УДК 66.049.6;661.682
РАЦИОНАЛЬНАЯ ПЕРЕРАБОТКА КВАРЦСОДЕРЖАЩЕГО СЫРЬЯ ФТОРИДНЫМ СПОСОБОМ
Л.П. Демьянова, А.С. Буйновский*, В.С. Римкевич, Ю.Н. Маловицкий
Институт геологии и природопользования ДВО РАН, г. Благовещенск *Северский технологический институт НИЯУ «МИФИ», г. Северск E-mail: [email protected]
Предложен фторидный способ рациональной переработки кварцсодержащего сырья под действием бифторида аммония. Описана кинетика процессов взаимодействия исходного сырья с бифторидом аммония, сублимации гексафторосиликата аммония и образования аморфного кремнезема. Определены константы скорости и энергии активации химических реакций.
Ключевые слова:
Кварцсодержащее сырье, бифторид аммония, фторидная переработка, взаимодействие, сублимация, гексафторосиликат аммония, аморфный кремнезем.
Key words:
Silicacontain raw materials, ammonium deefluoride, processing fluoridation, interaction, sublimation, ammonium hexafluorosilicate, silica amorphous.
За последние десятилетия наблюдается интенсивный рост исследований в области науки и техники, базирующейся на использовании различных форм кремнезема. Разнообразное применение нашли: селективные кремнеземные адсорбенты и поглотители; носители активной фазы в катализаторах; наполнители, в том числе армирующие волокна для полимерных систем; загустители дисперсионных сред, связующие для формовочных материалов; носители для газовой хроматографии и др. Большое развитие получило химическое модифицирование поверхности дисперсного аморфного кремнезема, что дает возможность направленно изменять адсорбционные свойства и технологические характеристики синтезируемых композиционных материалов.
Кварцевые пески являются перспективным сырьем для получения аморфного кремнезема, который используется в различных областях промышленности и пользуется большим спросом на отечественном рынке и зарубежном рынках. Поэтому изучение фторидных процессов рациональной переработки кварцсодержащего сырья с получением
чистой силикатной продукции являются актуальными.
Объектами исследования являлись формовочные кварцевые пески, полученные из кварцсодержащего сырья Чалганского месторождения (Амурская область). Среднее содержание оксидов в кварцевых песках по химическому анализу составляет (мас. %): 8Ю2 - 95,8; А1203 - 2,4; Бе203 - 0,2; ТЮ2 -
0,16; №20 - 0,13; К20 - 1,03; п.п.п. - 0,27. В опытах использовалась основная фракция +0,1...0,4 мм кварцевого формовочного песка (рис. 1, а) и ее измельченный материал до -0,0074 мм. Энергодисперсионный спектр подтверждает, что в исходном материале присутствуют примеси А1, Бе, Т1, К и На (рис. 1, б).
В качестве фторирующего компонента применяли бифторид аммония (НИ4НР2) марки «ч.д.а.» производства ОАО «Галоген» (г. Пермь). При температуре 25 °С НИ4ИР2 не представляет существенной экологической опасности, а при нагревании становится мощным фторирующим реагентом. Температура плавления бифторида аммония составляет 126,8 °С, температура разложения - 238 °С.
Рис. 1. Морфология зерен (а) и энергодисперсионный спектр (б) кварцевого песка Чалганского месторождения. (Аналитический центр минералого-геохимических исследований ИГиП ДВО РАН, аналитик: Т.Б. Макеева)
Исходные компоненты, взятые в заданных соотношениях, тщательно перемешивали и помещали в тефлоновые, стеклоуглеродные или платиновые контейнеры - чашки или тигли. Величина навесок составляла 5...40 г. Опыты проводили в электропечи специальной конструкции, где в рабочей безгради-ентной зоне находился универсальный никелевый реактор (марка никеля НП-2), в котором термически обрабатывали исходные смеси при заданных температурах в течении 0,25...4,5 ч с конденсацией и разделением летучих продуктов. Для сбора летучих продуктов применяли двухзонный конденсатор, изготовленный из нержавеющей стали марки 12Х18Н10Т, поглощение газообразного аммиака происходило в сосуде с водой. Синтез аморфного кремнезема осуществляли в гидролизном аппарате, выполненном из фторопласта, регенерация бифторида аммония происходила в лабораторном выпари-вателе-кристаллизаторе. Исходные образцы, промежуточные фазы и конечные продукты исследовали рентгенофазовым методом (ДРОН-3М, СиК[1-излу-чение), эмиссионного спектрального (спектрограф СТЭ-1) и химическими методами анализов.
Фторирование кварцевых песков осуществляется в две стадии: взаимодействие кварцевого песка с бифторидом аммония при температуре до 200 °С и сублимация гексафторосиликата аммония (ГФСА) при температурах выше 200 °С.
При фторировании кварцевого песка происходят следующие реакции взаимодействия основного компонента и примесей с бифторидом аммония: 2SiO2+7NH4HF2=2(NH4)3(SiF6)F+4H2O+NH3, (1)
SiO2+3NH4HF2=(NH4)2SiF6+2H2O+NH3, (2)
Al2O3+6NH4HF2=2(NH4)3AlF6+3H2O, (3)
Fe2O3+6NH4HF2=2(NH4)3FeF6+3H2O, (4)
TiO2+3NH4HF2=(NH4)2TiF6+2H2O+NH3, (5)
Na2O+NH4HF2=2NaF+H2O+NH3, (6)
K2O+NH4HF2=2KF+H2O+NH3. (7)
Для выяснения механизма взаимодействия кварцевого песка с бифторидом аммония был проведен синхронный термический анализ в интервале температур от 25 до 450 °С (рис. 2). Анализ проводили на приборе STA 449C Jupiter. Исследования осуществляли в потоке азота (50 см3/мин) со скоростью нагрева 2...5 град/мин. Образец помещали в платиновый тигель. В качестве первичного датчика использовали платино-платинородиевую термопару. Анализ проводили на измельченном исходном материале (1) и фракции +0,1...0,4 мм (2) кварцевого формовочного песка, образцы 1 и 2 соответственно.
На дифференциальной термогравиметрической зависимости 1 (рис. 2) фиксируются эндоэффекты с максимумами в точках 76,9, l3ü,4, 204,0 и 292,4 °С для образца смеси измельченного кварцевого песка с бифторидом аммония. Эндоффект при 292,4 °С наиболее глубокий и широкий, что объясняется протекающего при этой температуре процесса сублимации гексафторосиликата аммония.
Тепловой ПОТОК. м кВ/м г
Рис. 2. Термоаналитические зависимости (а) и (б) смеси кварцевого песка с ЫНцНГ-. (Анализ выполнен в ИГиП ДВО РАН, инж. исслед. А.С. Заева)
Величина уменьшения массы продукта в точке 76,9 °С, равная 13,93 %, соответствует расчетным значениям десорбированой воды по реакции (1) -13,87 %; удаление аммиака (точка 130,4 °С) по ТГ зависимости - 3,98 %, по расчету - 3,27 %. В начале взаимодействия (точка 100,9 °С) происходит образование фазы (КИ4)381Р6Р и ее разложение при повышении температуры до фазы (КИ4)281Р6 (точка 204,0 °С).
На основании термогравиметрического анализа можно констатировать, что образованию (КИ4)281Р6 предшествует образование фазы (КИ4)381Р6-Р, которая в точке 204,0 °С полностью переходит в (КИ4)281Р6. Последний начинает возгоняться уже при 209,6 °С, а его полная сублимация начинает преобладать при температуре выше 292,4 °С, что согласуется с данными, установленными ранее [1-3].
Примесные соединения А1, Ре, Т1, На, К, образуя фториды, реакции (3-7), остаются в нелетучем остатке. Остаточная масса по данным термического анализа составляет 3,60 %. Эта величина хорошо согласуется с данными, полученными расчетным путем - 3,30 %, реакция (2).
Кинетические исследования процесса взаимодействия кварцевых песков Чалганского месторождения с бифторидом аммония проводились в сушильном шкафу марки СНОЛ-3,5.5.3,5/5. Учитывается, что образование устойчивой фазы ГФСА кубической сингонии происходит при температуре выше 234,6 °С [4], а по результатам термогравиметрического анализа его сублимация начинается при 209,6 °С, все исследования проводили в интервале температур от 100 до 200 °С. Исходные компо-
ненты, взятые в соотношении 1:2,8, тщательно перемешивались и помещались в чашки из фторопласта или стеклоуглерода.
Зависимости степени образования продукта взаимодействия от продолжительности процесса при температуре от 100 до 200 °С представлены на рис. 3. Видно, что в расплаве бифторида аммония взаимодействие с кремнеземом протекает с максимальной скоростью при 200 °С, и за 3 ч степень его превращения во фторидные соли достигает 98 % от теоретически возможного.
(£, отн.ед.
Рис. 3. Зависимость степени превращения (а) кварцевого песка во фторидные соли от продолжительности процесса т при различных температурах
Очистку полученного продукта проводили с помощью сублимации на установке специальной конструкции в температурном интервале
300...450 °С. Летучий ГФСА улавливали и собирали в первой зоне конденсатора. Зависимость степени превращения ГФСА при различных температурах и времени выдержки представлена на рис. 4.
€(■> отн.ед.
0.4 Ц / ш
0.2 Л //
О Ж- 1-----1---т----1---т---1----т---1---т----1---1----1—
0 10 20 30 40 50 60
Т, мин.
Рис. 4. Зависимость степени превращения (а) ГФСА при различных температурах от времени выдержки т
Таким образом, в соответствии с результатами проведенных экспериментов, а также данными термического и рентгенофазового анализов, взаимодействие измельченного кварцевого песка с бифторидом аммония протекает в две стадии:
1 стадия - химическое взаимодействие с образованием фазы (КИ4)381Р6-Р (100,9 °С) по реакции
(1), и последующим ее разложением при повышении температуры до 209,6 °С с образованием фазы
(Ш4)381Р6-Р=(Ш4)281Р6+Ш3+ИР,
II стадия - сублимация начинается и протекает выше этой температуры, что также согласуется с ранее полученными данными [5]:
^^(тв.^^^^.).
Стадийность этих процессов можно отобразить следующим образом:
I стадия:
взаимодействие - 8Ю2 + НИ4ИР2 *=100’9 °С> (НИ4)381Р6Р(тв.), иц. (Ш4)281Р6 (тв.)
II стадия:
сублимация - (НИ4)281Р6 (тв.) *=щ6 °С> (НИ4)281Р6 (газ.)
На основании полученных экспериментальных данных были рассчитаны константы скоростей реакций и энергии активации (табл. 1) для I и II стадий.
Таблица 1. Значения констант скоростей кс и энергии активации Еа взаимодействие и сублимации летучего ГФСА при различных температурах
Процесс Т, °С кс, мин-1 Еа, кДж/моль
Взаимодействие кварцевого песка с бифторидом аммония О О О О 0 1_ПГ^0 0,00356 0,00539 0,00545 0,00641 12,6
Сублимация ГФСА 300 350 400 450 0,06593 0,09571 0,15980 0,17980 8,0
Найденные значения констант скорости стадий взаимодействия совпадают со значениями констант скорости фторирования кварца, содержащегося в циркониевом концентрате [6]. Однако энергия активации этой стадии (табл. 3) составляет 12,6 кДж/моль против 22,1 кДж/моль, установленной в работе [7]. По-видимому, на это повлияло различие в степени дисперсности исходного материала. Стадия сублимации также характеризуется низкой энергией активации (Е=8 кДж/моль) при относительно высокой константе скорости процесса (кс=0,1798 мин-1 при 450 °С) и должна лимитироваться диффузией молекул (НИ4)281Р6 к поверхности сублимации. Следовательно, увеличение поверхности (площади) сублимации и организация перемешивания (или «ворошения») проб должны оказывать положительные влияния на скорость процесса. Необходимо отметить, что дальнейшее повышение температуры не целесообразно, т. к. возрастает доля загрязнений десублимата материалом аппаратуры и повышаются энергозатраты.
Получение аморфного кремнезема проводили с помощью гидролиза отфильтрованного от 8Ю2,
10...25 % раствора ГФСА аммиачной водой при рИ=8...9:
(Ш4)281Р6+4Ш3+(п+2)И20=6Ш4Р+8Ю2-пИ20.
Установлено, что использование растворов (НИ4)281Р6 концентрацией менее 10 мас. % для по-
лучения аморфного кремнезема нецелесообразно, т. к. при таких концентрациях образуется трудно-фильтруемый гель SiO2. Повышение концентрации более 25 мас. % ведет к уменьшению выхода конечного продукта и ухудшению его качества. Используемый при гидролизе температурный интервал
30...90 °С обуславливается тем, что повышение температуры выше 90 °С ведет к интенсивному испарению раствора, а менее 25 °С, как показали исследования, получаем продукт худшего качества. Выдерживание полученной суспензии при 30...90 °С в течении 0,5... 1,5 ч способствует стабилизации системы и значительному улучшению ее фильтруемости.
Раствор после фильтрования кремнезема, содержащий NH4F, используют для регенерации бифторида аммония:
2NH4F=NH4HF2+NH3T, который можно повторно использовать для фторирования исходного сырья.
Данные рентгеновской фотоэлектронной спектроскопии (Анализ выполнен на приборе VG 220 i-XL ESCALAB (Thermo Fisher Scientific. 2000), Институт химии твердого тела, Национального научного центра Франции, г. Бордо, аналитик Christine Labrugere) показывают, что содержание присутствующих на поверхности образцов аморфного кремнезема элементов составляет (мас. %): 18,24 (Si), 47,50 (O), 4,45 (F), 29,81 (C).
Анализ данных свидетельствует о наличии на поверхности аморфного кремнезема фтора и углерода. Причем фтор присутствует в виде (NH4)2SiF6, а наличие углерода объясняется попаданием его из стеклоуглеродного тигля, используемого при обработке кварцевого песка бифторидом аммония. При использовании реактора из фторопласта содержание углерода на поверхности аморфного кремнезема снижается до 1,2 мас. %.
Площадь удельной поверхности кремнезема составила 98 м2/г, размер наночастиц порядка 20 нм, среднее значение размера пор около 3 нм. Полученный аморфный кремнезем характеризуется отсутствием микропор. Содержание примесей, в том числе красящих, по данным спектрального анализа не превысило 10-4мас. %.
Анализ технических характеристик аморфного кремнезема, полученного по фторидной технологии [8], в сравнении с характеристиками аморфных кремнеземов, выпускаемых промышленностью, показал, что он подходит по своим свойствам и областям применения к гидрофобному кремнезему AEROSIL R972 (табл. 2).
На основании результатов исследований предложена малоотходная технологическая схема рациональной переработки кварцсодержащего сырья с получением аморфного кремнезема (рис. 5). Получение аморфного кремнезема осуществляли из кварцевых песков с использованием бифторида аммония без применения специальной кислотоупорной аппаратуры при невысоких материало- и энергозатратах [9].
Таблица 2. Характеристики кремнеземов AEROSIL марки R 972 (I) и, полученного с помощью предлагаемой фторидной переработки из кварцевых песков Чалган-ского месторождения Амурской области (II)
Характеристики I II
Площадь удельной поверхности, м2/г 110+20 98
Плотность набивки, г/л 50 50
Потери при сушке, 2 ч при 105 °С, мас. % <0,5 <0,5
Содержание углерода, мас. % 0,6...1,2 1,2
pH 3,6...4,4 4
Рис. 5. Технологическая схема получения аморфного кремнезема из природных кварцевых песков Чалганского месторождения Приамурья
Выводы
1. Доказано, что фторидная переработка измельченного кварцевого песка и бифторида аммония при оптимальном стехиометрическом отношении 1:2,8 проходит в две стадии: 1) химическое взаимодействие с образованием фаз (НИ4)381Р6Р и (НИ4)281Р6 при температурах выше 100,9 °С; 2) сублимация (НИ4)281Р6 при температурах выше 209,6 °С. Механическое измельчение кварцевого песка до 100 мкм (исходный от 0,8 до 2,7 мм) активирует процесс получения промежуточного продукта и понижает температуру примерно на 50 °С.
2. Проведение процесса сублимации позволяет получить химически чистый (НИ4)281Р6, который обрабатывали аммиачной водой концентрацией 10...25 % при рН 8...9 и температуре 25 °С, с образованием аморфного кремнезема с содержанием примесей менее Н0-4 мас. % и размером наночастиц порядка 20 нм.
Работа выполнена при частичной финансовой поддержке ДВО РАН (грант 06-3А-02032) и РФФИ - ДВО РАН «Дальний Восток» (грант № 06-05-96041).
СПИСОК ЛИТЕРАТУРЫ
1. Мельниченко Е.И., Крысенко Г.Ф., Эпов Д.Г., Марусова Е.Ю. Термические свойства (НЫ4)2В1Р6 // Журнал неорганической химии. - 2004. - Т. 40. - № 12. - С. 1943-1947.
2. Куриленко Л.Н., Лапташ Н.М., Меркулов Е.Б., Глущенко В.Ю. О фторировании кремнийсодержащих минералов гидродифторидом аммония // Эл. журнал «Исследовано в России». -2002.- 130/021011. - С. 1465-1471.
3. Буйновский А.С., Гузеев В.В., Дьяченко А.Н. Исследование процесса фтороаммонийной переработки топазового концентрата // Известия вузов. Физика. - 2004. - Т. 47. - № 12. - С. 76-80.
4. Химическая энциклопедия. - Т. 1. - М.: Советская энциклопедия, 1988. - С. 282.
5. Рысс И.Г. Химия фтора и его неорганических соединений. -М.: ГНТИХЛ, 1965. - 401 с.
6. Крысенко Г.Ф. Фтороцирконаты аммония в синтезе фторидов и технологии циркония: автореф. ... канд. техн. наук. - Владивосток, 1999. - 24 с.
7. Левченко Л.М., Митькин В.Н., Шавинский Б.М., Шелудяко-ваЛ.А., Колесов Б.А. Новые углерод-фторуглеродные нано-композитные сорбенты для извлечения ионов натрия из водных растворов // INTERSIBРLU0RINE-2006: Труды II Меж-дунар. сибирского семинара. - Томск, 2006. - С. 153-162.
8. Демьянова Л.П., Трессо А., Бюзаре Ж. Ю., Мартино Ш., Лежьен К., Маловицкий Ю.Н., Римкевич В.С. Изучение свойств аморфного кремнезема, полученного фторидным методом // Неорганические материалы. - 2009. - Т. 45. - № 2. -С. 188-193.
9. Способ переработки кремнеземсодержащего сырья: пат. 2286947 Рос. Федерация. № 2004110338/15; заявл. 05.04.2004; опубл. 10.11.2006. Бюл. № 31. - 5 с.
Поступила 29.06.2010г.
УДК 666.291.3
ЗАКОНОМЕРНОСТИ ИЗМЕНЕНИЯ ПРЕДЕЛОВ РАСТВОРИМОСТИ ХРОМОФОРОВ В СИЛИКАТНЫХ СТРУКТУРАХ КЕРАМИЧЕСКИХ ПИГМЕНТОВ
М.Б. Седельникова
Томский политехнический университет E-mail: [email protected]
Изучены закономерности встраивания ионов-хромофоров в зависимости от их зарядности и ионных радиусов в кристаллическую структуру природных силикатов. Сравнение параметров координационных полиэдров показало, что ионы кобальта могут встраиваться в позиции кальция и магния в структурах волластонита и диопсида, ионы хрома могут встраиваться только в позиции магния. В структуре цеолита изоморфные замещения идут за счёт обменных катионов, располагающихся в каналах и пустотах каркасной структуры. Установлено, что введение 5...10 мас. % хромофоров в сформированную кристаллическую структуру не вызывает значительных искажений вмещающей кристаллической решётки.
Ключевые слова:
Природные силикаты, хромофор, ионный радиус, кристаллическая структура.
Key words:
Natural silicates, chromophore, ion radius, crystal structure.
Введение
Основным принципом, лежащим в основе научной классификации керамических пигментов, является структурный подход, в соответствии с которым свойства пигментов, особенности их синтеза и применения зависят от типа их кристаллической структуры. Впервые классифицировать пигменты по классам кристаллических решёток, а не по окраске и хромофору было предложено С. Г. Тумановым [1]. Данная структурная классификация керамических пигментов была дополнена и расширена благодаря работам И.В. Пища, который ввёл новую, расширенную классификацию керамических пигментов [2]. Согласно этой классификации на основе силикатов могут быть получены пигменты различных цветов с температурой синтеза
1000...1250 °С.
Предложенная классификация учитывает наличие модификаторов - щелочных и щелочноземель-
ных оксидов, особенности строения кристаллических решёток. На основе силикатов изолированной структуры получаются жаростойкие пигменты ярких цветов. В такой структуре возможны широкие изоморфные замещения отдельных оксидов, входящих в состав силикатов, на оксиды переходных металлов и образование твёрдых растворов. При синтезе пигментов на основе силикатов цепочечной структуры получаются низкотемпературные пигменты. Цветонесущая фаза в таких пигментах представлена метасиликатами переходных металлов, красящими оксидами и твёрдым раствором [Са, М§]^Ю3. Также низкотемпературные пигменты получаются на основе силикатов каркасной структуры (альбита, микроклина). Кристаллическая структура таких пигментов представлена окрашивающими комплексами d-элементов, микроклином, санидином. На основе слоистых силикатов получают жаропрочные муллитоподобной