ПРОГНОЗИРОВАНИЕ ИЗМЕНЕНИЯ СОПРОТИВЛЕНИЯ КОНТАКТНЫХ СОЕДИНЕНИЙ НИЗКОВОЛЬТНЫХ КОММУТАЦИОННЫХ АППАРАТОВ РАЗЛИЧНЫМИ МЕТОДАМИ
Е.И. ГРАЧЕВА Казанский государственный энергетический университет
В работе используется теория прогнозирования для формирования моделей, позволяющих вычислять сопротивление контактных соединений низковольтных коммутационных аппаратов.
В процессе эксплуатации контактные соединения низковольтных коммутационных аппаратов подвергаются механическим и химическим воздействиям, что ведет к увеличению их переходного сопротивления и, как следствие, под действием тока нагрузки к перегреву и впоследствии - к разрушению. Скорость развития дефектов зависит от конструкции контактного соединения, его расположения и интенсивности внешних воздействий. Промежуток времени между возникновением дефекта и аварийным выходом контактного соединения из строя составляет от нескольких месяцев до нескольких лет. Основной контроль за контакторами - это измерение переходного сопротивления постоянному току. Сопротивление контактов измеряют микроомметром типа М-246. Методом амперметра-вольтметра сопротивление измеряется косвенно. Широко распространен метод одинарного моста (мост Уинстона) или двойного моста (моста Томсона) [1].
Перед измерением переходного сопротивления контактов коммутационных аппаратов производится их включение и отключение не менее чем 5 раз. При этом поверхности контактов самоочищаются и их переходное сопротивление уменьшается. Сопротивление постоянному току контактной системы коммутационных аппаратов измеряется у всех фаз [2].
Ранее в энергетике для контроля контактных соединений и токоведущих частей использовались электротермометры, термосвечи, термопленки и термоуказатели [3]. В настоящее время для этих целей применяются тепловизоры. С применением тепловизоров процесс оценки теплового состояния контактов и токоведущих частей значительно упростился. Появилась возможность не только измерять температуру отдельных точек, но и наблюдать тепловые режимы электроустановок, что дает возможность оценить их работу, а при обнаружении дефекта - найти источник выделения тепла.
Количество тепла, выделяющееся на дефектном контакте, зависит от квадрата протекающего через него тока, переходного сопротивления и времени. Тепловая энергия, выделяющаяся при протекании тока через переходное сопротивление контакта, в виде теплового излучения передается окружающей среде, на сопряженные токоведущие части и изолирующие устройства. Температура контактных соединений зависит от многих факторов, в том числе от площади их поверхностей, коэффициентов теплопередачи сопряженных токоведущих частей, параметров окружающей среды (температуры). В ГОСТе [4] в качестве основного критерия исправности контактных соединений коммутационных аппаратов принята предельная температура их нагрева (превышение температуры нагрева над температурой окружающей среды) при номинальном токе Iном , а в [5] - предельное
© Е.И. Грачева
Проблемы энергетики, 2008, № 7-8
значение сопротивления фазы (полюса) аппарата и его частей. Эти два критерия исправности аппарата равнозначны, так как нагрев контактных соединений происходит до указанных в [6] температур за счет протекания тока нагрузки Iн = Iном и выделения в сопротивлении аппарата Яа энергии, мощность источника
которого Р=1 ном Яа пропорциональна сопротивлению токоведущей системы.
В качестве критерия оценки состояния контактов коммутационных аппаратов приемлемым является превышение нагретой части контакта над температурой окружающей среды.
По значениям тока нагрузки 1н и номинального тока аппарата
I ном вычисляется расчетное превышение температуры:
Г
I н
VIном у
(1)
где Ьном - нормируемое значение превышения температуры нагрева для
контролируемого объекта (контактного соединения) [6].
Расчетное значение сопротивления контактов коммутационных аппаратов при нормальной температуре пересчета вычисляем по выражению
К + Ьнорм
Лнорм = Лизм , (2)
К + Ь изм
где Лизм - измеренное значение сопротивления при температуре Ьизм, Ом; К -коэффициент для меди, равный 235; Ь норм - номинальная температура, равная 40°С [4]; Ьизм - температура окружающей среды, при которой проводилось измерение сопротивления Лизм, °С.
Электрическое сопротивление контактов определяется по выражению
Л = Лном + а ‘Ьном ‘к з , (3)
где а - температурный коэффициент, зависит от материала проводника; к з -
коэффициент загрузки, коммутационного аппарата; Лном - номинальное
сопротивление контактных соединений коммутационного аппарата [7].
Для магнитного пускателя марки ПМЕ-002 исходными данными для расчетов считаются:
Ь =3А*
ном
Лном =275 мОм [7];
Ь =40°С
норм
Расчеты ведутся в следующем порядке:
- определяем сопротивление контактов Лизм при температуре окружающей среды Ь изм =50°С по выражению (2):
Ли
Л
(К + іИзМ ) 275(235 + 5)
{к + і норм ) 235 + 40
- Аналогично определяются сопротивления контактов при других значениях температуры окружающей среды.
- Для исследования зависимости сопротивлений от загрузки определяем сопротивление контактов при к з =0,1 по выражению (3):
Л = Лном + а• Ьном - к2 = 275 + 4,3• 40• 0,12 = 227 мОм.
- Аналогично определяется сопротивление контактов магнитного пускателя при других значениях коэффициента загрузки.
Аналогично произведен расчет для магнитных пускателей, имеющих следующие номинальные сопротивления контактов: 82,5; 33; 13,1 мОм; а также для автоматических выключателей, имеющих номинальные сопротивления 34,9; 27,9; 17,5 мОм.
Графики зависимости сопротивления контактов коммутационных аппаратов (магнитных пускателей и автоматических выключателей) от температуры окружающей среды и коэффициента загрузки представлены на рис. 1-4.
Рис. 1. Зависимость сопротивления контактного соединения магнитных пускателей от
температуры окружающей среды
Рис. 2. Зависимость сопротивления контактного соединения магнитных пускателей от загрузки
Рис. 3. Зависимость сопротивления контактного соединения автоматического выключателя от
температуры окружающей среды
Рис. 4. Зависимость сопротивления контактного соединения автоматического выключателя от загрузки
Прогнозирование изменения сопротивления контактных соединений коммутационных аппаратов методом регрессионного анализа
Предсказанию развития случайного процесса, отражающего функционирование какой-либо сложной системы, должна предшествовать статистическая обработка результатов эксперимента с целью построения поля корреляции. Используя затем поле корреляции, можно найти эмпирическую регрессию, то есть установить количественную связь между характеристиками процесса [8].
Следующим этапом является аппроксимация предельной эмпирической кривой регрессии.
Простейшей формой аппроксимации этой кривой будет линейная регрессия:
у = а + 0х .
(4)
Изменение величины у связано с некоторым изменением параметра х, но не зависит от того, какое количество «параметра х уже накопилось».
Используя принцип наименьших квадратов, легко составить нормальное уравнение линейной регрессии [8]:
[V у _Е(а+рх )=0 (5)
IX Угх1 _Х(а+рх)х* = °.
Делая простые преобразования, приводим эту систему к виду
Г та + р У х I =У У1
V Р V 2 У (6)
аУ х I+р V х1 =У У1х I.
Число в называется коэффициентом регрессии; его легко найти с помощью определителей:
р=т Vх 1У1 -Vх »• V У1.
т Vх? -(х I)
Число а называется свободным членом регрессии, его легко выразить из первого уравнения через найденное уже в:
V У - Р V х I
а= 1 . (8)
т
Полученные формулы полностью определяют линейную регрессию по заданной выборке.
Равенство (5) для свободного члена регрессии можно переписать в виде
1 1 - — а = — V У1 - Р—V х I = У - Рх, тт
откуда у = а + Рх.
Получим, что средняя точка (х, у) совместного распределения изучаемых
величин всегда лежит на линии регрессии [8].
Отсюда вытекает, что для определения линии регрессии достаточно знать лишь ее угловой коэффициент в.
Тот факт, что исследуемая зависимость предполагается линейной, позволяет использовать для оценки силы связи выборочный коэффициент корреляции г:
г = Р
т Vх?-(Vх, )2. (9)
Из уравнения хорошо видна роль коэффициента корреляции: чем меньше г, тем ближе линия регрессии к горизонтальному положению [8].
Исходной для расчета является зависимость сопротивлений контактных соединений магнитного пускателя от температуры окружающей среды (табл. 1).
Зависимость сопротивления контактных соединений магнитного пускателя от температуры окружающей среды (йн=275 мОм)
*°с 5 10 15 20 25 30 35 40 45
R, мОм 240 245 250 255 260 265 270 275 280
Расчет ведем в следующем порядке:
- принимаем, что х;=;°С, у;=Я;, мОм;
- составляем табл. 2 для упрощения расчета.
Таблица 2
Результаты промежуточных расчетов
№ X У X2 У3 ХУ Х+У (Х+У)1
1 5 240 25 57600 1200 245 60025
2 10 245 100 60025 2450 255 65025
3 15 250 225 62500 3750 265 70225
4 20 255 400 65025 5100 275 75625
5 25 260 625 67600 6500 285 81225
6 30 265 900 70225 7950 295 87025
7 35 270 1225 72900 9450 305 93025
8 40 275 1600 75625 11000 315 99225
9 45 280 2025 78400 12600 325 105625
сумма 225 2340 7125 609900 60000 2565 737025
- По выражению (4) определяем коэффициент регрессии в:
тVх^у^-Vх, Vу^ 9• 60000-225• 2340 ^
тVх2-(Vхi )2 9• 7125-2252
тогда коэффициент а определяется по выражению (5)
Vу; -РVхi 2340-1 • 225
а =------------=-----------= 235.
т 9
- Получаем по выражению (6) коэффициент корреляции г:
г = Р
1
т V х ? "(V х;)3
тVу?-(Vу; )2 ' 9• 609900-23402
9•7125 - 225?
0,99.
- Коэффициент корреляции очень близок к 1 (0,99). А это значит, что зависимость между х и у является практически линейной, и окончательным уравнением нужно признать равенство
у=235+х.
Вывод:
Полученное выражение согласуется с аналитической зависимостью сопротивления контактных соединений магнитного пускателя от температуры окружающей среды (рис. 1 и 5).
© Проблемы энергетики, 2008, № 7-8
400-
300 -
200-
100 -
о
о
10
20
40
50
Рис 5. Зависимость сопротивления контактных соединений магнитного пускателя ПМЕ-002 от
температуры окружающей среды
Аналитическое прогнозирование изменения сопротивления контактов коммутационных аппаратов в процессе эксплуатации
Считаем, что работоспособность коммутационного аппарата (объекта диагностирования) определяется сопротивлением его контактов Лк. Рассматриваем функцию Лк(Т), значение которой изменяется непрерывно в интервале времени Т1=[Ь0, 4]. В результате этого имеются значения этой функции Л0,Л^... Л;, ... Лп на интервале Т1 [9].
Необходимо по известным значениям ^ определить значение функции Л(Ь): Яп+и ... Яп+1, . Л;, . Яп+т в будущие моменты времени Ьп+1, ... 4+;, ... Ьп+т € Т2 или узнать, через какое время значения Яп+г, Ь+, еТ2 достигнут допустимого уровня
Описать характер изменения параметра Лк в этом интервале можно с помощью выражения
Лном - номинальное сопротивление контактов, мОм [7]; к — коэффициент; Т — время эксплуатации, лет; Лдоп=5Лном — допустимое сопротивление контакта [5].
Исходными данными для расчета являются: магнитный пускатель марки ПМЕ-002;
Лном=275 мОм;
Лдоп=1375 мОм;
Т=30 лет.
Расчет ведем в следующем порядке:
- По выражениям (10, 11) определяем характер изменения Лк(Т):
ЛК=275+36Т, где к=(Лном — Лдоп)/Т=(275 — 1375)/30= — 36,
- Исследуем изменение сопротивления контактов в процессе эксплуатации, т.е.Т=1...30 лет:
Лк=275+36 1=311 мОм.
Аналогично расчет ведется для других значений времени эксплуатации.
(10)
(11)
По накопленным статистическим данным [7] определяем коэффициент регрессии (характеризующий наклон прямой) по выражению [9]:
а = -
=0,001,
Лдоп Лном 1375 275
коэффициент,
где Т=1 год, время эксплуатации магнитного пускателя; а характеризующий наклон прямой [9].
Аналогично расчет ведется при других значениях времени эксплуатации. Результат расчета представлен в табл. 3.
Таблица 3
Т, лет 1 3 5 7 10 15 17 20 23 25 30
а 0,001 0,003 0,005 0,006 0,009 0,014 0,015 0,018 0,021 0,023 0,027
Аналогично исследовались другие коммутационные аппараты, такие как магнитные пускатели марок ПМЕ-112, ПМЕ-212, ПМЕ-412; автоматические выключатели марок АП50-3МТ, АЕ2046, АЕ2056, А3144ХЛ4.
Графики зависимости сопротивления контактов коммутационных аппаратов от срока эксплуатации изображены на рис. 6 и 7.
0 5 10 15 20 25 30
Рис. 6. Изменение сопротивления контактов магнитных пускателей в процессе эксплуатации
0 5 10 15 20 25 30
Рис. 7. Зависимость сопротивления контактов автоматических выключателей от срока эксплуатации
1
В процессе аналитического прогнозирования изменения сопротивления контактных соединений низковольтных коммутационных аппаратов (магнитных пускателей и автоматических выключателей) при различных условиях эксплуатации получены математические модели, входные величины которых уточняются с помощью регрессионного анализа. Изменение сопротивления контактных соединений низковольтных аппаратов является одной из характеристик их технического состояния и позволяет оценить эффективность функционирования оборудования цеховых сетей.
Summary
A theory of prognostication is used to formate the models for calculation of resistance of contact junction of low - voltage switch apparatus.
Литература
1. Цапенко Е.Ф. Контроль изоляции в сетях до 1000 В. Изд. 2-е, перераб. - М.: Энергия, 1972. - 152 с.
2. Нормы и испытания электрооборудования и аппаратов электроустановок потребителей - Главгосэнергонадзор, 1981. - 224 с.
3. Образцов В.А. Уход за контактами низковольтных аппаратов. - М.: Государственное энергетическое издательство, 1959. - 59 с.
4. ГОСТ 403-73. Аппараты электрические на напряжение до 1000 В. Допустимые температуры нагрева частей аппарата. - М.: Изд. стандартов, 1977. - 6 с.
5. Объем и нормы испытаний электрооборудования. - М.: Энергия, 2002.
224 с.
6. ГОСТ 2933-83. Аппараты электрические низковольтные. Методы испытаний. - М.: Изд. стандартов, 2002. - 25 с.
7. Шевченко В.В., Грачева Е.И. Определение сопротивлений контактных соединений низковольтных коммутационных аппаратов // Промышленная энергетика. - 2002. - № 2. - С. 42-43.
8. Пустыльник Е.И. Статистические методы анализа и обработки наблюдений. - М.: Изд. Наука, 1968. - 288 с.
9. Калявин В.П., Рыбаков Л.М. Надежность и диагностика электроустановок: Учебное пособие. - Йошкар-Ола: Мар. гос. ун-т. - 2000. - 348 с.
Поступила 24.03.2008