярной и цилиндрической мезофаз, где имеются разрыхления мембраны. Они обеспечивают более прочное связывания факторов с поверхностью и формирование их ферментных комплексов. Активация осуществляется в ансамблях близко расположенных ферментных комплексов факторов УПа, Ка и Ха с соответствующими белками-кофакторами, что придаёт реакциям активации характер согласованного каскада и значительно

ускоряет образование тромба. Также стало понятно, что экспрессия на поверхности клеток белкового компонента тканевого фактора ещё недостаточна для проявления его активности. Необходимо независимое формирование его липидного компонента с участием фосфатидил-серина, происходящее при повреждении или перестройке клеточных мембран. Полученные данные означали, что приобретение клеточными мембранами тромбогенных свойств связано с утратой ими исключительно бислойной структуры и образованием мезоморфной структуры с экспонированным фосфатидилсерином. Этот вывод был подтверждён и данными других исследователей [26, 27].

Вместе с тем оставалось непонятным, каким образом совершенно различные воздействия на уровне организма (действие биологически активных веществ, бактериальных токсинов, кровопотеря, физическая травма и др.) приводят к однотипному эффекту — повышению прокоагулянтного потенциала крови и генерации тромбина. Это несоответствие оказалось кажущимся и разъяснилось в функциональной концепции инициирования свёртывания крови Са2+-опосредованной перестройкой клеточных мембран, разработанной Д.М. Зубаировым вместе с В.Н. Тимербаевым [9]. В ней были учтены результаты собственных исследований и последние данные о сигнальных механизмах клетки, фазовой структуре фосфолипидов и механизмах поддержания устойчивости клеточных мембран. Свёртывание крови вызывают различные физические, химические и бактериальные воздействия на клетки, соприкасающиеся с кровью в норме или при патологии. Из клеток, соприкасающихся с кровью, первостепенное значение имеют эндотелиальные клетки, тромбоциты и моноциты, а из внесосудистых клеток — фи-бробласты, перициты и мышечные клетки. Информационные молекулы физиологического характера (тромбин, коллаген, тромбоксаны, фактор активации тромбоцитов, аденозинди-фосфат, катехоламины и др.) регулируют тромбогенные свойства клеток через специфические рецепторы. При ограниченном действии таких веществ за несколько часов значительно возрастают синтез и экспрессия клетками белкового компонента тканевого фактора. Патологические воздействия (бактериальные токсины, цитокины, физическая травма) оказывают своё воздействие, грубо повреждая клеточную мембрану. Во всех случаях воздействие тромбогенного сигнала ведёт к дозированному (через Са2+-мобилизующие сигнальные механизмы) или недозированному поступлению ионов кальция в цитоплазму из внутриклеточных депо или внеклеточной жидкости и крови. Ионы кальция блокируют ферментную систему, переносящую фосфатидилсерин и фосфатидилэтаноламин с наружной стороны мембраны на внутреннюю, а также систему напряжения мембраны каркасом из белков цитоскелета. При достаточной силе

сигнала это приводит к быстрому (в течение 1-2 мин) равновесному перераспределению фос-фатидилсерина и фосфатидилэтаноламина между внутренним и внешними слоями мембраны. При этом они соприкасаются с межклеточной жидкостью или кровью, в которой содержание ионов кальция более чем в 10 000 раз превышает его концентрацию в цитоплазме. При такой высокой концентрации ионы Са2+ стабилизируют компактные группировки молекул фосфатидил-серина — кластеры — за счёт связывания с ним в хелатные комплексы. Это ведёт к относительному обогащению соседних участков мембраны фосфатидилэтаноламином. Однако его молекулы имеют форму конуса, не подходящую для самостоятельного формирования устойчивого бислоя. По этой причине они склонны переворачиваться и образовывать свою собственную мезо-фазу с обращённой мицеллярной или цилиндрической структурой. Таким образом, ионы Са2+ индуцируют перестройку бислойной структуры мембраны в гетерофазную, в которой участки бислоя чередуются с другими мезофазами. Это ведёт к появлению межфазных дефектов, разрыхлению и понижению прочности мембраны. При ограниченной стимуляции перестраиваются только отдельные участки плазматической мембраны, так что поверхность клеток становится тромбогенной без нарушения их целостности. При нарастании структурных изменений рассмотренный процесс может привести к от-шнуровыванию и отторжению в кровоток массы фосфолипопротеиновых частиц, обладающих выраженной тромбопластической активностью. Перестройка мембран, приобретение ими гете-рофазной структуры превращает их в матрицы для взаимно ориентированного связывания и активации витамин К-зависимых факторов в ансамблях их ферментных комплексов, а также формирует с ранее экспрессированным апопроте-ином III полноценный тканевой фактор, то есть «раскрывает» его активность.

Рассмотренная концепция впервые охватывала все известные данные об инициировании свёртывания крови и его развитии в их причинно-следственной взаимосвязи. Гемостаз был представлен как единый механизм, инициируемый на клеточном уровне через типичные рецепторно-сигнальные системы с конкретными молекулярными реакциями сопряжения его сосудисто-клеточного и плазменного этапов. Однако в своём первоначальном виде (1991) данная концепция оставляла неясным механизм появления первой активной молекулы витамин К-зависимых факторов. Они синтезируются в виде неактивных предшественников (проферментов), поэтому фазовая перестройка клеточных мембран сама по себе, казалось бы, ещё недостаточна для инициирования свёртывания крови. Было установлено, что активные формы витамин К-зависимых факторов в минимальном количестве всегда присутствуют в крови. Так, фактор УПа после местного тромбообразования

сохраняется в крови в течение нескольких часов [25]. Самодостаточность рассмотренной концепции инициирования свёртывания крови и постоянное наличие в крови активных форм витамин К-зависимых факторов были обоснованы В.Н. Тимербаевым по данным его исследований аутоактивации и распада протромбина [15, 16 ]. Отрицательно заряженные кислотные остатки фосфолипидов на трансформированной клеточной поверхности при участии хелатированных ионов Са2+ должны вызывать неферментативное расщепление витамин К-зависимых факторов по доступным остаткам аргинина, что имитирует их ферментативное расщепление при естественной активации. Этот процесс с неизбежностью должен осуществляться благодаря уникальной структуре этих факторов — наличию остатков у-карбоксиглутаминовой кислоты, обеспечивающих Са2+-опосредованное связывание этих белков с отрицательно заряженными кластерами фосфатидилсерина на фосфолипидной поверхности. Биоимитирующий неферментативный протеолиз витамин К-зависимых факторов на гетерофазных фосфолипидных поверхностях старых, повреждённых и стимулированных клеток обеспечивает постоянное наличие их активных форм в крови, а также запуск каскада их ферментативных превращений (активацию) на аналогичной поверхности большого массива клеточных мембран при тромбообразовании. Таким образом, индуцированная тромбогенными сигналами через рецептор-зависимые механизмы функциональная перестройка бислойной структуры клеточных мембран в гетерофазную структуру является достаточной и исчерпывающей для инициирования свёртывания крови как по внешнему, так и по внутреннему пути.

Следует отметить, что Д.М. Зубаиров вполне отчётливо понимал, что контакт с кровью небольшого количества клеток с перестроенной плазматической мембранной или даже фосфо-липидных микрочастиц с экспонированным апопротеином III ещё не должен приводить к свёртыванию крови [11]. Многие из упомянутых выше индукторов тромбиногенеза постоянно возникают в организме, обеспечивая фоновый уровень стимуляции клеток. Физиологические микротравмы и естественное старение также способствуют появлению клеток с тромбогенной поверхностью. При старении клеток, например, уменьшается эффективность системы поддержания асимметрии фосфолипидного состава мембран с появлением в конечном итоге на их поверхности фосфатидилсерина. Экспериментальные данные подтверждали, что в крови и тканях в норме всегда в определённом количестве есть клетки с тромбогенной поверхностью и фрагменты их мембран в виде фосфолипидных микрочастиц, обеспечивающих обычный уровень прокоагулянтной активности крови и тканей. Однако накопления тромбогенных клеток и частиц сверх определённого уровня не происходит. Это обусловлено тем, что макрофаги крови

и тканей опознают на их поверхности фосфати-дилсерин, атакуют их и удаляют из циркуляции. Активные молекулы витамин К-зависимых факторов в минимальном количестве также всегда присутствуют в крови. Однако в норме их недостаточно для инициирования плазменного гемостаза. Они эффективно нейтрализуются совместным действием факторов противосвёр-тывающей системы — гликозаминогликанов на поверхности эндотелиальных клеток, гепарина и антитромбина III, ингибитора внешнего пути свёртывания и плазменных ингибиторов протеаз. Таким образом, в норме кровь остаётся жидкой, несмотря на постоянно происходящую фазовую перестройку плазматических мембран у некоторого количества контактирующих с ней клеток. Действие индуцирующего свёртывание сигнала имеет пороговый характер. Свёртывание крови начинается лишь в тот момент, когда количество соприкасающихся с ней клеток с перестроенной плазматической мембраной и отделившихся от них фосфолипидных микрочастиц достигло порогового уровня. Величина такого порога определяется отдельно для внутреннего и внешнего вариантов инициирования свёртывания концентрацией неактивных факторов в крови и кинетическими параметрами активных ферментных комплексов. Известно, что апопро-теин III постоянно экспонирован на поверхности фибробластов и макрофагов многих тканей. Экспрессия его может быть индуцирована в течение нескольких часов в эндотелиальных клетках и моноцитах различными агонистами — тромбином, бактериальным эндотоксином, гистамином и др. При этом повышается тромбопластическая активность тканей. Изменение порога индукции внешнего пути в результате изменений синтеза и экспрессии на поверхности клеток апопротеина III и создание подпороговой концентрации клеток и частиц с мезоморфной фосфолипидной поверхностью представляется главным путём регуляции организмом прокоагу-лянтного потенциала крови и тканей. Трансформация структуры фосфолипидных клеточных мембран индуцируется независимо от синтеза и экспрессии апопротеина III и является «спусковым крючком» свёртывания крови при любом поддерживаемом на данный момент прокоагу-лянтном потенциале.

Исходя из идеологии рассмотренной концепции инициирования свёртывания крови, Д.М. Зубаиров в последние годы сосредоточил своё внимание на изучении разнообразных эффектов и последствий, вызываемых в организме фазовой перестройкой клеточных мембран и поступлением в кровь тромбогенных фосфолипид-ных частиц — микровезикул [12]. Ещё ранее в приоритетных исследованиях вместе с сотрудниками он показал, что в плазме крови существуют липопротеидные микрочастицы, проявляющие тромбопластическую активность [2, 4]. Теперь, при более глубоком теоретическом понимании, руководимый Д.М. Зубаировым коллектив в

ряде исследований выявил патогенетическую роль тромбогенных микровезикул в развитии синдрома диссеминированного внутрисосуди-стого свёртывания крови, инфаркта миокарда, лейкозов, аутоиммунных и инфекционных заболеваний.

Из изложенного можно видеть, что усилия Д.М. Зубаирова по выяснению механизма инициирования свёртывания крови были последовательны. Они соответствовали его стремлению к пониманию естественной логики изучаемых явлений на молекулярном уровне. Теперь разрозненные представления прежних лет об этом процессе складываются в более ясную картину с отчётливой причинно-следственной взаимосвязью её элементов. Без преувеличения можно считать проблему инициирования свёртывания крови в основных чертах разрешённой. Мы считаем, что это достижение является главным, наиболее значимым вкладом профессора Д.М. Зубаирова в учение о свёртывании крови и ставит его в один ряд с учёными, заложившими основы современной биологии и медицины.

ЛИТЕРАТУРА

1. Андрушко И.А. Тромбопластическая активность разных слоёв сосудистой стенки при лучевой болезни // Бюлл. эксп. биол. мед. — 1967. — Т. 58, №5. — С. 29-32.

2. Бышевский А.Ш., Зубаиров Д.М., Терсенов О.А. Тромбопластин. Новосибирск: Изд. Новосиб. ун-та, 1993. — 178 с.

3. Зубаиров Д.М., Репейков А.В., Тимербаев В.Н. О смачиваемости сосудистого эндотелия // Физиол. ж. СССР. — 1963. — Т. 49, №1. — С. 85-91.

4. Зубаиров Д.М., Грицук Г.Н., Владимирова Л.Ф. и др. Супермолекулярная структура тканевого тромбопла-стина / Система свёртывания крови и фибринолиз. — Киев: Здоровя, 1969. — С. 58-59.

5. Зубаиров Д.М., Андрушко И.А., Сторожев А.Л. Роль сосудистых и тромбоцитарных мембран в гиперкоагу-лемии // Кардиология. — 1974. — Т. 14, №11. — С. 75-78.

6. Зубаиров Д.М. Матричная гипотеза ферментативного каскада при свёртывании крови // Казан. мед. ж. — 1977. — Т. 58, №6. — С. 32-37.

7. Зубаиров Д.М., Тимербаев В.Н., Байкеев Р.Ф. и др. Исследование внешнего пути свёртывания крови // Биохимия животн. и челов. — 1989. — №13. — С. 1-10.

8. Зубаиров Д.М., Тимербаев В.Н., Киселёв С.В. и др. Взаимодействие протромбина человека с тканевым тромбопластином // Биохимия. — 1989. — Т. 54, №6. — С. 1045-1054.

9. Зубаиров Д.М, Тимербаев В.Н. Функциональная концепция инициирования свёртывания крови клеточными мембранами // Гематол. и трансфузиол. — 1991. — Т. 36, №4. — С. 5-9.

10. Зубаиров Д.М., Тимербаев В.Н., Киселёв С.В. и др. Взаимодействие фрагмента 1 протромбина, претромби-на 1 и а-тромбина человека с тканевым тромбопласти-ном // Биохимия. — 1992. — Т. 57, №1. — С. 77-90.

11. Зубаиров Д.М. Молекулярные основы свёртывания крови и тромбообразования. — Казань: Фэн, 2000. — 364 с.

12. Зубаиров Д.М, Зубаирова Л.Д. Микровезикулы в крови. Функции и их роль в тромбообразовании. — М.: ГЭОТАР-Медиа, 2009. — 168 с.

13. Киселёв С.В., Зубаиров Д.М., Тимербаев В.Н. Взаи-

модействие фактора Х человека с тканевым тромбопла-стином // Биомед. хим. - 2003. - Т. 49, №5. - С. 443-450.

14. Кузнецов В.И. Распределение 5’-нуклеотидазной и тромбопластической активности в тканях человека // Казан. мед. ж. - 1983. - Т. 64, №1. - С. 32-35.

15. Тимербаев В.Н. Биоимитирующий неферментативный протеолиз витамин K-зависимых факторов -необходимый элемент механизма инициирования свёртывания крови / Фундаментальные и прикладные аспекты современной биохимии. - СПб.: Минздрав РФ, 1998. - Т. 1. - С. 114-118.

16. Тимербаев В.Н., Беляев ЛА, Зубаиров Д.М. Исследование структуры протромбина собаки и механизма его аутоактивации // Биохимия. - 1969. - Т. 34, №6. -С. 1100-1106.

17. Adelson E, Reingold J.J., Parker O. et al. Platellet and fibrinogen survival in normal and abnormal states of coagulation // Blood. - 1961. - Vol. 17, №3. - P. 267-281.

18. Bretscher M.S. Asymmetrical lipid structure for biological membranes // Nature New Biol. - 1972. - Vol. 236, N 5340. - P. 11-12.

19. Chargaff E. The coagulation of blood // Adv. Enzy-mol. - 1945. - Vol. 5, N 1. - P. 31-65.

20. Esmon C.T., Owen W.G, Jackson C.M. The conversion of prothrombin to thrombin. V. The activation of prothrombin by factor Xa in the presence of phospholipids // J. Biol. Chem. - 1974. - Vol. 249, N 17. - P. 7798-7807.

21. Hammarsten O. Uber die Bedeutung der loslichen Kalkzalze fUr die Faserstoffgerinnung // Ztschr. Physiol. Chem. - 1886. - Bd. 22. - S. 333-395.

22. MacFarlane R.C. An enzyme cascade in blood clotting mechanism and its function as amplifier // Nature. — 1964. — Vol. 66, N 2. — P. 482-489.

23. Morawitz P.M. Die Chemie der Blutgerinnung // Ergebn. Physiol., I Abteil., Wiesbaden. — 1905. — Bd. 4. —

S. 307-422.

24. Papahadiopoulos D.P., Hanahan D.J. Observation on the interaction of phospholipids and certain clotting factors in prothrombin activator formation // Biochim. et Biophys. Acta. — 1964. — Vol. 90, N 3. — P. 436-439.

25. Radcliffe R, Nemerson Y. Activation and control of factor VII by activated factor X and thrombin // J. Biol. Chem. — 1975. — Vol. 250, N 2. — P. 388-395.

26. Sims P.J., Wiedmer T, Esmon C.T. et al. Assembly of the prothrombinase complex is linked to vesiculation of the plateled plasma membrane. Studies in Scott syndrome: an isolated defect in platelet procoagulant activity // J. Biol. Chem. — 1989. — Vol. 264, N 29. — P. 17049-17057.

27. Verkley A.J. Lipidic intramembranous particles // Biochim. et Biophys. Acta. — 1984. — Vol. 779, N 1. -P. 43-63.

28. Schmidt A. Die Lehre von den fermentativen Ger-innungserscheinungen in den eiweissartigen Thirischen Korperflussigkeiten. — Dorpat: Matissen, 1986.

29. Zubairov D.M., Popova L.G. New evidence for the activation of factor XII by epinephrine // Thrombosis Res. — 1976. — Vol. 8, N 5. — P. 587-597.

30. Zwaal R.F.A., Comfurius P., Van Deenen L.L.M. Membrane asymmetry and blood coagulation // Nature. — 1977. — Vol. 268, N 5618. — P. 358-360.

УДК 612.43: 612.084: 613.24: 616-056.52-003.829.1-003.669: 616.43 НО29

ВЛИЯНИЕ СУЛЬФАТА ЖЕЛЕЗА НА ЭНДОКРИННУЮ ДИСФУНКЦИЮ ЖИРОВОЙ ТКАНИ КРЫС ЛИНИИ WISTAR

Алексей Алексеевич Тиньков, Елизавета Васильевна Попова, Александр Александрович Никоноров* Оренбургская государственная медицинская академия

Реферат

Цель. Изучение состояния эндокринной функции жировой ткани в процессе развития адипогенного эффекта под влиянием высокожировой диеты на фоне хронического перорального поступления сульфата железа с питьевой водой у крыс линии Wistar.

Методы. Животные, содержащиеся на стандартной и высокожировой диете, получали с питьевой водой 3 мг/л сульфат железа в течение 3 мес. По окончании эксперимента проводили измерение концентрации провоспалитель-ных цитокинов — моноцитарного хемотаксического белка 1, фактора некроза опухоли альфа, лептина, адипонекти-на, инсулина и глюкозы в сыворотке крови, а также морфометрических параметров и содержания железа в шерсти и жировой ткани животных.

Результаты. Показано, что на фоне употребления солей железа у животных увеличиваются как морфометрические параметры по сравнению с контрольными группами, так и содержание железа в шерсти крыс, достигающее максимальных значений в жировой ткани у животных на фоне высокожировой диеты. При этом концентрация моноцитарного хемотаксического белка 1, фактора некроза опухоли альфа и лептина в сыворотке крыс, употребляющих железо, существенно превышала контрольные значения. Наблюдаемое увеличение уровня инсулина на фоне умеренной гипергликемии у животных, получающих сульфат железа на фоне высокожировой диеты, свидетельствовало о развитии инсулинорезистентности.

Вытод. В ходе исследования установлено, что, с одной стороны, сульфат железа приводит к потенцированию адипогенного эффекта высокожировой высококалорийной диеты, а с другой — выступает в качестве фактора, способствующего формированию эндокринной дисфункции жировой ткани (так называемого эндокринного дизраптора).

Ключевые слова: железо, жировая ткань, крысы, воспаление, эндокринные дизрапторы.

INFLUENCE OF IRON SULFATE ON ADIPOSE TISSUE ENDOCRINE DYSFUNCTION IN WISTAR RATS

A.A. Tinkov, E.V. Popova, A.A. Nikonorov. Orenburg State Medical Academy, Orenburg, Russia. Aim. To study the adipose tissue endocrine function at adipogenic effect development in Wistar rats on high-fat diet and increased iron intake with drinking water. Methods. Animals on standard and high-fat diets were administered 3 mg/l of iron sulfate with drinking water

Адрес для переписки: [email protected]

i Надоели баннеры? Вы всегда можете отключить рекламу.