УДК 621.22-762 +531.43
РАЗРАБОТКА КОНСТРУКЦИИ ГЕРМЕТИЗИРУЮЩЕГО УСТРОЙСТВА С ОПТИМИЗАЦИЕЙ ПАРАМЕТРОВ КОНТАКТНОГО ВЗАИМОДЕЙСТВИЯ
©2013 О.В. Кропотин
Омский государственный технический университет
Поступила в редакцию 28.03.2013
Рассматривается процедура оптимизации конструктивных параметров герметизирующего устройства в соединении, передающем вращательное движение.
Ключевые слова: оптимизация, герметизирующее устройство, формоизмерение
Разработка герметизирующих устройств (ГУ) различных типов связана с анализом параметров напряженно-деформированного состояния элементов конструкции и параметров контактного взаимодействия «уплотняющий элемент - уплотняемая поверхность». Значения указанных параметров непосредственно влияют на работоспособность и срок службы ГУ, поэтому адекватная оценка данных параметров на этапе проектирования изделия и оптимизация конструкции по критериям обеспечения требуемой степени герметичности определяют надежность и ресурс машин, в которых применяются герметизирующие устройства [1-4]. Обеспечение длительной работоспособности металлополимерных ГУ возможно путем формирования уровня контактного давления на уплотняемой поверхности, необходимого для заданной степени негерметичности, а также уровня напряжений в объеме элементов ГУ, не превышающего предел прочности материалов, используемых для изготовления элементов ГУ. При выборе конструктивных параметров конструкции ГУ подвижных соединений на этапе проектирования необходимо учитывать изменение герметичности, формы и напряженно-деформированного состояния элементов устройства в процессе эксплуатации. Указанные принципы использованы в работе при проектировании конструкции радиального уплотнения (ГУ) с вращательным движением уплотняемой поверхности, которое защищает полость с рабочей жидкостью от попадания пыли, грязи и воды из окружающей среды.
Объект и методика исследования. В качестве прототипа для разрабатываемой конструкции ГУ выбрана конструкция, примененная в
Кропотин Олег Витальевич, кандидат технических наук, профессор кафедры физики. E-mail: kropotin@mail. ru
объекте, принадлежащем классу многоцелевых гусеничных и колесных машин [5, 6], и модернизированная по критерию равномерности распределения контактного давления по уплотняемой поверхности [2, 7]. В данной работе рассматривается конструкция ГУ (рис. 1), в которой конструктивные параметры изменены относительно прототипа: обеспечивается опирание силового элемента в радиальном направлении (эпюра Рс на рис. 1) только на поверхность уплотняющего элемента и исключено частичное опирание на поверхность корпуса ГУ.
При разработке конструкции ГУ исследовалось пространство параметров, набор пробных точек для которого был сформирован с применением ЛПХ-последовательностей [8, 9]. Метод оптимизации, основанный на применении таких последовательностей, может применяться к исследованию кусочно-непрерывных в пространстве параметров функций. В качестве варьируемых были выбраны параметры а] - ги> (указаны на рис. 1), определяющие эпюру распределения контактных напряжений по уплотняемой поверхности в зоне контакта и уровень внутренних напряжений в силовом и уплотняющем элементах. В качестве параметра а2 использовался тангенс угла, задающего коническую форму контактной площадки 4 (рис. 1). Знак параметра аг задавали в соответствии с рис. 2. Допустимые пределы варьирования параметров (параметрические ограничения): 0,14 мм < < 0,6 мм, -0,08 < аг < +0,08, 0,6 мм < аз < 1,6 мм, 0,6 мм < ?ц< 1,6 мм, 2,0 мм < а5 < 5,0 мм, 1,2 мм < аб < 2,4 мм.
Выбранные критерии качества, по которым осуществлялся выбор конструктивных параметров на этапе начального деформирования и начального этапа эксплуатации:
- Аш - массовый износ уплотняющего элемента;
а) б)
Рис. 1. Фрагмент геометрической модели ГУ: а) геометрическая модель, б) сетка конечных элементов после нагружения: 1 - уплотняемая поверхность, 2 - силовой элемент (резиновое кольцо), 3 - внутренняя поверхность корпуса герметизирующего устройства, 4 - поверхность контактной площадки, 5 - регулировочное кольцо, 6 - уплотняющий элемент; Рк - давление на контактной поверхности, создаваемое уплотняющим элементом, Рс - давление на поверхности уплотняющего элемента, создаваемое силовым элементом; а:- Яг, - варьируемые параметры (Зп - тангенс угла, задающего коническую форму контактной площадки 4)
Последние три критерия из перечисленных характеризуют уровень и эпюру распределения контактного давления по уплотняемой поверхности и определяют герметизирующие свойства уплотнения, которые тем выше, чем больше значения указанных критериев. Следует отметить, что высокий уровень контактных напряжений и, соответственно, высокие значения критерия РЬ приводят к большому износу уплотняющего элемента и снижению герметизирующих свойств устройства в процессе эксплуатации.
Критериальные ограничения выбраны с учетом устоявшихся представлений о механизмах герметизации [1, 10] и имеющихся экспериментальных данных, в том числе по конструкции-прототипу [1, 2, 4-6, 10]: Аш < 30 мг (для назначенного времени эксплуатации 390 часов); Рть/Ртах > 0,7; РЬ > 4103 Пам; А/ а, = 1. В процессе моделирования контролировались значения главных О] и эквивалентных ос (по Мизесу) напряжений в силовом и уплотняющем элементах, а также визуально по конечно-элементной сетке контролировались степень деформации в процессе формоизменения уплотняющего элемента и степень скручивания силового элемента.
В качестве расчетного метода при создании модели устройства выбран метод конечных элементов, а в качестве программного средства - комплекс Для расчетов использовали
осесимметричную модель ГУ. В качестве
Рис. 2. Схема определения знака параметра аг (тангенс угла, задающего коническую форму контактной площадки)
- Рпш/Рщах - отношение минимального и максимального значения контактного давления на уплотняемой поверхности;
интеграл по уплотняемой по-
1
верхности от контактного давления на участках уплотняемой поверхности, на которых значение контактного давления превышает минимальное (по условиям герметизации);
- А1а3 - отношение суммарной длины участков уплотняемой поверхности, на которых значение контактного давления превышает минимальное, к длине уплотняемой поверхности.
материала для изготовления уплотняющего элемента был выбран полимерный композиционный материал (ПКМ), разработанный под руководством профессора Ю.К. Машкова, на основе политетрафторэтилена (ПТФЭ) следующего состава: 84% ПТФЭ, 6% углеродного волокна, 8% скрытокристаллического графита, 2% дисульфида молибдена. Полимерный композиционный материал считали нелинейно-упругим (без остаточных неупругих деформаций). Для силового элемента, выполненного из резины, использовали конечные элементы, для которых реализована функция плотности энергии деформации Муни-Ривлина. Поверхности корпуса герметизирующего устройства, регулировочного кольца и уплотняемой поверхности определялись как абсолютно жесткие.
На каждом этапе расчетов, который характеризуется соответствующим значением пути трения (интервала времени эксплуатации), решали задачу напряженно-деформированного состояния уплотняющего и силового элементов, получали распределение контактного давления по уплотняемой поверхности, выполняли расчет массового износа и параметров формоизменения уплотняющего элемента Учет формоизменения и массового износа в процессе фрикционного взаимодействия проводили по схеме, приведенной в [11, 4]: после определенного количества циклов вращательного движения (интервала времени эксплуатации) уплотняемой поверхности вала изменяли геометрические параметры уплотняющего элемента в соответствии с результатами расчетов линейного износа, полагая величину износа пропорциональной контактному давлению и интенсивности изнашивания на единицу контактного давления I (1/Па). В соответствии с результатами стендовых испытаний, приведенных в работе [5], интенсивность изнашивания изменяли от значения I] = 0,49-10"17 1/Па (процесс приработки) до 12 = 0,22-10"17 1/Па (стационарный режим трения) по достижении массового износа Аш = 5 мг.
Результаты исследования. В соответствии с выбранным алгоритмом были определены пробные точки (16 точек) в пространстве параметров и составлена таблица испытаний. В результате проведенного имитационного моделирования на разработанной конечно-элементной модели определено следующее:
1) критерии РЦ Рщь/Рщах и Л1/а3 на этапе начального деформирования принимают значения, лежащие в следующих диапазонах: 1,0-103 Па-м < РЬ < 11,5 • 103 Пам; 0 < Рт1П/Ртах < 0,76; 0,09 < А/ си < 1;
2) критерий Аш на начальном этапе эксплуатации (время фрикционного взаимодействия
равно 1,7 часа) принимает значения, лежащие в диапазоне: 3,1-Ю"8кг<Аш<40,4-10"8кг;
3) на этапе начального деформирования для всех пробных точек 4,4 МПа < о, < 24,4 МПа (условный предел прочности при растяжении для выбранного материала составляет 25 МПа), 4,4 МПа < ае < 24,4 МПа;
4) в ряде случаев (7 точек) наблюдается высокая степень деформации в процессе формоизменения уплотняющего элемента и (или) высокая степень скручивания силового элемента.
Критериальному ограничению РЬ > 4-103 Пам удовлетворяет 10 из 16-ти точек; критериальному ограничению Л/ а?= 1 удовлетворяет 5 точек. Критериальному ограничению Рть/Ртах > 0,7 удовлетворяет одна точка, которая одновременно удовлетворяет всем критериальным ограничениям, определяемым на этапе начального деформирования. Для данной точки: РЬ=6,2-103 Пам, Л1/аз=\, Рть/Ртах=0,76. Значения напряжений для этой точки равны: Стх = 4,8 МПа сте = 8,1 МПа, деформации в процессе формоизменения уплотняющего элемента и степень скручивания силового элемента незначительны. Данная точка была признана оптимальной по результатам первой итерации оптимизационной процедуры. Для указанной точки значения параметров равны: гц = 0,284 мм, а2 = +0,05, а3 = 1,538 мм, а* = 1,163 мм, а5 = 3,313 мм, аб = 2,175 мм. Поскольку значения параметров аз и а? для оптимальной точки близки к максимальным значениям этих параметров в соответствующих диапазонах варьирования параметров, было проведено исследование трех дополнительных точек, для которых значения указанных параметров выбирались (поочередно и совместно) равными азтах и а7тах соответственно. Во всех случаях значения критериев остались прежними или ухудшились.
Для проведения локального поиска (второй итерационной процедуры) вблизи оптимальной точки был сгенерирован набор из 8 точек, для которых были выбраны следующие диапазоны варьируемых параметров: 0,234 мм < а.1 < 0,324 мм, +0,045 < а2 < +0,055, 1,488 мм < а3 < 1,588 мм, 1,113 мм < гц < 1,213 мм, 3,263 мм < а5 < 3,363 мм, 2,125 мм < аб < 2,225 мм. Для выбранных точек значения критериев в большинстве случаев остались неизменными или незначительно ухудшились. Исключение составили 2 ТОЧКИ, ДЛЯ которых РтшУРщах = 0,34.
Таким образом, точка, выбранная после первой итерационной процедуры, признана оптимальной и для нее проведено имитационное моделирование в соответствии с методикой, описанной выше. Время фрикционного взаимодействия, принятое при моделировании, равно 390 часов, что соответствует пути трения 2800 км, а эквивалентное значение пробега машины
превышает заданный ресурс в 1,4 раза. Шаг, с которым проводили расчеты на имитационной модели и изменяли профиль уплотняющего элемента в зоне контакта, варьировался от 4 до 60 часов. Некоторые результаты, полученные в ходе имитационного моделирования, представлены на рис. 3-5. Для сравнения на рис. 3 приведена зависимость Дт(1:) не только для оптимальной конструкции, но и для конструкции с высоким значением критерия РЬ=8,2-10" Па-м и низким значением критерия Рть/Ртах=0,04.
Рис. 3. Зависимость массового износа уплот-
няющего элемента от времени фрикционного взаимодействия: 1 - оптимальная конструкция;
2 - конструкция со значениями критериев РЬ=8,2-103 Па-м, Р„ш,/Р„,ах=0,04
Как следует из полученных в ходе имитационного моделирования данных, для оптимальной точки наблюдается закономерное (вследствие массового износа и формоизменения на контактной поверхности) снижение значения контактных давлений, что отражается в снижении значений критериев РЬ до 5,6-10" Па-м и РпшЛтах ДО 0,67. Эпюра распределения контактного давления на уплотняемой поверхности (рис. 4) в целом сохраняет свой вид, так же как и профиль контактной поверхности уплотняющего элемента (рис. 5).
Р. МПа
2_5 -1-1-1-1-1-1-1-
0 0.2 0.4 0.6 0.8 1 1.2 1.4 у,мм
Рис. 4. Зависимость контактного давления на уплотняемой поверхности от осевой координаты
у для оптимальной конструкции: 1 - на этапе начального деформирования; 2 - через 390 часов эксплуатации (фрикционного взаимодействия)
Значения напряжений закономерно уменьшились и равны: <^1=5,7 МПа сте = 6,3 МПа, деформации в процессе формоизменения уплотняющего элемента и степень скручивания силового элемента незначительны. Массовый износ в отличие от конструкции со значениями критериев РЬ = 8,2-10" Па-м и Ртт/Ртах = 0,04 соответствует критериальному ограничению.
Рис. 5. Зависимость радиальной координаты х от осевой координаты у (профиль контактной поверхности уплотняющего элемента) для оптимальной конструкции: 1 - в начале эксплуатации; 2 - через 390 часов эксплуатации (фрикционного взаимодействия)
Выводы: использование методики оптимизации конструкции ГУ с применением метода имитационного моделирования, учетом формоизменения уплотняющего элемента в процессе трения, а также с применением критериев оптимизации, характеризующих контактное взаимодействие, позволило осуществить разработку конструкции герметизирующего устройства, обеспечивающего увеличение назначенного ресурса в 1,4 раза. Представленная методика оптимизации конструкционных параметров ГУ может быть использована при разработке аналогичных устройств (уплотнений).
Работа выполнена при поддержке гранта РФФИ 12-08-98022-р_сибиръ_а
СПИСОК ЛИТЕРАТУРЫ:
1. Кондаков, Л.А. Уплотнения и уплотнительная техника / Л. А. Кондаков, A.II. Голубев, В.Б. Оеандер и др. - М.: Машиностроение, 1986. 464 с.
2. Мамаев, O.A. Разработка и анализ напряженно-деформированного состояния элементов герметизирующих устройств с использованием метода конечных элементов / O.A. Мамаев, О.В. Кропотин, A.A. Байбарацкий II Омский научный вестник. 2010. №3(93). С. 31-35.
3. Кропотин, О.В. Разработка элементов герметизирующих устройств трибосистем и анализ их напряженно-деформированного состояния с использованием метода конечных элементов / О.В. Кропотин, Ю.К Машков, В.П. Пивоваров // Трение и износ. 2004. Т. 25, № 5. С. 461-465.
4. Кропотин, О.В. Методика прогнозирования надежности и ресурса подвижных герметизирующих устройств с учетом формоизменения элементов в процессе фрикционного взаимодействия // Известия Самарского научного центра РАН. 2012. Т. 14, 8. №4(5). С. 1253-1256.
5. Мамаев, О.А. Повышение надежности герметизирующих устройств ходовой части многоцелевых 9. гусеничных и колесных машин: дис. ... канд. техн. наук: 05.02.04, 05.02.01 / Мамаев Олег Алексеевич. -Омск, 2000. 137 с. 10.
6. Машков, Ю.К. Полимерные композиционные материалы в триботехнике / Ю.К. Машков, З.Н. Ое- 11. чар, М.Ю. Байбарацкая, О.А. Мамаев - М.: ООО «Недра-Бизнесцентр», 2004. 262 с.
7. Патент 2440527 Российская Федерация, МПК БШ 15/00. Герметизирующее устройство / Машков
А А.; заявитель и патентообладатель СибАДИ. № 2010119762/06; заявл.17.05.2010; опубл. 20.01.12, Бюл. № 2.
Соболь, И.М. Выбор оптимальных параметров в задачах со многими критериями / И. М. Соболь, Р. Б. Статников. -М.: Наука, 1981. 110 с. Statnikov, R. A. The Parameter Space Investigation Method Toolkit / R. Statnikov, A. Statnikov. - Artech House, Inc. 2011. 214 p.
Кондаков, ЛА. Уплотнения гидравлических систем /Л. А. Кондаков. -М.: Машиностроение, 1972.240 с. Weber, D. Wear behaviour of PTFE lip seals with different sealing edge designs, experiments and simulation / D. Weber, W. Haas // Sealing Technology. February 2007. P. 7-12.
DEVELOPMENT THE CONSTRUCTION OF SEAL HERMETICALLY DEVICE WITH OPTIMIZATION THE CONTACT INTERACTION PARAMETERS
©2013 O.V. Kropotin Omsk State Technical University
Procedure of optimization of constructive parameters of seal hermetically device in the connection, transferring a rotary motion, is considered.
Key words: optimization, seal hermetically device, forming
Oleg Kropotin, Candidate of Technical Sciences, Professor at the Physics Department. E-mail: [email protected]