УДК 622.23.054:51-74(51-37) © А.Б. Жабин, А.В. Поляков, Е.А. Аверин, Ю.Н. Линник, В.Ю. Линник, 2019
Пути развития теории разрушения углей и горных пород резцовым инструментом
DOI: http://dx.doi.org/10.18796/0041-5790-2019-9-24-28 -
Угольная промышленность России в настоящее время нуждается в техническом и технологическом перевооружении, опирающемся на новейшие достижения науки. Одной из важнейших проблем является совершенствование технических средств разрушения углей и вмещающих горных пород, которые представлены очистными и проходческими комбайнами, оснащенными тангенциальными резцами в качестве породоразрушающего инструмента. Для ее успешного решения необходимо иметь достаточно точные и надежные расчетные методы для определения усилий, возникающих на резцах в процессе их взаимодействия с горным массивом. Использование в расчетах нагруженности механического инструмента классических прочностных критериев, таких как пределы прочности горных пород на сжатие, растяжение, контактная прочность и другое, не всегда отражает реальные процессы разрушения. Современные представления о разрушении материалов базируются на положениях механики разрушения, рассматривающей разрушение как процесс роста трещины сучетом напряженного состояния в ее вершине. Распространение расчетных методов, основанных на данных представлениях, сдерживается недостаточным пониманием большинством специалистов, какими методами и как следует пользоваться при расчетах нагруженности резцового инструмента и определении необходимых для расчета значений параметров. Представленная статья направлена на устранение указанного пробела. Ключевые слова:разрушение, горные породы, уголь, вязкость разрушения, трещиностойкость, резец, механика разрушения, метод расчета, развитие теории.
ВВЕДЕНИЕ
Угольная промышленность является одной из самых механизированных (уровень механизации составляет порядка 97% [1]) среди отраслей, относящихся к горному делу. При этом качество технических средств, применяемых на предприятиях угольной промышленности, не всегда соответствует постоянно повышающимся требованиям, предъявляемым по причинам усложнения условий ведения работ и ужесточения социальных и экологических норм [2]. Как показано в работах [1, 3], для повышения эффективности разработки угольных месторождений России (повышения производительности при одновременном снижении себестоимости) необходимо произвести техническое и технологическое перевооружение угольных шахт, основанное на новейших научных достижениях.
На данный момент разрушение углей и горных пород в процессе эксплуатации угольных предприятий осуществляется при помощи очистных (их также называют добычными) и проходческих комбайнов. В качестве рабочего инструмента они оснащаются тангенциальными (поворотными, коническими, круглыми) резцами. Определе-
ЖАБИН А.Б.
Доктор техн. наук, действительный член Академии горных наук (АГН),
президент Тульского регионального отделения межрегиональной общественной организации Академия горных наук (ТРО МОО АГН), профессор Тульского государственного университета, 300012, г. Тула, Россия, e-mail: [email protected]
ПОЛЯКОВ А.В.
Доктор техн. наук, академический советник АГН, ТРО МОО АГН, профессор Тульского государственного университета, 300012, г. Тула, Россия, e-mail: [email protected]
АВЕРИН Е.А.
Канд. техн. наук, инженер-конструктор ООО «Скуратовский опытно-экспериментальный завод», 300911, г. Тула, Россия, e-mail: [email protected]
ЛИННИК Ю.Н.
Доктор техн. наук, профессор Государственного университета управления, 109542, г. Москва, Россия, e-mail: [email protected]
ЛИННИК В.Ю.
Доктор экон. наук, доцент Государственного университета управления, 109542, г. Москва, Россия, e-mail: [email protected]
ние усилии, возникающих на резцах в процессе их взаимодействия с разрушаемой средой, является важнейшей задачей для проектирования эффективных горных машин. Этой задаче посвящено множество исследований.
Анализ сложившегося на данный момент состояния теории разрушения углей, горных пород и калийных солей резцовым инструментом был выполнен нами в статье [4]. Основные выводы заключаются в следующем. Можно выделить два теоретических подхода к решению задачи определения усилий на резце: один распространен в западных странах, другой - в бывших странах социалистического блока, включая Россию. Западный подход основывается на аналитической модели резания угля, предложенной Эвансом [5], и заключается в ее развитии путем расширения области применения на другие типы горных пород и включения эмпирических коэффициентов и неучтенных ранее параметров процесса резания. Второй подход, разработанный в СССР Л.И. Бароном и его учениками, основывается на результатах обширных экспериментов. На его базе создан ОСТ 12.44.197-81.
На основании проведенного анализа параметры, определяющие нагруженность резцового инструмента, можно разделить на несколько групп: конструктивные особенности инструмента, его текущее состояние (в первую очередь степень изношенности) и ориентация в пространстве, режимные параметры и параметры процесса резания, а также физико-механические свойства горных пород. Причем с трудностью корректного учета физико-механических свойств горных пород большинством исследователей связывается недостаточная точность расчетных методов, основанных на указанных подходах. Применяемые в настоящее время прочностные показатели (пределы прочности на сжатие стсж и растяжение стр в западных исследованиях и контактная прочность Рк - в отечественных) исходят из предположения об относительной однородности и ненарушенности горного массива, в то время как горные породы земной коры разбиты густой сетью трещин разнообразного генезиса, размеров, ширины, возраста, морфологии и др. Специалистов по разрушению горных пород механическими способами трещиноватость пород интересует с точки зрения ее роли как ослабляющего фактора, подлежащего учету при выборе оптимальных средств разрушения и обосновании их параметров [6].
ПЕРСПЕКТИВНЫЕ МЕТОДЫ ОПРЕДЕЛЕНИЯ
НАГРУЖЕННОСТИ РЕЗЦОВОГО ИНСТРУМЕНТА
ПРИ РАЗРУШЕНИИ УГЛЕЙ И ГОРНЫХ ПОРОД
Наибольший интерес представляет максимальное значение нагрузки, соответствующее моменту перехода от устойчивого роста трещины к неустойчивому. Этот момент характеризуется достижением значения вязкости разрушения КСС, являющейся прочностной характеристикой материала и имеющей размерность Н/мм3/2 (часто также используют МПа/ммш). Направление исследований в области разработки методов расчета усилий, действующих на тангенциальный резец в процессе разрушения углей и горных пород, на данный момент стоит считать только лишь зарождающимся. Как и у классических расчетных методов, их развитие происходит по двум направлениям: аналитические решения и получение эмпирических зависимостей.
Аналитический метод расчета с учетом распространения трещины Гриффитса в упругой среде описывается следующим образом [7]:
Р^, = 2
Хап а
пЕ ■ (1 -V2)
3 ( 3К2Ю Хап у
к ■0088
■ И3
(1)
где Е - модуль упругости (модуль Юнга), V - коэффициент Пуассона, а - половина угла конусности режущей головки резца, у - угол развала борозды резания в ее продольной плоскости (по направлению резания), 8 - полуугол развала борозды резания в ее поперечном сечении, к - коэффициент, учитывающий влияние формы режущей головки резца и угла резания, к - глубина резания.
Коэффициент к в формуле (1) на данный момент не имеет аналитического обоснования и должен определяться на основании экспериментов. Значение величины 8, согласно исследованиям Эванса [8], для предварительных расчетов можно принять равным 60 градусам, что подтверждается экспериментально [9]. Аналитическое выражение для определения величины у является громоздким и неудобным в применении вследствие необходимости решать сложное уравнение, включающее тригонометрические и степенные функции, а также многоуровневые дроби. Проще воспользоваться следующей эмпирической зависимостью (индекс детерминации Я2 = 0,994): у = 48,87 + 0,526В + 0,224г|. (2)
В формуле (2) значение величины ц = (а + у)/2, где у - задний угол резания, а В = стсж /стр.
Согласно данным работы [7], предложенная формула (1) оказалась более точной в сравнении с классическим методом расчета Эванса при разрушении в лабораторных условиях хромита, троны, ангидрита, песчаника, туфа. Индекс детерминации Я2 при сопоставлении расчетных и экспериментальных данных по всем породам для нее составил 0,81 против 0,5 у классической теории.
По формуле (1) определяется суммарная нагрузка на резце в процессе резания углей и горных пород. Однако в отечественной практике проектирования очистных и проходческих горных машин принято использовать отдельные составляющие: усилие резание и усилие подачи (иногда еще рассматривают боковое усилие, то есть усилие отжатия от забоя). Эмпирическая модель для определения усилий резания и подачи при разрушении углей тангенциальными резцами с использованием в качестве показателя прочности вязкости разрушения представлена в работе [10]. Согласно этой модели усилие резания определяется как:
Рг = 18,7-10-3 й0'34а0'85й0'37КюгК,КвКОТ, (3)
где ё - диаметр керна (твердосплавной вставки резца), мм; / - шаг резания, мм; К1 - коэффициент влияния шага резания; Кр - коэффициент, учитывающий влияние угла разворота резца; КОТ - коэффициент отжима угольного пласта. Усилие подачи:
Р¥ = Р2 Х кп, (4)
где кп - коэффициент, характеризующий отношение усилия подачи к усилию резания на остром резце. Для углей можно принять кп = 0,5...0,7 [11].
Коэффициенты К1 и КОТ определяются по формулам ОСТ 12.44.258-84.
Влияние угла разворота резца р можно учесть, используя выражение
2
4
K = 1 - 0,0244ß.
(5)
Основной причиной, препятствующей развитию представленных расчетных методов и внедрению для использования на практике, является недостаточное понимание многими специалистами показателя вязкости разрушения и методов ее определения.
ОПРЕДЕЛЕНИЕ ВЯЗКОСТИ РАЗРУШЕНИЯ
Вязкость разрушения K¡C является прочностной характеристикой материала, которую можно определить экспериментально. Однако если для металлов методы определения вязкости разрушения существуют достаточно давно, широко апробированы и имеют объективные критерии оценки достоверности полученных результатов (например, ASTM E1820-17 в США и англоязычных странах или ГОСТ 25.506-85 в России), то применительно к горным породам этого сказать пока нельзя. Большинство способов для определения вязкости разрушения горных пород имеет технологические сложности в связи с завышенными (зачастую недостижимыми) требованиями к качеству образцов и методике нагружения, что в отношении такого изначально дефектного материала, как горная порода, представляется неоправданным.
Для определения вязкости разрушения KCC предложено много методик испытаний. Среди них, например, SCB (semi-circular bend) или HDB (трехточечный изгиб полудиска) [12], SCB (Semi-Circular Bend test) с щелью [13], BD (Бразильский диск) [14], RCR (радиальное нагружение кольца) [15]. Международным обществом геомеханики (англ. ISRM - International Society for Rock Mechanics) рекомендованы к применению три метода [16]:
- SR (Short Rod specimen method) - растяжение призмы с боковым надрезом (рис. 1, а);
- CB (Chevron Bend specimen method) или S3PBI - трехточечный изгиб балки прямоугольного сечения (см. рис. 1, б);
- CCNBD (Cracked Chevron Notched Brazilian Disc) или NBDI - бразильский диск с центральной трещиной по направлению раскалывания (см. рис. 1, в).
Экспериментальные данные определения характеристик трещиностойкости горных пород при испытаниях образцов с использованием перечисленных методов показывают, что применительно к горным породам существуют возможности смягчения требований к подготовке образцов и выбору метода, наиболее подходящего для исследования той или иной частной характеристики. Из всех перечисленных в данном разделе методов определения вязкости разрушения нам представляется возможным выделить и рекомендовать к использованию метод «SR» для испытания цилиндрических образцов с шевронным пазом. Он позволяет исследовать эффект анизотропии материала благодаря
Рис. 2. Геометрические размеры цилиндрического образца: D - диаметр образца; W- длина образца; в - центральный угол шеврона; a0 - расстояние от торца до вершины шеврона; W- a0 - длина шеврона; t - толщина паза (щели); а - длина трещины; а1 - максимальная глубина стороны шеврона
Fig. 2. The geometric dimensions of the cylindrical sample: D is the diameter of the sample; W is the length of the sample; в is the central angle of the chevron; a0 is the distance from the end to the top of the chevron; W - a0 - chevron length; t is the thickness of the groove (gap); a is the length of the crack; а1 - the maximum depth of the chevron side
направленному на гружен ию. В ка честве образца был п ред-ложен правильный (круглый) цилиндр (рис. 2).
Такая форма образца, по мнению разработчика метода, позволяет более детально проследить развитие искусственной трещины. Отметим, что в условиях подземных горных работ наиболее доступным способом получения образцов из глубины массива является выбуривание керна, что естественным образом предопределяет форму образца. Соответственно, наиболее целесообразным предста вляется испол ьзование образцов цили ндрической либо дисковидной формы. В образце вырезаны две узкие щели (паза) таким образом, что две половинки образца остаются соединенными треугольной связкой (шевроном).
Такой пропил в образцах горных пород эффективно имитирует трещину, и для определения вязкости разрушения не требуется заканчивать его реальной трещиной, проращенной каким-либо способом. Это связано с первоначально дефектной структурой горных пород.
Растягивающая нагрузка прикладывается к торцам образца (к двум его частям) - это первый этап нагружения. При увеличении нагрузки до определенного уровня инициируется рост трещины на вершине шеврона. Геометрия испытываемого образца такова, что трещина растет стабильно даже в очень хрупких материалах. В процессе испытаний происходит запись величины нагрузки и соответствующей ей длины трещины.
Вязкость разрушения, согласно методу <6Г> для типового образца, рассчитывается по формулам, которые предлагают ^М. На первом этапе рассчитывают коэффициент интенсивности напряжений Кск по формуле:
KCR = Q • 24
F.
D1
(6)
где - максимальная нагрузка; Б - диаметр образца; сК - поправочный коэффициент учитывает изменение размера образца.
Рис. 3. Диаграмма для определения поправочного коэффициента: F - нагрузка, действующая на образце в процессе испытания; CMOD (crack mouth opening displacement) - величина раскрытия трещины; А, B, C и D - характерные точки, соответствующие циклам нагружения образца
Fig. 3. Diagram for determining the correction factor: F- load acting on the sample during the test; CMOD (crackmouth opening displacement) - crack opening amount; A, B, C and D are characteristic points corresponding to the loading cycles of the sample
Коэффициент C вычисляется по выражению
С. =
1 - +M^L - опш
D
D
(7)
где АШ- изменение длины образца; Аа0 - изменение положения вершины шеврона; А8 - изменение центрального угла шеврона.
На втором этапе рассчитывается поправочный коэффициент и корректируется вязкость разрушения по формуле (8) с учетом диаграммы испытания образцов (рис. 3):
KSR -
1 + p T-P
к
(8)
Ах0
где р = —
Ах
ЗАКЛЮЧЕНИЕ
Теория разрушения углей и горных пород резцовым инструментом развивается с учетом предположения, что в качестве основного инструмента используются тангенциальные резцы. Несмотря на продолжающееся уточнение и доработку существующих методов расчета их на-груженности в процессе взаимодействия с горным массивом путем учета все большего числа влияющих факторов, все более очевидно, что применение этих методов не всегда обеспечивает требуемую точность. Основной причиной этого является использование в качестве показателей физико-механических свойств величин, не учитывающих наличие множества трещин в горном массиве.
В настоящее время получают распространение (пока только в научных кругах) расчетные методы, основанные на использовании прочностного показателя вязкости разрушения. Причем разрабатываются как аналитические (это направление больше характерно для зарубежных исследований), так и эмпирические (по этому пути идут отечественные ученые) методы. Каждый из этих путей разви-
тия имеет недостатки. Так, аналитические методы сложны в применении, несмотря на существенные упрощения и допущения, необходимые для построения теоретических моделей, лежащих в их основе. Эмпирические же методы имеют ограниченную область применения, сводящуюся к тем исходным условиям, для которых они были получены.
Ш и рокому пра ктическому распростра нению, кроме указанных недостатков, препятствует также недостаточная осведомленность специалистов-практиков о показателе вязкости-разрушения и надежных методах его определения для горных пород. На основании проведенного анализа нами рекомендуется применять метод «SR», рекомендуемый также в качестве одного из основных способов определения вязкости разрушения горных пород Международным обществом геомеханики ISRM.
Список литературы
1. Афанасьев В.Я., Линник Ю.Н., Линник В.Ю. Показатели работы угольной промышленности России в области механизации очистных работ // Уголь. 2011. № 6. С. 44-46. URL: http://www.ugolinfo.ru/Free/062011.pdf (дата обращения: 15.08.2019).
2. Analysis of operation of powered longwall systems in mines of SUEK-Kuzbass / A.V. Stebnev, S.G. Mukhortikov, D.A. Zadkov, V.V. Gabov // Eurasian Mining. 2017. N 2. P. 28-32.
3. Жабин А.Б., Поляков А.В., Аверин Е.А. Краткий анализ проблем и путей решения при обеспечении горнодобывающего предприятия современными техническими средствами ведения горных работ // Уголь. 2018. № 1. С. 13-16. DOI: 10.18796/0041-5790-2018-1-13-16. URL: http://www. ugolinfo.ru/Free/012018.pdf (дата обращения: 15.08.2019).
4. Состояние научных исследований в области разрушения горных пород резцовым инструментом на рубеже веков / А.Б. Жабин, А.В. Поляков, Е.А. Аверин, В.И. Сары-чев // Известия ТулГУ. Науки о Земле. 2018. № 1. С. 230-247.
5. Evans I. A theory of the basic mechanics of coal ploughing // Proceedings of the international symposium on mining research. 1962. Vol. 2. P. 761-768.
6. Жабин А.Б., Аверин Е.А., Поляков А.В. Интегральная оценка сложности проекта проходки горных выработок // Уголь. 2017. № 11. С. 60-63. DOI: 10.18796/0041-5790-201711 -60-63. URL: http://www.ugolinfo.ru/Free/112017.pdf (дата обращения: 15.08.2019).
7. Kuidong G., Du Changlong J.H., Songyong L. A theoretical model for predicting the Peak Cutting Force of conical picks // Frattura ed Integrita Strutturale: Annals 2014. 2014. Vol. 8. P. 43-52. DOI: 10.3221/IGF-ESIS.27.06.
8. Evans I. A theory of the cutting force for point-attack picks // International Journal of Mining Engineering. 1984. Vol. 2. N 1. P. 63-71. DOI: 10.1007/BF00880858.
9. Dominant rock properties affecting the performance of conical picks and the comparison of some experimental and theoretical results / N. Bilgin, M.A. Demircin, H. Copur et al. // International Journal of Rock Mechanics and Mining Sciences. 2006. Vol. 43. N 1. P. 139-156. DOI: 10.1016/j. ijrmms.2005.04.009.
10. Применение методов механики разрушения для расчета нагрузок, действующих на резцы горных машин для добычи угля / А.Б. Жабин, И.М. Лавит, П.Н. Чеботарев, А.В. Поляков // Горное оборудование и электромеханика. 2017. № 3. С. 28-34.
11. Позин Е.З., Меламед В.З., Тон В.В. Разрушение углей выемочными машинами. М.: Недра, 1984. 288 с.
12. Chong K.P., Kuruppu M.D. New specimen for fracture toughness determination for rock and other materials // International Journal of Fracture. 1984. Vol. 26. N 2. P. 59-62. DOI: 10.1007/BF01157555.
13. Kuruppu M.D. Fracture toughness measurement using chevron notched semi-circular bend specimen // International journal of fracture. 1997. Vol. 86. N 4. P. L33-L38.
14. Guo H., Aziz N.I., Schmidt L.C. Rock fracture-toughness determination by the Brazilian test // Engineering Geology. 1993. Vol. 33. N 3. P. 177-188. DOI: 10.1016/0013-7952(93)90056-1.
15. Shiryaev A., Kotkis A.M. Methods for determining fracture toughness of brittle porous materials // Industrial Laboratory. 1982. N 48. P. 917-918.
16. Ulusay R. (ed.). The ISRM suggested methods for rock characterization, testing and monitoring: 2007-2014. Springer, 2014. 293 p. DOI: 10.1007/978-3-319-07713-0.
COAL MINING EQUIPMENT
UDC 622.23.054:51-74(51-37) © A.B. Zhabin, A.V. Polyakov, E.A. Averin, Yu.N. Linnik, V.Yu. Linnik, 2019 ISSN 0041-5790 (Print) • ISSN 2412-8333 (Online) • Ugol' - Russian Coal Journal, 2019, № 9, pp. 24-28 DOI: http://dx.doi.org/10.18796/0041-5790-2019-9-24-28
Title
ways of development for the theory of rock and coal destruction by picks
Authors
Zhabin A.B.1 2, Polyakov A.V.1, 2, Averin E.A.3, Linnik Yu.N.4, Linnik V.Yu.4
' Tula Regional Department of the Academy of Mining Sciences, Tula, 300028, Russian Federation
2 Tula State University, Tula, 300012, Russian Federation
3 "SOEZ" LLC, Tula, 300911, Russian Federation
4 State University of Management, Moscow, 109542, Russian Federation
Authors' Information
Zhabin A.B., Doctor of Engineering Sciences, Professor, full member of the Academy of Mining Sciences, President of the Tula Regional Department of the Academy of Mining Sciences, e-mail: [email protected] Polyakov A.V., Doctor of Engineering Sciences, Professor, academic advisor of the Academy of Mining Sciences, e-mail: [email protected]
Averin E.A., PhD (Engineering), engineer-designer, e-mail: [email protected]
Linnik Yu.N., Doctor of Engineering Sciences, Professor, e-mail: [email protected] Linnik V.Yu., Doctor of Economic Sciences, Associate Professor, e-mail: [email protected]
Abstract
Russian coal industry at the present time requires technical and technological re-equipment, based on the latest achievements of science. One of the most important problems is the improvement of technical means of destruction of the coal and rocks, which are represented by shearers and roadheaders, equipped with conical picks. In order to succeed you must have accurate and reliable calculation methods for determining cutting forces during the process of picks interaction with rock.
Classical strength criteria of rocks, such as the uniaxial compressive strength, Brazilian tensile strength, contact strength, etc., do not always reflect the actual process. Thus, methods based on the usage of these criteria sometimes do not accurate enough. Modern ideas on fracture of materials are based on the fracture mechanics, considering fracture as a process of crack growth. A lot of specialists do not fully understand what methods and how should they used in order to obtain cutting forces with this conception. There is also a controversial information regarding methods for estimating the values of the parameters. The paper claims to eliminate this gap.
Keywords
Destruction, Rocks, Coal, Fracture toughness, Pick, Fracture mechanics, Calculation method, Development of the theory
References
1. Afanasiev V.Ya., Linnik Yu.N. & Linnik V.Yu. Pokazateli raboty ugol'noj pro-myshlennosti Rossii v oblasti mehanizacii ochistnyh rabot [Indicators of Russian coal mining industry in the field of mechanization of excavation works]. Ugol' - Russian Coal Journal, 2011, No. 6, pp. 44-46. Available at: http://www. ugolinfo.ru/Free/062011.pdf (accessed 15.08.2019). (In Russ.).
2. Stebnev A.V., Mukhortikov S.G., Zadkov D.A. & Gabov V.V. Analysis of operation of powered longwall systems in mines of SUEK-Kuzbass. Eurasian Mining, 2017, No. 2, pp. 28-32.
3. Zhabin A.B., Polyakov A.V. & Averin E.A. Kratkiy analiz problem i putey resheniya pri obespechenii gornodobyvayushchego predpriyatiya sovremen-nymi tekhnicheskimi sredstvami vedeniya gornyh rabot [A brief analysis of problems and solutions when ensuring the mining enterprise with modern equipment]. Ugol' - Russian Coal Journal, 2018, No. 1, pp. 13-16. (In Russ.).
DOI: 10.18796/0041-5790-2018-1-13-16. Available at: http://www.ugolinfo. ru/Free/012018.pdf (accessed 15.08.2019).
4. Zhabin A.B., Polyakov A.V., Averin E.A. & Sarychev V.I. Sostoyaniye nauch-nykh issledovaniy v oblasti razrusheniya gornykh porod reztsovym instru-mentom na rubezhe vekov [The state of scientific research in the field of rock destruction using a cutting tool at the turn of the century]. Izvestiya TulGU. Nauki oZemle - News TSU. Earth Sciences, 2018, No. 1, pp. 230-247. (I n Russ.).
5. Evans I. A theory of the basic mechanics of coal ploughing. Proceedings of the international symposium on mining research, 1962, Vol. 2, pp. 761-768.
6. Zhabin A.B., Averin E.A. & Polyakov A.V. Integral'naya ocenka slozhnosti proekta prohodki gornyh vyrabotok [Integrated assessment of the complexity of mining projects]. Ugol' - Russian Coal Journal, 2017, No. 11, pp. 60-63. (In Russ.). DOI: 10.18796/0041-5790-2017-11-60-63. Available at: http://www. ugolinfo.ru/Free/112017.pdf (accessed 15.08.2019).
7. Kuidong G., Du Changlong J.H. & Songyong L. A theoretical model for predicting the Peak Cutting Force of conical picks. Frattura ed Integrita Strutturale: Annals2014, 2014, Vol. 8, pp. 43-52. DOI: 10.3221/IGF-ESIS.27.06.
8. Evans I. A theory of the cutting force for point-attack picks. International Journal of Mining Engineering, 1984, Vol. 2, No. 1, pp. 63-71. DOI: 10.1007/ BF00880858.
9. Bilgin N., Demircin M.A., Copur H., Balci C., Tuncdemir H. & Akcin N. Dominant rock properties affecting the performance of conical picks and the comparison of some experimental and theoretical results. International Journal of Rock Mechanics and Mining Sciences, 2006, Vol. 43, No. 1, pp. 139-156. DOI: 10.1016/j.ijrmms.2005.04.009.
10. Zhabin A.B., Lavit I.M., Chebotarev P.N. & Polyakov A.V. Primenenie me-todov mekhaniki razrusheniya dlya rascheta nagruzok, deystvuyushchih na rezcy gornyh mashin dlya dobychi uglya [Application of Fracture Mechanics Methods for Calculation of Loads Acting on the Cutters of Coal Mining Machines. Gornoe oborudovanie i elektromekhanika - Mining equipment and electromechanics, 2017, No. 3, pp. 28-34. (In Russ.).
11. Pozin E.Z., Melamed V.Z. & Ton V.V. Razrushenie ugley vyemochnymi mashinami [Coal Destruction by Excavation Machines]. Moscow, Nedra Publ., 1984, 288 p. (In Russ.).
12. Chong K.P. & Kuruppu M.D. New specimen for fracture toughness determination for rock and other materials. International Journal of Fracture, 1984, Vol. 26, No. 2, pp. 59-62. DOI: 10.1007/BF01157555.
13. Kuruppu M.D. Fracture toughness measurement using chevron notched semi-circular bend specimen. International journal of fracture, 1997, Vol. 86, No. 4, pp. L33-L38.
14. Guo H., Aziz N.I. & Schmidt L.C. Rock fracture-toughness determination by the Brazilian test. Engineering Geology, 1993, Vol. 33, No. 3, pp. 177-188. DOI: 10.1016/0013-7952(93)90056-I.
15. Shiryaev A. & Kotkis A.M. Methods for determining fracture toughness of brittle porous materials. Industrial Laboratory, 1982, No. 48, pp. 917-918.
16. Ulusay R. (ed.). The ISRM suggested methods for rock characterization, testing and monitoring: 2007-2014, Springer, 2014, 293 p. DOI: 10.1007/9783-319-07713-0.
Received August 12,2019