Научная статья на тему 'Problem of Nesterenko and method of Bernik'

Problem of Nesterenko and method of Bernik Текст научной статьи по специальности «Математика»

CC BY
71
13
i Надоели баннеры? Вы всегда можете отключить рекламу.
Журнал
Чебышевский сборник
Scopus
ВАК
RSCI
Область наук
Ключевые слова
INTEGER POLYNOMIALS / DISCRIMINANTS OF POLYNOMIALS

Аннотация научной статьи по математике, автор научной работы — Budarina N.V., O'Donnell H.

In this article we prove that, if integer polynomial satisfies |𝑃 (𝜔)|𝑝 < 𝐻-𝑤 , then for > 2𝑛 2 and sufficiently large the root belongs to the field of 𝑝-adic numbers.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «Problem of Nesterenko and method of Bernik»

УДК 511.42 DOI 10.22405/2226-8383-2016-17-4-180-184

PROBLEM OF NESTERENKO AND METHOD OF BERNIK

N. V. Budarina (Khabarovsk), H. O'Donnell (Dublin)

Dedicated to Yuri Valentinovich Nesterenko and Vasilii Ivanovich Bernik on their 70th birthdays

Abstract

In this article we prove that, if integer polynomial P satisfies |P(w)|p < H-w, then for w > 2n — 2 and sufficiently large H the root 7 belongs to the field of p-adic numbers.

Keywords: integer polynomials, discriminants of polynomials.

Bibliography: 16 titles.

1. Introduction

Throughout this paper, p is a prime number, Qp is the field of p-adic numbers,

P (x) = anxn + ... + a1x + a0

is an integer polynomial with degree deg P(x) = n and height H(P) = max0^.,^ra | aj |. We denote by Vn the set of integer polynomials of degree n. Let Vn(H) = {P eVn : H(P) = H}.

In this paper, a result originally considered by Y. V. Nesterenko is examined. In fl] Y.V. Nesterenko discussed the solvability of the equation P(x) = 0 in the ring of p-adic integers Zp and proved the following result.

Theorem 1. Let x be an integer and P e Vn(H). If

IP(x)lP < е-8"2H-4n, then there exists a p-adic number 7 such that

P(7) = 0, |z — 7|P < 1.

Note that a similar problem was considered in [2] and there was given a criteria for when the closest root of a polynomial to a real point belongs to the field of real numbers. Knowledge of the nature of the roots is very important in the problems of Diophantine approximations for construction of regular systems [3,4]. Numerous applications of this concept arose when obtaining estimates for the Hausdorff measure and Hausdorff dimension of Diophantine sets [5] and proving analogues of the Khintchine theorem [6,7]. Using the regular systems, the exact theorems on approximation of real numbers by real algebraic [6], by algebraic integers [8], of complex numbers by complex algebraic [9] were obtained, and similar problems in the field of p-adic numbers [10] and in R x C x Qp [7] were investigated.

The Theorem 1 can be improved for p-adic leading polynomials. Such a polynomial P eVn satisfies

I On |p » 1. (1)

Theorem 2. Let ш e Zp and P e Vn(H) be a p-adic leading polynomial. Then if

|P<H-w (2)

for w > 2n — 2, and for sufficiently large H > H0(n), it, follows that the root 71 of P belongs to Qp and

|w — 7i|p < 1. (3)

Remark 1. If D(P) = 0 then we have that the root 7^/ P is closest to ш e Zp. The above theorem will be proved using a general method of V.I. Bernik which was developed in [11,12].

2. Preliminary setup and auxilliary Lemmas

Let P £ 'Pre have roots 71,72,... ,Jn in Q*, where Q** is the smallest field containing Qp and all algebraic numbers. Then, from (1) it follows that

|7i|p < 1, i = 1,... ,n; (4)

i.e. the roots are bounded. This follows from Lemma 4 in ( [13], p.85). Define the sets

Tp(lk) = (w £ Zp : |w - 7fc= min |w - 7i|*}, 1 ^ k ^ n.

l^t^'n

Consider the set Tp(^k) for a fixed k and fa ease of notation assume that k = 1. Next, reorder the other roots so that

|7i - 72^ < |7i - 73 |p < ... < |7i - J^p.

Fix e > 0 where e is sufficiently small and suppose that e1 = eN-1 where N = N(n) > 0 is sufficiently large. Let T = [e-1].

For a polynomial P £ Vn(H) define the real numbers pj by

|7i - lj|p = H-pi, 2 < j < n, p2 ^ P3... > Pn.

Define the integers mj, 2 ^ j ^ n, such that

mj — 1 mj

— ^ Pj < > ma ^ ... ^ mn ^ 0.

Further define numbers Si such that

mi+i +... + mn f . .

Si = -—-, (1 ^ l ^ n — 1), Sn = 0.

The first Lemma is a p-adic analogue of the Lemma, which was proved by Bernik in [14] and is a generalisation of Sprindzuk's Lemma ( [13], p.77).

Lemma 1. [15jLetw £ TP(71). Then

|u - 71 |p < mm (|p(u)lplP'(n)|-1 I! |7i - Ik|p)1/j.

^^ k=2

The following Lemma is often referred to as Gelfond's Lemma.

Lemma 2 ( [16], Lemma A.3). Let P1, P2,..., Pk be polynomials of degree n1,... ,nk respectively, and let P = P1P2 ...Pk.Le t n = n1 + n2 + ... + nk. Then

2-nH(P{)H(P2)... H(Pk) < H(P) < 2nH(P1)H(P2)... H(Pk).

In the proof of theorem we will refer to the following statement known as Hensel's Lemma.

Lemma 3 ( [4], p. 134). Let P be a polynomial with coefficients in Zp, let £ = {0 £ Zp and №(£)|p < Then as n ^ to the sequence

4n+1 = 4n P'(Cn) tends to some root ft £ Qp of the polynomial P and

- & < (£)№'(0|p < 1.

3. Proof of Theorem 2

Two cases must be dealt with separately: D(P) = 0 and D(P) = 0.

3.1. Case I: D(P) = 0

First consider a polynomial P £ Vn(H) satisfying D(P) = 0 and (2), and assume that |P'(w)|p ^ IP(w)|p. We will obtain a contradiction. Using (4), we get |P'(w)|p < H-w/2.

It is well known that ID(P)| = j^---, where

A

an-i an-2 ... «0

... 0 \

an-i an—2 ... ai ao 00

0 ... 0 an an-i an_2 ... ai ao

nan (n — 1)an_i (n — 2)a„_2 ... ai . .. 0 ... 0

0 nan (n — 1)a„_i (n — 2)an_2 ... ai 0 ... 0

\ 0 0 ... 0 nan (n — 1)a„_i (n — 2)an_2 ... ai

Hence the determinant,

| A | < |an|((2n — 2)\(nH )2n-2 + n(2n — 2)\(nH )2n-2)

= |an|(2n — 2)!(n + 1)(nH)2n-2 < 2n2n-1(2n — 2)! H2n-2IanI,

using the fact that H < H, i = 0,1,... ,n. Thus, ID(P)| < 2n2n-1(2n — 2)! H2n-2. This implies that

ID(P)|p ^ 2-1n1-2n((2n — 2)!)-1H-2n+2. (5)

Using Lemma 1, |an|p » 1 and (2),

|w — 71|p < mim^ndP(w)|P|P'(71)I-1 ni=2 I71 — 7kIp)1/3

< minKKn(#-w Ian|-^ EIn=j+1 171 — Ik|-1)1/j

< minKKn(#-w M-1^' )1/]

« min1^j^nH j . Define a(P) as the cylinder of points w satisfying

— W + Sj

Iw — 71 Ip « min H .

Let dj = w .S] and denote bv d0 the maximum value of 9j, j = 1,... ,n.

Now the polynomial P' is expanded as a Taylor series and each term is estimated on a(P). Thus

n

P'(u) = P '(71) + Y,((j — 1)!)-1p °°(71)(^ — 71)J-1, =2

|P (j)( 71)(w — 71)i-1|p « H - Si+(n-j) eiH - do(i-1). As d0 ^ dj, this implies that

j—1

|P00(71)(w — 71)^-1|p « H-Sj +(n-)£1+^(-w+Sj) < H-w/2+(n-2)d for 2 <

Thus,

|P'(71)|p < max ||P(%1)(w — 71 y-1 |p} « H-w/2+(n-2)^1

0

a

n

0

a

n

for H > Ho(n).

Expressing the discriminant D(P) in the form

p = KHn-2 n |7t - lj|p = K|pn-V(71)|p n to - 7j|p

and using the facts that |7t |p « 1 and |an |p ^ 1, we obtain

№P)|p (71)|p.

This contradicts (5) for w > 2n-2+2(n-2)e1 and sufficiently large Therefore, |P'(w)|p > |P(w)|p holds forw> 2n - 2 + 2(n - 2)e1; and case I follows immediately from Lemma 3. Hence, there exists a root 71 £ Qp of P such that |w - 71|p ^ |P(w)|p/|P;(w)|^ < 1.

3.2. Case II: D(P) = 0

Consider the polynomial P £ Vn satisfying D(P) = 0. First, P is decomposed into irreducible polynomials Ti(u) £ Z[w], i.e.

k

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

p m = n fa).

i=1

It will be shown that for some index j, 1 ^ j ^ k,

\Tj(u)l < 2nw/2H-w(Tj). (6)

Assume the opposite, so that

|Tj(w)|p ^ 2nw/2H-w(Tj) for all j, 1 < j < k.

Then, by Lemma 2,

k

^(w)|p ^ n(2nW/2H-W(Tj))S' > 2nw(^=i /2-1)H(P)-w ^ H(P)-w j=1

which contradicts (2). Thus (6) holds.

Hence, applying the same method as in Case I for Tj, D(Tj) = 0, which satisfies (6), it follows

that there exists a p-adic number 71 such th at |w - 71|p < 1 and Tj (71) = 0. This implies P (71) = 0. □

REFERENCES

1. Y. V. Nesterenko, Roots of polynomials in p-adic fields. Preprint.

2. N. Budarina, H. O'Donnell, On a problem of Nesterenko: when is the closest root of a polynomial a real number? International Journal of Number Theory, 8 (2012), no. 3, 801-811.

3. A. Baker and W.M. Schmidt, Diophantine approximation and Hausdorff dimension, Proc. Lond. Math. Soc. 21 (1970), 1-11.

4. V. I. Bernik, M. M. Dodson, Metric Diophantine approximation on manifolds, Cambridge Tracts in Math., vol. 137, Cambridge Univ. Press, 1999.

5. H. Dickinson and S. Velani, Hausdorff measure and linear forms, J. reine angew. Math., 490 (1997), 1-36.

6. V. Beresnevich, On approximation of real numbers by real algebraic numbers, Acta Arith. 90 (1999), 97-112.

7. V. Bernik, N. Budarina and D. Dickinson, A divergent Khintchine theorem in the real, complex, and p-adic fields, Lith. Math. J. 48 (2008), no. 2, 158-173.

8. Y. Bugeaud, Approximation by algebraic integers and Hausdorff dimension, J. Lond. Math. Soc., 65 (2002), pp. 547-559.

9. V. I. Bernik and D. Vasiliev, Khintchine theorem for the integer polynomials of complex variable, Tr. Inst. Mat. Nats. Akad. Navuk Belarusi, 3 (1999), 10-20.

10. V. V. Beresnevich, V. I. Bernik and E. I. Kovalevskava, On approximation of p-adic numbers by p-adic algebraic numbers, J. Number Theory, 111 (2005), no. 1, 33-56.

11. V. Bernik, An application of Hausdorff dimension in the theory of Diophantine approximation, Acta Arith. 42 (1983), 219-253.

12. V. Bernik, On the exact order of approximation of zero by values of integral polynomials, Acta Arith. 53 (1989), 17-28.

13. V. Sprindzuk, Mahler's problem in the metric theory of numbers, vol. 25, Amer. Math. Soc., Providence, RI, 1969.

14. V. I. Bernik, The metric theorem on the simultaneous approximation of zero by values of integer polynomials, Izv. Akad. Nauk SSSR, Ser. Mat. 44 (1980), 24-45.

15. V. Bernik, D. Dickinson and J. Yuan, Inhomogeneous diophantine approximation on polynomials in Qp, Acta Arith., 90 (1999), no. 1, 37-48.

16. Y. Bugeaud, Approximation by algebraic numbers, Cambridge Tracts in Mathematics, Cambridge, 2004.

Khabarovsk Division of Institute for Applied Mathematics

Dublin Institute of Technology

Получено 28.11.2016 г.

Принято в печать 12.12.2016 г.

i Надоели баннеры? Вы всегда можете отключить рекламу.