УДК 536.12.34
РАСЧЕТ ТЕРМОДИНАМИЧЕСКИХ ПАРАМЕТРОВ (ИЗМЕНЕНИЕ ВНУТРЕННЕЙ ЭНЕРГИИ, ЭНЕРГИИ ГЕЛЬМГОЛЬЦА И ЭНЕРГИИ ГИББСА) ТЕРНАРНЫХ
СИСТЕМ (МЕТОДОМ ДСК)
МУРОДОВ САФИАЛОХ ДАВЛАТОВИЧ
преподаватель кафедры автодорожный БГУ имени Носира Хусрава.
РАУФОВ САЙВАЛИ ГУРЕЗОВИЧ
преподаватель кафедры автодорожный БГУ имени Носира Хусрава.
САИДОВ АБДУМАЛИК РИЗОЕВИЧ
преподаватель кафедры автодорожный БГУ имени Носира Хусрава.
ШЕРАФГАНИ НУРАЛИ ЗУЛФЗОДА
преподаватель кафедры общая физика БГУ имени Носира Хусрава.
Аннотация: В данной статье рассмотрено расчет термодинамических параметров (изменение внутренней энергии, энергии Гельмгольца и энергии Гиббса) тернарных систем, многослойной углеродной нанотрубки и кремниевой кислоты. При смещивание нанопорошка гидразина на кремниевые кислоты и многослойной углеродной нанотрубки мы получим новый уникальный материал с новыми теплофизическими, электрическими и механическими свойствами. С помощью данные сканирующего колориметра рассчитали изменение внутренней энергии, энергии Гельмгольца и энергии Гиббса. При нагревании тернарных систем максимально значение внутренней энергии, энергии Гельмгольца и энергии Гиббса появляется за счёт фазовых превращений, а при охлаждении максимальные значения внутренней энергии появляются за счёт максимального изменения температуры, т. е. в интервале температуры от 620К до 400 К процесс охлаждения идёт быстрее, чем в других интервалах.
Ключевые слова: внутренняя энергия, энергия Гельмгольц, энергия Гиббс термодинамический характеристик, нанопарашка гидразин, МСУНТ, кремниевая кислота.
ХИСОБ КАРДАНИ ПАРАМЕТРХ.ОИ ТЕРМОДИНАМИКИ (ТАРЙИРЁБИИ
ЭНЕРГИЯИ ДОХИЛЙ, ЭНЕРГИЯИ ГЕЛМГОЛС ВА ЭНЕРГИЯИ ГИББС) СИСТЕМАИ СЕЧУЗЪА (АЗ РУИ УСУЛИ КДС)
Аннататсия: Дар мацолаи пешниходгардида %исобкунии параметр%ои термодинамики ( тагйирёбии энергияи дохилй, эгергияи Гелмголс ва энергияи Гиббс) системаи сечанда, нанонайчщои бисёрцабатаи карбони ва кислотаи силитсий мавради тадцщ царор гирифтаст. Дар натицаи омехтакунии таъсири нанохокщои гидразин ба кислотаи силитсий ва нанонайчщои бисёрцабатаи карбони ба мо як навъи бех,тарини материалро бо хосиящои нави гармофизики, электрики ва механики медщад. Бо ёрии маълумощои калориметри сабткунанда тагйирёбии энергияи, дохилии эгергияи Гелмголс ва энергияи Гиббс %исобкарда шудааст.
Х,ангоми гарм кардани системаи сецузъа цимати максималии энергияи дохилй, эгергияи Гелмголс ва энергияи Гиббс аз %исоби гузариши фазави ба амал меояд. Х,ангоми хунукшавии система, цимати максималии энергияи дохтили, эгергияи Гелмголс ва энергияи Гиббс аз %исоби тагйирёбии максималии %арорат, яъне дар х,удущои аз 620К то 400К суръати хунукшави назар ба х,удущои дигар бени%оят калон мебошад, ба амал меояд..
Калидвожацо: энергияи дохили, эгергияи Гелмголс, энергияи Гиббс характеристикаи термодинамики, нанохокаи гидразин, ННКБ, кислотаи силисий.
CALCULATION OF THERMODYNAMIC PARAMETERS (CHANGES IN THE INTERNAL ENERGY, HELMHOLTZ ENERGY AND GIBBS ENERGY) OF TERNARY
SYSTEMS (BY THE DSC METHOD)
Abstract: This article discusses the calculation of thermodynamic parameters (change in internal energy, Helmholtz energy and Gibbs energy) of ternary systems, multilayer carbon nanotubes and silicic acid. By mixing hydrazine nanopowder with silicic acids and a multilayer carbon nanotube, we will get a new unique material with new thermal, electrical and mechanical properties. Using the scanning colorimeter data, the change in internal energy, Helmholtz energy, and Gibbs energy was calculated. When heating ternary systems, the maximum value of internal energy, Helmholtz energy and Gibbs energy appears due to phase transformations, and when cooling, the maximum values of internal energy appear due to the maximum change in temperature, i.e. in the temperature range from 620K to 400K, the cooling process is faster than in other intervals.
Key words: internal energy, Helmholtz energy, Gibbs energy, thermodynamic characteristics, hydrazine nanoparashock, MWCNT, silicic acid.
Изменение внутренней энергии исследованных трехкомпонентных смесей было экспериментально исследовано с помощью сканирующего калориметра [3, 4, 5], который подробно приведен во второй главе.
Как свидетельствуют все источники внутренняя энергия U - является энергией теплового движения микрочастиц всей системы (молекул, атомов и т. д.) и энергия взаимодействия между этими частицами. Внутренняя энергия не включает кинетическую энергию движения всей системы и потенциальную энергию системы во внешних областях.
Система внутренней энергии имеет уникальную функцию термоди-намического состояния. В любом случае система имеет четко определенную (нечеткую) энергию. Следовательно, внутренняя энергия не зависит от того, как система вошла в это состояние. При переходе из одного состояния в другое изменение определяемой внутренней энергии опирается только с разницей между значениями внутренних энергий этих состояний и не зависит от пути перехода [3, 4].
В результате исследования термодинамических свойств была получена формула для определения изменения внутренней энергии:
AU = ДН - PAV (1)
Используя уравнение Менделева-Клипперона уравнение (1) можно записать иначе: AU = ДН — m RAT (2)
Здесь ДН - изменение энтальпии в тернарной системе, m - масса смесей трехкомпонентных систем для каждого объекта, ц - молярная масса объекта, а ДТ -изменение температуры.
Чтобы ответить на вопрос о возможности того или иного процесса, о его направлении и глубине, необходимо повторно использовать второй закон термодинамики, который можно сформулировать следующим образом: каждый процесс, протекающий самопроизвольно, а также химическая реакция, идут в направлении уменьшения свободной энергии в системе (при постоянной температуре и давлении) или энергии Гельмгольца (при постоянных температуре и объеме).
В термодинамике энергию Гиббса называют свободной энергией, являющейся частью общей энергии системы, которую можно использовать для максимальной производительности.
Энергия Гиббса, то есть изобарно-изотермический потенциал или как называют свободная энтальпия - является одним из основных потенциалов термодинамической системы. Процесс изотермического равновесия без использования внешних сил может происходить только самопроизвольно в направлении уменьшения энергии Гиббса до
Impact Factor: SJIF 2020 - 5.497 ТСХШЧ^КМ НАУКИ
2021 - 5.81
достижения ее минимума, что соответствует термодинамическому состоянию равновесия системы [5].
Как уже знаем, изменение энергии Гиббса связано с энтальпией и энтропией, которое определяется следующим выражением:
AG = ДН- TAS . (3)
В этом случае изменение свободной энергии (энергия Гиббса) учитывает, как изменение энергоснабжения системы, так и степень изменения (спонтанность процесса). Поскольку энергия Гиббса является мерой процесса спонтанности, существуют следующие зависимости (физический смысл энергии Гиббса) между знаком AG для каждого процесса и его самопроизвольным течением (при постоянной температуре и давлении):
1. Если AG отрицательно (AG <0), процесс самопроизвольно продвигается вперед.
2. Когда AG равно нулю (AG = 0), процесс находится в равновесии.
3. Если AG положительно (AG> 0), прямой процесс не может происходить спонтанно. Однако обратная реакция происходит спонтанно [5, 6].
Термодинамический потенциал называется функцией состояния, уменьшение которой в обратимом процессе при константе, определенных параметров равно максимальной полезной работе.
Двумя наиболее важными термодинамическими потенциалами являются энергия Гельмгольца F (T, V) и энергия Гиббса G (T, p). В скобках указаны параметры, от которых зависит функция, являющейся термодинамическим потенциалом.
Энергия Гельмгольца является функцией, которая зависит от внутренней энергии (U), энтропии (S) и абсолютной температуры (T):
F = U - TS (4)
Изменение энергии Гельмгольца при постоянной температуре и объеме можно определить по уравнению:
AF = U - TAS (5)
AF - это значение, которое зависит только от начального и конечного состояния системы, то есть AF, а также другие рассматриваемые термодинамические величины являются функциями состояния.
Подобно энергии Гиббса, энергия Гельмгольца связана со спонтан-ностью процесса. Если предположить, что система изолирована, а объем и температура постоянны, то спонтанно будут происходить только те процессы, в которых F уменьшается.
Следовательно, если AF <0, процесс идет самопроизвольно, если AF > 0, процесс самопроизвольно продвигается в противоположном направлении, а если AF = 0, система находится в равновесии.
Для исследования термодинамических параметров (внутренней энергии, энергии Гиббса и Гельмгольца) тернарных систем использовались данные об удельной теплоемкости, энтальпии и энтропии, полученные методом сканирующего калориметра, и плотность, полученная методом пикноме-трического взвешивания. Результаты экспериментальных исследований внутренней энергии, энергии Гиббса, а также энергии Гельмгольца при нагреве и охлаждении приведены в таблицах 1. [3 , 7, 8].
Таблица 1. Изменение внутренней энергии, энергия Гиббса и Гельмгольца тернарных смесей - кремниевой кислоты, МСУНТ и нанопорошка гидразина пятого образца
При нагревании
Опыт №1 Опыт №2 Опыт №3
Т,К A U, кд AG, кд A F, кД Т,К A U, кд AG, кДж AF, кДж Т,К AU, кДж АС.кд AF, кДж
295 293 281
297 5 4 5 293 0 0 0 281 0 0 0
299 9 9 9 301 19 18 19 287 14 13 14
318 48 46 48 309 20 19 20 307 49 46 48
347 80 76 79 345 99 93 97 354 132 125 129
364 49 34 36 374 85 81 84 379 75 71 74
365 50 37 37 404 96 91 94 388 27 26 27
370 15 14 14 431 93 89 91 400 38 36 37
385 46 43 45 457 96 92 95 419 62 59 61
401 51 48 50 483 102 97 100 443 85 81 84
442 145 127 132 505 91 87 90 473 114 109 112
448 21 8 9 526 91 88 90 499 105 101 104
442 20 8 7 540 63 60 62 523 103 99 102
550 495 476 487 551 50 48 50 540 76 73 75
555 23 22 23 563 56 54 55 553 60 57 59
562 33 31 32 573 48 46 47 562 42 40 41
567 24 23 23 580 34 33 33 569 33 32 33
572 24 23 23 588 39 38 39 576 34 32 33
575 14 14 14 593 25 24 24 581 24 23 24
579 19 18 19 600 35 34 35 587 30 28 29
582 15 14 14 605 25 24 25 592 25 24 24
584 10 9 10 608 15 15 15 596 20 19 20
587 15 14 15 612 21 20 20 597 5 5 5
590 15 14 15 616 21 20 20 599 10 10 10
592 10 10 10 618 10 10 10 602 15 15 15
594 10 10 10 620 10 10 10 605 15 15 15
596 10 10 10 622 11 10 10 608 15 15 15
599 15 15 15 623 5 5 5 610 10 10 10
602 5 5 5 624 5 5 5 613 15 15 15
606 10 10 10 625 5 5 5 616 16 15 15
608 10 10 10 618 10 10 10
609 5 5 5 620 10 10 10
610 5 5 5 622 11 10 10
При охлаждении
609 -5 -5 -5 622 -16 -15 -16 616 -31 -30 -31
596 -65 -63 -64 600 -111 -107 -109 593 -114 -110 -113
565 -146 -140 -143 570 -142 -137 -140 563 -140 -135 -138
535 -133 -128 -131 531 -171 -164 -168 527 -156 -150 -154
505 -126 -121 -124 497 -137 -132 -135 498 -118 -113 -116
471 -129 -123 -127 470 -102 -98 -101 473 -95 -91 -94
445 -92 -88 -91 447 -82 -78 -81 451 -79 -76 -78
426 -65 -62 -64 429 -62 -59 -61 435 -56 -53 -55
409 -55 -53 -55 411 -59 -56 -58 415 -66 -63 -65
392 -52 -50 -51 397 -44 -42 -43 402 -41 -39 -41
379 -39 -37 -38 383 -42 -40 -42 390 -37 -35 -36
368 -32 -30 -31 372 -32 -31 -32 379 -33 -31 -32
357 -31 -29 -31 362 -29 -27 -28 371 -23 -22 -23
350 -19 -18 -19 356 -17 -16 -17 363 -23 -22 -23
341 -24 -23 -24 348 -22 -21 -22 355 -22 -21 -22
335 -16 -15 -16 341 -19 -18 -19 348 -19 -18 -19
330 -13 -12 -13 335 -16 -15 -16 337 -11 -10 -11
324 -16 -15 -15 329 -16 -15 -16 329 -8 -7 -8
320 -10 -10 -10 321 -10 -10 -10 324 -13 -12 -13
317 -8 -7 -7 314 -10 -9 -10 320 -10 -10 -10
313 -10 -9 -10 308 -7 -7 -7 314 -10 -9 -10
310 -7 -7 -7 304 -5 -5 -5 310 -5 -5 -5
307 -7 -7 -7 302 -2 -2 -2 306 -5 -5 -5
305 -5 -5 -5 300 -5 -5 -5 304 -5 -5 -5
302 -7 -7 -7 298 -5 -5 -5 302 -5 -5 -5
300 -5 -5 -5 296 -5 -4 -5 300 -2 -2 -2
297 -5 -4 -5 295 -2 -2 -2 297 -2 -2 -2
295 -5 -4 -5 295 -2 -2 -2
Рисунок 1. Зависимости изменения внутренней энергии (ряд 1, ряд 2, ряд 3), энергии Гиббса (ряд 4, ряд 5, ряд 6) и Гельмгольца (ряд 7, ряд 8, ряд 9) от температуры при нагревании тернарных систем под влиянием нанопорошка гидразина
Ди, AG, ДF, КДЖ
СП m
ТЕМПЕРАТУРА. Т, К
-100
01 01
* ? 2
I Ряд1 ■ Ряд2 ■ Ряд3
Ряд4 ■ РядБ ■ Ряд6 I Ряд7 ■ Ряд8 ■ Ряд9
Рисунок 2. Зависимости изменения внутренней энергии (ряд 1, ряд 2, ряд 3), энергии Гиббса (ряд 4, ряд 5, ряд 6) и Гельмгольца (ряд 7, ряд 8, ряд 9) от температуры при охлаждении тернарных систем под влияние нанопорошка гидразина
Состояние термодинамического равновесия очень постоянно. Чтобы система стала неуравновешенной, необходимо выявить некоторые внешние факторы (Р, Т, накопление и т. д.).
Обосновывая иной закон термодинамики, видим, как внутренняя энергия зависит от объема [8, 10]. Тем не менее очевидно, что взаимное расстояние между молекулами изменяется, то есть возможная энергия взаимодействия молекул при изменении объема того же количества молекул. В понятие внутренней энергии входит также внутренняя энергия молекул: энергия возбужденных электронов, энергия возбуждения ядра, энергия вихря атомов асимметричных молекул и т.д. [9]. В механике энергия в установившемся состоянии при потенциале наименьшая, а для энтропии, наоборот, энтропия усиливается во всех процессах.
О введении потенциалов Гиббса и Гельмгольца в термодинамические процессы говорит происходящее воздействие химического явления на тело с целью уменьшения потенциала Гиббса и Гельмгольца. Стабильность равновесия в системе появляется при минимуме энергии Гиббса или энергии Гельмгольца [9], и, так как свободная энергия входит с противоположным знаком (-АР), необходимо подчеркнуть, что стабильное равновесие, как химического, так и термодинамического процессов зарождаются при максимальной энтропии, причина этому свободная энергия с обратным знаком (-АБ), и она будет минимальной.
Как видно из таблиц 1, во всех экспериментах при нагревании и изучении объекта, система движется в обратном направлении, то есть АБ > 0, а во всех экспериментах с объектами тернарных систем при остывании процесс самопроизвольно движется в прямом направлении (А Б <0).
При таких условиях изменения свободной энергии и энтальпии будут связаны с разложением гидразина на аммиак, азот и водород. Данное обстоятельство будет зависеть лишь от количества аммиака, образованного из 1 моль гидразина. Химические реакции, образующих огромное количество аммиака, при условии термодинамики слабее. Теоретически самая друже-любная реакция - это
Н2 + ^Н4 ^ 2NH3 , (6)
что свидетельствует об усилении нестабильности гидразина в присутствии водорода. В отсутствие водорода реакция термодинамики более благоприятна.
3^Н4 ^ 4NH3 + N (7)
Impact Factor: SJIF 2020 - 5.497 ТСХШЧ^КМ НАУКИ
2021 - 5.81
Общее уравнение реакции разложения гидразина на аммиак, азот и водород выглядит следующим образом:
3N2H4 = 4(1 - x)NH3 + (1 + 2x)N2 + 6хН2... (8)
Если разложение аммиака доходит до конца, уравнение (8) сводится к уравнению. N2^ = ^ + 2^. (3.11)
Экспериментально наблюдаемая реакция, более полно соответствующая уравнению (7), представляет собой реакцию термического разложения твердого гидразина до оксида кремния в интервале температур от 250 до 310 °C, то есть реакция первого порядка, которая называется гидрогеном реакции [10].
На графиках 1 и в таблицах 1 видно, что при нагревании исследуемой системы в первых опытах во всех образцах фиксируется наибольшее значение термодинамических параметров тернарных смесей (внутренняя энергия, энергия Гиббса и энергия Гельмгольца). Это связано с изменением агрегатного состояния вещества, то есть с фазовым превращением. Поскольку гидразин плавится при температуре 2°С и кипит при температуре 113,5°, а температура разрушения многослойных углеродных нанотрубок составляет 500-600°, все новые превращения являются новыми из-за повреждения нанопорошка гидразина кремниевой кислоты и МСУНТ. В двух других экспериментах при всех концентрациях в определенном диапазоне температур термоди-намические параметры трехкомпонентных смесей (внутренняя энергия, энергия Гиббса и энергия Гельмгольца) выше. Это можно объяснить тем, что в этих диапазонах во всех концентрациях скорость нагрева выше, чем в других диапазонах.
Расчеты термодинамических параметров трехкомпонентных смесей (внутренняя энергия, энергия Гиббса и энергия Гельмгольца) в трехком-понентной системе при охлаждении приведены в таблицах 1.
Из рисунков 2, видно, что при остывании смесей тернарных систем изменение термодинамических параметров (внутренней энергии, энергии Гиббса и энергии Гельмгольца) быстро увеличивается, а потом постепенно и медленно уменьшается. Из таблицы видно, что при остывании от 600 K до 450 K скорость охлаждения выше, чем в других диапазонах, что является причиной сильного изменения температуры и это приводит к сильному изменению параметров термодинамики.
При остывании состояния кристаллизации не наблюдается. Это можно объяснить тем, что гидразин полностью испаряется при температуре выше 600К.
Из графиков видно, что максимальное значение внутренней энергии проявляется в диапазоне температур от 600К до 450К. Это связано с максимальным изменением температуры.
ЛИТЕРАТУРА
1. Сафаров, Ш.Р. Влияние нанопорошка гидразина на изменение внутренней энергии тернарной системы многослойной углеродной нано-трубки и кремниевой кислоты / Х.Х. Ойматова, Ш.Р. Сафаров, С.С. Рафиев, Дж.Ф. Собиров, М.М. Сафаров // Вестник Филиала МГУ имени М.В. Ломоносова в г. Душанбе (научный журнал) / Серия естественных наук. -Душанбе, 2018. -№3(2). - С.83-90.
2. Сафаров, Ш.Р. Влияние нанопорошка гидразина на изменение энергии Гиббса в тернарных системах / Х.Х. Ойматова, Ш.Р. Сафаров, Дж.Ф. Собиров, С.С. Рафиев, М.М. Сафаров // Инновация. Наука. Образование. (научный журнал).-Масква, 2021.- №27. -С.917-925.
3. Сафаров, Ш.Р. Расчет одного из основных термодинамических потенциалов (энергия Гельмгольца) тернарных систем / Ш.Р. Сафаров, Х.Х. Ойматова, С.С. Рафиев, М.М. Сафаров, М.А. Файзова // Научные тенденции: Вопросы точных и технических наук (Сборник научных трудов).- Санкт-Петербург, 2020.- С.19-21.
4. Учебные материалы. Энергия Гиббса. https://works.doklad.ru.
5. Кубо, Р. Термодинамика./Кубо Р. // Мир.- М.: - 1970. - 304 с.
6. Сафаров, Ш.Р. Влияние нанопорошка гидразина на изменение энтальпии тернарных систем. /Ш.Р. Сафаров, Х.Х. Ойматова, М.А. Зарипова, М.М. Сафаров, М.А. Файзова // Вестник Бохтарского государс-твенного университета имени Носира Хусрава (научный журнал). - Бохтар, 2020. - №2/2(75). - С.43-49.
7. Сафаров, Ш.Р. Влияние нанопорошка гидразина на изменение энтропии, удельной теплоты плавления тернарных систем / Ш.Р. Сафаров, Х.Х. Ойматова, Дж.Ф. Собиров, М.М. Сафаров, С.С. Рафиев, К. Мухамадалии, Д.А. Назирмадов, Б.А.Тимеркаев, А.Г. Мирзомамадов, С.С. Абдуназаров, З.К. Хусайнов // Материалы Международной научной конференции «Современные проблемы естественных и гуманитарных наук и их роль в укреплении научных связей между странами». - Душанбе, 2019.- С. 109-113.
8. Сафаров, М.М. Теплоёмкость порошка кремниевых кислот в зависимости от температуры: материалы международной научно-практи-ческой конференции «Независимость - основа развития энергетики страны» / М.М. Сафаров, М.А. Абдуллоев, Х.А. Зоиров и др. - Бохтар.: 2017-С.102-108.
9. Глаголев, К.В., Морозов А.Н. Физическая термодинамика. - М.: Изд-во МГТУ им. Н.Э. Баумана, 2003. 272 с.
10. Audrieth, L. F. Audrieth L. F., Betty Ackerson Ogg. The chemistry of hydrazine/ New York.- 1951.- p. 6, 84-85.